

明治大学大学院理工学研究科

２０１９年度

博士学位請求論文

Fixed Point Subgradient Methods for
Constrained Nonsmooth Optimization

（制約付き非平滑最適化に対する不動点劣勾配法）

学位請求者 情報科学専攻
菱沼 和弘

1

数理最適化研究室 博士論文アーカイブ 2020, pp. 1–120.

Doctoral Thesis

Fixed Point Subgradient Methods for Constrained
Nonsmooth Optimization

Research Fellow of Japan Society for the Promotion of Science;

Computer Science Course, Graduate School of Science and Technology, Meiji University

Kazuhiro HISHINUMA

This thesis considers constrained nonsmooth optimization problems, espe-
cially focusing on the situation in which the constraints are expressed as fixed
points of some mapping. First, we propose incremental and parallel line-
search subgradient algorithms for solving a constrained, nonsmooth, convex
optimization problem. Next, we propose the fixed point quasiconvex subgra-
dient method for solving a constrained, nonsmooth, quasiconvex optimization
problem. After that, we discuss the rate of convergence of the fixed point
quasiconvex subgradient method. For each method, we performed numerical
experiments to compare it with existing methods and to evaluate its advan-
tages and disadvantages. Through the provision of these novel methods and
the discussion of their convergence and efficiency, we attempt to resolve issues
such as the efficiency of the algorithm, difficulties in applying the algorithm,
and limitations on solvable problems.

This thesis is part of the JSPS KAKENHI Research Project “Efficient meth-
ods for nonsmooth quasiconvex optimization with complicated constraints
based on fixed point theory (Grant Number: JP17J09220).” Please see https:
//kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17J09220/ for details.

https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17J09220/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17J09220/

2

Contents

Chapter 1 Introduction 3
1.1 Main problem and motivations behind it 3
1.2 Review of the existing studies . 4
1.3 Proposals of this thesis and their contributions 28
1.4 Content after this chapter . 35

Chapter 2 Incremental and Parallel Line Search Subgradient Algorithms 36
2.1 Introduction . 37
2.2 Mathematical preliminaries . 40
2.3 Proposed algorithms and their convergence analyses 42
2.4 Experiments . 52
2.5 Conclusion . 63

Chapter 3 Fixed Point Quasiconvex Subgradient Method 64
3.1 Introduction . 65
3.2 Mathematical preliminaries . 67
3.3 Quasiconvex subgradient method over a fixed point set 73
3.4 Numerical experiments . 92
3.5 Conclusion . 97

Chapter 4 Convergence Rate Analysis of Fixed Point Quasiconvex Subgradient
Method 99

4.1 Introduction . 99
4.2 Mathematical preliminaries . 101
4.3 Proposed method and its efficiency 102
4.4 Conclusion . 113

Acknowledgments 114

3

Chapter 1

Introduction

Section 1.1. Main problem and motivations behind it

This thesis considers constrained, nonsmooth optimization problems. A constrained
optimization problem is composed of two factors: an objective functional and a con-
straint. The objective functional represents profit, time, potential energy, or some
combination of these quantities, and the constraint represents what the solution must
satisfy, such as budgetary constraints in an economic problem or shape constraints
in a design problem [68, Chapter 1]. For given objective functional and constraints,
the goal of a constrained optimization problem is to find a solution that minimizes
or maximizes the objective functional and that satisfies all the constraints. We call
a constrained optimization problem whose objective functional is nondifferentiable a
constrained, nonsmooth optimization problem. This thesis especially focuses on the
situation in which the constraints are expressed as fixed points of some mapping.
This thesis mainly deals with the following two kinds of the constrained, nonsmooth

optimization problem:

• in which the objective functional is the sum of convex functionals;
• in which the objective functional is a quasiconvex functional.

Let us see the motivations behind each of them in order. There are many instances
of optimization problems whose objective functional can be expressed as the sum of
convex functionals [13, 79, 83]. The optimization task appearing in learning with
a support vector machine is a typical instance [83]. The goal of the learning is to
make a classifier capable of correctly predicting the label for each given data. To
reach this goal, the task minimizes a objective functional that expresses the degree
of misclassification for each training data. To obtain a classifier that can correctly
predict all of the given data, the task minimizes the sum of these objective func-
tionals. Similarly to learning with a support vector machine, the task of multilayer
neural networks also forms an objective functional summing a number of function-
als [30]. Signal recovery [10], bandwidth allocation [39], and beamforming [85] are
also instances of optimization problems minimizing the sum of nonsmooth, convex
functionals with some constraints. Hence, providing a method that can solve them

4

efficiently is important.
Let us examine the motivations behind each of them. There are many instances

of optimization problems whose objective functional can be expressed as the sum of
convex functionals [13, 79, 83]. The optimization task appearing in learning with
a support vector machine is a typical instance [83]. The goal of the learning is to
make a classifier capable of correctly predicting the label for each given data. To
reach this goal, the task minimizes an objective functional that expresses the degree
of misclassification for each training data. To obtain a classifier that can correctly
predicts all of the given data, the task minimizes the sum of these objective func-
tionals. Similarly to learning with a support vector machine, the task of multilayer
neural networks also forms an objective functional summing a number of function-
als [30]. Signal recovery [10], bandwidth allocation [39], and beamforming [85] are
instances of optimization problems that involve minimizing the sum of nonsmooth,
convex functionals with certain constraints. Hence, finding methods that can solve
them efficiently is important.
There are many cases in which the objective functional cannot be expressed as a

convex functional [33, 35, 37, 38, 50, 86]. Some of them belong to the class of quasicon-
vex optimization problems whose objective functional is not convex but that inherits
several properties of convex functionals [33, 35, 86]. A typical instance of a quasicon-
vex functional is a fractional functional. This functional is expressed as a fractional
of two functionals and is used for modeling ratio indicators, such as the debt/equity
in financial and corporate planning, inventory/sales and output/employee in produc-
tion planning, and cost/patient and nurse/patient ratios in healthcare and hospital
planning [86]. We cannot use all the properties of convex functionals for solving
these problems, but some of them give us clues on how to tackle them. Furthermore,
studies on quasiconvex functionals shed light on convex optimization problems, since
any convex functional is also a quasiconvex functional. Hence, this thesis studies the
development of a method for solving constrained, quasiconvex optimization problems.

Section 1.2. Review of the existing studies

Let us review the existing studies for clarifying the contributions of the later dis-
cussion. Throughout this thesis, we tackle the construction and analysis of iterative
methods [68, Chapter 3]. An iterative method is one that generates a sequence con-
verging to some solution of a given problem by an iterative procedure. Here, we study
their fundamental instances and variants.

1.2.1 Iterative methods for unconstrained optimization

Steepest descent method. First, let us consider how to solve an unconstrained
optimization problem wherein the task is to minimize a given objective functional over
the whole space. Consider the case in which the minimizer of the objective functional
cannot be computed explicitly, such as a complicated objective functional. If we can

5

easily find a minimizer of the objective functional, there is no problem. Hence, let
us consider the case where we cannot. If the objective functional is differentiable,
the most basic approach to solving the problem is the steepest descent method [68,
Section 3.3].
The steepest descent method iterates the current approximation to decrease the

value of the objective functional. First, we give an initial point to the method. If
we have some information on the problem setting, we can use it for deciding the
initial point. If we don’t have any information, we can pick the initial point in some
way, such as by generating it randomly. After that, the method improves it by using
the information on the gradient. The behavior of the steepest descent method is
illustrated in Figure 1.1. Suppose that the rightmost point on the horizontal axis

F
un

ct
io

na
l v

al
ue

Gradient:
the direction of the
steepest increase in the
objective functional value

The steepest descent method
moves the current approximation
in the opposite direction to the gradient.

An iteration reduces
the objective functional value.

An iteration lets
the current approximation

approach the minimizer.

The minimizer

Fig. 1.1: Illustration of the behavior of the steepest descent method

is the current approximation and the curved graph shows the objective functional.
As shown by the blue arrow pointing to the right in Figure 1.1, the gradient at this
approximation shows the direction of the steepest increase in the objective functional
value. This implies that the the functional value should decrease by moving the
current approximation in the opposite direction to the gradient. Indeed, Figure 1.1
shows that an iteration which moves the approximation in the opposite direction to
the gradient actually reduces the objective functional value. The opposite direction
to the gradient like this is called the (steepest) descent direction [68, Section 2.2]. The
principal idea of the steepest descent method is to minimize the objective functional
value by iterating this improvement.
There is a question of whether the sequence generated by the steepest descent

method always converges to the minimizer of the objective functional. The answer
to this question is no. Figure 1.2 shows an example in which the sequence does not

6

converge. In the first several iterations, the steepest descent method reduces the
F

un
ct

io
na

l v
al

ue

...
In the first several iterations,
the steepest descent method
reduces the objective functional value.

Steepest descent
direction oscillates.

Fig. 1.2: A case in which the generated sequence repeats two points and does not
converge to the minimizer

value of the objective functional. However, after that, the steepest descent method
eternally generates a nonconvergent sequence so as to move approximations to their
symmetric point with respect to the minimizer. This example shows that we cannot
ensure convergence of the generated sequence to the minimizer only by using the
direction of the gradient.
To guarantee convergence of the generated sequence to the minimizer, we can use

other information in the gradient besides its direction, i.e., its norm. The norm
of the gradient shows by how much the functional value changes at the point. If
the norm of the gradient is large, we can consider the objective functional value to
be dramatically changing in the neighborhood of the current approximation. After
making assumptions about the continuity of the objective functional, this implies that
the current approximation is still far from the minimizer. On the other hand, we can
consider the current approximation to be possibly close to the minimizer when the
norm of the gradient is small. Hence, we can overcome the issue shown in Figure 1.2
by moving the current approximation in a direction determined from the gradient by
the distance proportional to the norm of the gradient. Specifically, if the objective
functional is Lipschitz continuous, which is a kind of smoothness condition, and if it
is convex, i.e., its epigraph (the area above the graph of the functional) is convex, the
generated sequence converges to the minimizer of the objective functional by using
the direction determined from an appropriately scaled gradient [36, Proposition 2.3],
[44, Definition (1.16)].

7

Subgradient method. Next, let us consider the case in which the objective functional
may not be differentiable at some point. The simplest example of this case is the
absolute value functional. As shown in Figure 1.3, the absolute value functional is
not differentiable at the vertex. The absolute value functional is differentiable if we

(a) Functional values

Discontinuity

(b) Gradients

Fig. 1.3: The gradients on the left side of the vertex are vectors whose norms are
constant and directions are towards the left, and the gradients on the right side of the
vertex are vectors whose norms are constant and directions are to the right. Since
these two gradients are not equal to each other at the vertex, the absolute value
functional cannot be differentiated at the vertex.

exclude its value at the vertex. On the left side of the vertex, the norm of the gradient
is constant and the direction of the gradient is to the left. On the right side of the
vertex, the norm of the gradient is also constant and the direction of the gradient is to
the right. However, the gradient at the vertex cannot be defined since the values of the
right and left gradients are not equal at the vertex, as shown in Figure 1.3b. Hence,
we cannot use the steepest descent method, which uses the gradient of the objective
functional for generating the sequence, to minimize a nondifferentiable functional such
as this example.
There is an optimization method that overcomes this issue, called the subgradient

method [5, Section 8.2]. Instead of the gradient, which is defined for differentiable
functionals, the subgradient method uses subgradients, which can be defined even if
the functional is not differentiable. The subgradient is an extension of the gradient,
and it is defined from the viewpoint of the relationship between the gradient and
the tangent hyperplane. Here, let us consider the gradient of a convex functional.
As shown in Figure 1.4a, the gradient at a given point draws a hyperplane which
touches the functional at that point, whose gradient coincides with the gradient of
the functional at that point, and which lies below the functional [81, Theorem 2.14].
It is defined as shown in Figure 1.4b so that the subgradient inherit these properties

8

(a) A gradient (b) Subgradients

Fig. 1.4: Extending the gradient concept to that of subgradients

from the gradient: a gradient of the hyperplane that is a tangent hyperplane of the
functional and lies below the functional is called the subgradient [2, Definition 8.3
and Proposition 8.12]. Numerous subgradients may exist at the same point. Indeed,
an infinite number of subgradients exist at the vertex in Figure 1.4b. Therefore,
we usually consider the set of all subgradients at the given point and call it the
subdifferential [87, Section 7.3]. Notice that subgradients at a given point may have a
variety of norm values since numerous subgradients may exist at the same point, but
it still describes the degree of the gradient of the functional. In fact, even at the vertex
in Figure 1.4b, a vector with too large a norm cannot be a subgradient of the absolute
functional because it violates the condition that the tangent hyperplane drawn by the
subgradient must lie under the functional. This property will be important when we
discuss the nonconvex case later.
In a similar way to the steepest descent method, we can generate a sequence con-

verging to the minimizer of a nondifferentiable convex objective functional by using
the suitably scaled descent direction calculated from an arbitrarily chosen subgradi-
ent from the subdifferential at each approximation [5, Proposition 8.2.6]. We call this
way of generating this sequence the subgradient method. Figure 1.5 summarizes the
steepest descent method and the subgradient method.

Quasiconvex subgradient method. At the end of this subsection, let us consider
the problem of applying the subgradient method to a nonconvex functional. As an
instance of nonconvex functionals, we will discuss quasiconvex functionals in particu-
lar. In contrast to convex functionals, the epigraph of a quasiconvex functional does
not have to be convex. Here, we will put off giving the general definition of quasicon-
vexity till later and limit ourselves here to a typical instance, as shown in Figure 1.6.
As described above, the epigraph of a convex functional is convex (Figure 1.6a). By

9

For minimizing a differentiable objective
functional:
Step 1: Choose an initial point.
Step 2: Compute the gradient.

Step 3: Improve the current approxima-
tion with the descent direction
obtained from the gradient.

Step 4: Go to Step 2.

(a) Steepest descent method

For minimizing a nondifferentiable convex
objective functional:
Step 1: Choose an initial point.
Step 2: Compute the subdifferential.
Step 3: Choose a subgradient from the

subdifferential.
Step 4: Improve the current approxima-

tion with the descent direction
obtained from the chosen subgra-
dient.

Step 5: Go to Step 2.

(b) Subgradient method

Fig. 1.5: Steepest descent method and subgradient method

(a) Convex functional (b) Quasiconvex functional

Fig. 1.6: Typical examples of convex and quasiconvex functionals

contrast, a quasiconvex functional like the one shown in Figure 1.6b may have a line
segment that violates the convexity of the epigraph (see Figure 1.7). However, the
quasiconvexity of a functional is an extension of convexity from some viewpoint. Let
us consider the contour graph (Figure 1.8) of the functionals we saw in Figure 1.6.
Figure 1.8a is the contour graph of the convex functional in Figure 1.6a, and Fig-
ure 1.8b is the contour graph of the quasiconvex functional in Figure 1.6b. Both
graphs draw similar concentric circles whose center is the origin, and the only differ-
ence is in the number density of the circles. One of the most important properties
of quasiconvex functionals is the convexity of its slices, as we saw in Figure 1.8b [19,
Proposition 4.8]. In other words, we can say that the quasiconvexity of a functional
is an extension of the concept of convexity from the viewpoint of the contour graph.
Let us consider the difficulty of minimizing a quasiconvex objective functional by

directly using the idea of steepest descent and/or subgradient. Here, the optimiza-
tion requires computation of the gradient or the subgradient. However, the usual

10

A line segment which
violates convexity.

Fig. 1.7: Quasiconvex functional may violate the convexity of its epigraph

(a) Convex functional (b) Quasiconvex functional

Fig. 1.8: Contour graphs of the examples shown in Figure 1.6

subdifferential for the convex functional may be empty, i.e., it may not be available,
for the quasiconvex functional, since it might be the case that no subgradient exists,
as is shown in Figure 1.11. In this case, we cannot draw any tangent hyperplane

Here, we
cannot draw
any tangent hyperplane because of
the nonconvexity of the epigraph.

Fig. 1.9: Counterexample showing a quasiconvex functional that is not subdifferen-
tiable

running below the quasiconvex objective functional at the given point because the
nonconvexity of the functional does not guarantee the convexity of its epigraph.
Of course, there are various, extended subdifferentials for nonconvex functionals

11

[74, Section 4], [81, Definition 8.3]. Some of them can be defined for quasiconvex
functionals. A subdifferential constructed from directional derivatives [74, Section 4]
is one. Let us consider a piecewise-linear quasiconvex functional such as the one
shown in Figure 1.10 and the subdifferential at a point at which the functinal is not
differentiable. From the viewpoint of the blue point, the functional value sharply

Left derivative:
gently decreasing

Right derivative:
sharply increasing

Domain of functional

Subgradient candidates

Compatible with both derivatives

Fig. 1.10: Subdifferential constructed from the directional derivatives

increases on the right side of the blue point while it is gently decreasing on the
left side. Similarly to the subdifferential for convex functionals, let us construct a
subdifferential by using the notion of the tangent hyperplane. If we consider only
the right side, the gradient of the tangent hyperplane is bounded from above by the
directional derivative on that side. If we consider only the left side, the gradient of the
tangent hyperplane is bounded from below by the directional derivative on that side.
Hence, we can obtain gradients that are compatible with both cases; we call the set
of them the subdifferential constructed by the directional derivatives [74, Section 4].
When we can obtain a subdifferential for quasiconvex functionals, can we always

run the subgradient method for quasiconvex optimization? Unfortunately, knowing
the subdifferential is not enough, and Figure 1.11 shows why. This figure illustrates
the behavior of the subgradient method when it is applied to a piecewise-linear quasi-
convex minimization. Unlike a convex functional, a quasiconvex functional may have
a flat part even if it is not a (set of) minimizer; in other words, a local minimizer
might not coincide with the global minimizer in quasiconvex optimization. When the
approximation reaches the flat part, the subdifferential reduces to a set containing
only the zero vector. Since the zero vector has no information on the direction, the
method cannot use it to improve the approximation. Hence, the method terminates
even if the approximation is far from the minimizer.
As a way of overcoming this issue, Konnov [54] introduced a variant of the subgra-

dient method for minimizing the quasiconvex objective functional. This variant uses
the normal vector to the slice at the current approximation as a subgradient. Let
us examine the behavior of this method (Figure 1.12) when it is used to minimize
the functional in Figure 1.11. The slice at the current approximation is defined as

12

F
un

ct
io

na
l v

al
ue

...

Minimizer

In a quasiconvex functional,
a flat point may exist even if it is not a minimizer.

Since the subgradient is zero,
the method does not provide

any further improvement.

Fig. 1.11: Termination problem of the subgradient method in quasiconvex optimiza-
tion

F
un

ct
io

na
l v

al
ue

)
Slice at the current approximation Normal vector to the slice

We can improve the current approximation
even if that point is on a flat part of the objective functional.

Descent direction
based on the normal vector

Fig. 1.12: Termination problem occurring when the subgradient method is applied to
quasiconvex optimization

13

the area in which the functional value is less than the current one. As we saw in
Figure 1.8, every slice (which is expressed as a contour line in the contour graph) of a
quasiconvex functional is convex. Here, the slice does not contain the current approx-
imation. Therefore, from the separation theorem [87, Corollary 5.3.3], there exists
a half-space that includes the slice and does not contain the current approximation,
such as illustrated in Figure 1.13. This implies that there exists at least one nonzero

Slice

Minimizer

Separating
hyperplane
exists.

Current
approximation

Normal vector
exists.

Fig. 1.13: Existence of a normal vector
to the slice, from the separation theo-
rem

Any scaled normal vector is
also a normal vector to the convex set.

Fig. 1.14: Any scaled normal vector to
the convex set is also a normal vector
to it

subgradient if the functional is continuous [53, Lemma 3]. This in turn means that
the method can continue to improve the approximation even when it is on the flat
part of the objective functional. Furthermore, the minimizer is contained in each slice
whenever the current approximation is not the minimizer. Since the descent direction
based on the normal vector always points to the minimizer, the sequence generated
by this method with an appropriate scaling of the descent direction converges to the
minimizer under a certain assumption on the continuity of the objective functional
[54, Corollary 2.3].
Here, recall that we use the norm of the gradient to ensure the sequence generated

by the steepest descent method converges to the minimizer. However, any scaled
normal vector to the slice is also a normal vector to it (as shown in Figure 1.14). This
implies that the norm of the subgradient which is defined as the normal vector to the
slice has no longer has any meaning. Hence, for the generated sequence to converge,
we have to make an additional assumption or incorporate some other mechanism into
the subgradient method.

1.2.2 Fixed point theory and constrained optimization

Metric projection. In this subsection, let us consider a way to solve constrained
optimization problems. Before discussing concrete methods for solving them, let us
see what tasks they can model. Suppose that as the manager of a factory, you are
charged with finding production factors such as how many of each item should be
produced [33, Section 6]. Here, it would be good plan if you could minimize the cost

14

of production and maximize the total profit. However, we usually have restrictions
on the feasible plan, such as the duties assigned to each production project and
limitations on resources. Hence, to solve such a problem, we need to optimize the
objective functional subject to constraints. This sort of problem is called constrained
optimization [68, Chapter 1].
The relationship between the objective functional and the constraint set is shown in

Figure 1.15. The constraints of the optimization problem can be expressed as a subset

F
un

ct
io

na
l v

al
ue

[]
Constraint setMinimizer

Fig. 1.15: Constrained optimiza-
tion

F
un

ct
io

na
l v

al
ue

(]
Constraint set

For any point in
the constraint set,
a point exists
whose functional value
is less than it.

Fig. 1.16: Case of a non-existent
minimizer

of the domain of the objective functional. This subset is called the constraint set. The
task of the constrained optimization problem is to find a point whose functional value
is the infimum on the constraint set. Obviously from the figure, the minimizer of the
constrained optimization problem may not coincide with the vertex of the objective
functional.
Throughout this thesis, we will assume that the constraint set is a nonempty, closed,

convex set if it is given. The reason why we assume the constraint set is closed is to
avoid corner cases where the minimizer does not exist. Let us refer to Figure 1.16. If
the constraint set is not closed, the boundary of the constraint set may not be con-
tained in it. In this case, the minimizer may not exist, because for any point in the
constraint set, there is another point whose objective functional value is strictly less
than that one. To ensure the existence of the minimizer of the constrained optimiza-
tion problem, we need another assumption such as coerciveness of the objective func-
tional [87, Theorem 7.2.2] or boundedness of the constraint set [87, Theorem 7.2.3].
However, closedness and convexity are required in both cases. Hence, we will assume
that the constraint set is closed and convex.
Here, let us consider how to solve a constrained optimization problem with the

methods described above. The simplest way is to use the metric projection onto the
constraint set. The metric projection is a mapping which sends the given point to
the nearest point belonging to the constraint set [87, Section 5.2]. For any nonempty,
closed, convex set and for any point, the existence of such a point is guaranteed, as
is its uniquess [87, Theorem 5.2.1]. Here, Figure 1.17 shows some examples of metric
projections onto simple, closed convex sets, i.e., a closed half-space, a box, and a

15

closed ball. If the given point is contained in the set, the metric projection does

Normal vector

Closed half-space

Opposite direction
to the normal vector

(a) Closed half-space

Box

(b) Box

Center

Closed ball

(c) Closed ball

Fig. 1.17: Metric projections onto the simple, closed, convex sets

not move it. Let us consider the case where the given point is out of the set. The
direction of moving the given point to the closed half-space over the shortest distance
is the opposite one to the normal vector to the set. Hence, the metric projection onto
the closed half-space moves the given point in the opposite direction to the normal
vector by an appropriate distance (as shown in Figure 1.17a; [2, Example 29.20]). To
compute the metric projection onto a box, we can use the properties of orthogonality
(as shown in Figure 1.17b [2, Proposition 29.6]). The metric projection of a given
point onto the closed ball is on the line segment connecting it and the center of the
ball. Hence, as shown in Figure 1.17c, we can compute it explicitly [2, Example 3.18
and Proposition 3.19].
The metric projection onto the constraint set sends the given point to the nearest

point, i.e., the best approximate point, in the constraint set. Hence, by projecting the
sequence generated by the steepest descent method onto the constraint set, we can
obtain a sequence which is contained in the constraint set and which approximates
the generated sequence. This method is called the projected gradient method [2,
Corollary 28.10]. The behavior of the sequence generated by the projected gradient
method is shown in Figure 1.18. If the current approximation is far enough from
the boundary of the constraint set, an iteration of the projected gradient method

16

F
un

ct
io

na
l v

al
ue

[]
Constraint setMove it to the nearest point

Out of the constraint set

Fig. 1.18: Illustration of the behavior of the projected gradient method

coincides with the steepest descent method. Indeed, the metric projection does not
move a given point when it is in the constraint set. When the point generated by
an iteration of the steepest descent method is out of the constraint set, the metric
projection moves it to the nearest point in the constraint set.
The sequence generated by the projected gradient method converges to the mini-

mizer when the objective functional is smooth enough [2, Corollary 28.10]. Further-
more, to minimize a nonsmooth convex functional or a quasiconvex functional, the
subgradient method [5, Section 8.2] and quasiconvex subgradient method [53] with
the metric projection can be constructed in a similar way.
Sometimes (as shown in Figure 1.18), the projected point coincides with or is close

to the minimizer of the optimization problem. However, this fortunate case is un-
common. Here, let us consider the contour graph (Figure 1.19) of a constrained
optimization problem whose objective functional is linear; that is, the gradients at
any point are the same, and the constraint set is closed, convex, and bounded. Even
for this simple problem, the projected gradient method may suffer from slow con-
vergence. One of the reasons is that the zig-zagging phenomenon occurs near the
boundary of the constraint set. To avoid this phenomenon, one can select a specific
descent direction considering the effect of the metric projection and the constraint set
[35]. However, this requires additional information about the problem setting and an
assumption that the constraint set is simple. Hence, there have been many studies
on how to efficiently solve constrained optimization problems, and they illustrate the
difficulty of constrained optimization.

17

Gradient
on the whole space

...

Initial point

After a point reaches the boundary,
the zig-zagging phenomenon may occur
and this phenomenon may causes slow convergence.

Fig. 1.19: Zig-zagging phenomenon occurring on the boundary of the constraint set

Nonexpansive mappings and their fixed points. Here, let us consider a case where
we would like to let the optimal solution satisfy two or more constraints. In the
previous example of managing a factory, we may need a plan which considers multiple
items and production projects. In such a case, we can’t solve the problem by imposing
only one simple constraint; we must solve it under multiple constraints.
Let us use the metric projection onto the intersection of the constraint sets, in other

words, onto the set whose points satisfy all the constraints. As we saw in Figure 1.17b
(metric projection onto a box), the composite mapping of the metric projections onto
the constraint sets may coincide with the metric projection onto their intersection in
some special cases. However, as Figure 1.20 shows, it does not do so in general. This

Nearest point
in the constraint set

Fig. 1.20: Composite metric pro-
jection that does not project a
given point onto the intersection

Fig. 1.21: Computing the metric
projection by dividing up its do-
main

18

figure illustrates the behavior of a composite mapping of the metric projections onto
two closed half-spaces; the red point is the nearest point to the given (upper blue)
point in the intersection of the two closed half-spaces. Even in this simple case, the
composite mapping cannot project the given point onto the constraint set. Although
the metric projection onto two closed half-spaces can be computed by dividing the
whole space into four parts (Figure 1.21) [2, Proposition 29.23], this might be difficult
in more complicated cases.
How should we express the intersection of two or more constraint sets when solving

the constrained optimization problem? As an answer to this question, we can use
a notion called a fixed point. In the previous discussion, we considered the metric
projection from the viewpoint of the constraint set. Here, let us consider it from
the opposite perspective, i.e., considering the constraint set from the viewpoint of
the metric projection. If the given point is in the set, the metric projection onto it
does not move that point since the nearest point is itself. Similarly, the composite
mapping of the metric projections onto two or more sets does not move any point
in the intersection of these sets, since each metric projection does not move such a
point. In general, this property holds as a necessary and sufficient condition; that
is, any point in the intersection of nonempty, closed, convex sets does not move even
if it is mapped by a composite mapping of the metric projections onto these sets,
and any point outside of the intersection moves under the composite mapping [2,
Proposition 4.49]. A point that does not move when a mapping is applied is called a
fixed point. Hence, we can alternatively call the set onto which the metric projection
projects the fixed point set [87, Chapter 6].
Unfortunately, the composition mapping is not a metric projection since it does

not move a given point to the nearest fixed point. Hence, we need to extend the
notion of the metric projection in order to discuss the properties of mappings such
as composition mappings. Nonexpansivity is an extension of the notion of the metric
projection, and composition mappings satisfy it. It is defined as follows: a mapping
is called nonexpansive if it shrinks or does not change the distance between two
arbitrary points [2, Definition 4.1.(ii)]. Any metric projection onto a nonempty, closed,
convex set is a nonexpansive mapping [2, Proposition 4.16]. An illustration is given
in Figure 1.22. The metric projections onto a closed half-space, a box, and a closed
ball shrink the distance between two points outside of the fixed point set. Since these
metric projections do not move any fixed point, they do not change distance between
two fixed points. This proves that a metric projection is a nonexpansive mapping.
A mapping that rotates a given point around the origin is a typical example of

a nonexpansive mapping, and it is not a metric projection. Figure 1.23 shows the
behavior of this mapping. The rotation mapping does not change the relative positions
of any two points. This implies that it does not change the distance between any two
points, and thus, it is a nonexpansive mapping. The fixed point set of this mapping
consists of only the center of the rotation, i.e., the origin.
Now let us consider the generalized convex feasible set as an example of a set that

can be expressed as the fixed point set of a nonexpansive mapping [45, Definition (10)],
[93, Subsection 4.B]. Here, we will consider several closed convex constraint sets and

19

Normal vector

Closed half-space

(a) Closed half-space

Box

(b) Box

Center

Closed ball

(c) Closed ball

Fig. 1.22: Nonexpansivities of the metric projections in Figure 1.17

Fig. 1.23: Example of a nonexpansive mapping: rotation

20

suppose that the metric projections onto them can be easily calculated. In general, the
intersection of arbitrarily chosen closed convex sets may be empty. Hence, we would
like to use the metric projections to express the set of points whose (squared) distances
to each constraint set are at a minimum (as illustrated in Figure 1.24); this set is called
the generalized convex feasible set. We can construct a nonexpansive mapping whose

Set which the solution must be in

Sets which the solution would like to be close to

Fixed point / a point in
the generalized convex feasible set

Fig. 1.24: Example of a nonexpansive mapping: generalized convex feasible set

fixed point set expresses this set in the way described in [45, Definition (9)], [93,
Definition (50)], and it can be used instead of the intersection of the given constraint
sets even when the intersection may be empty.

Fixed point algorithms. We viewed nonexpansive mappings and their fixed point
set as extensions of the metric projections and the constraint sets expressed by them.
Here, let us review algorithms to find a fixed point of a given nonexpansive mapping
and the methods for solving constrained optimization problems whose constraint set
is a fixed point set of nonexpansive mappings.
The Krasnosel’skĭı-Mann algorithm [55, 63] is useful for finding fixed points of a

nonexpansive mapping. Let us examine the behavior of this algorithm (Figure 1.25)
when it is applied to the rotation mapping in Figure 1.23. The mapping rotates the
given point around the origin. Hence, the distance between that point and the origin
does not change after it is moved by the mapping. However, this implies that the
given point and moved one are on an equidistant curve from the origin. Since the inner
area of the equidistant curve, that is, the ball whose center is the origin, is strictly
convex [2, Corollary 2.16], the midpoint between the given point and the moved one
approaches the origin when the given point is not a fixed point of the mapping. On
the basis of this idea, the Krasnosel’skĭı-Mann algorithm [55, 63] generates a sequence

21

The rotating mapping
moves a given point along

the equidistant curve.

The middle
point is closer
to the origin.

(a) Idea behind the Krasnosel’skĭı-
Mann algorithm

(b) The generated sequence weakly
converges to the origin

Fig. 1.25: Behavior of the sequence generated by the Krasnosel’skĭı-Mann algorithm

approaching a fixed point. The algorithm always generates a sequence that converges
weakly to some fixed point of a given nonexpansive mapping on a real Hilbert space
[87, Theorem 6.2.3].
Let us consider a way to solve constrained optimization problems whose constraint

set is expressed as a fixed point set of some nonexpansive mapping. When the objec-
tive functional is differentiable, the hybrid steepest descent method [94] can be used
to solve the problem. This method is constructed by incorporating the nonexpansive
mapping into the steepest descent method. When the gradient of the objective func-
tional is convex and smooth enough, the generated sequence converges to a solution
of the problem under certain conditions [94, Theorem 3.2].
Even when the objective functional is not differentiable, we can construct an algo-

rithm for solving the problem by combining the subgradient method and the Kras-
nosel’skĭı-Mann algorithm. By replacing the metric projection appearing in the sub-
gradient method with the computation of the Krasnosel’skĭı-Mann iterator, we can
obtain an algorithm that generates a sequence converging to a solution of a nondiffer-
entiable convex optimization problem with a fixed point constraint [41, Theorem 3.2].
In the next subsection, we describe applications that can be framed as optimization
problems whose constraint set is expressed as the fixed point set of a nonexpansive
mapping and develop further means of solving them.

1.2.3 Details and variants of the subgradient method

Step size rules. We have discussed three kinds of objective functional: differen-
tiable and nondifferentiable convex functionals and quasiconvex functionals (typical
nonconvex functionals). We also described three kinds of constraint: unconstrained
(optimization on the whole space), those for which the metric projection can be com-
puted easily, and those that can be expressed as fixed points of some nonexpansive
mapping. For each kind of objective functional, there exists a method for minimizing

22

it, i.e., the steepest descent method, subgradient method, or quasiconvex subgradient
method. Similarly, we have tools for dealing with the constraints, i.e., the metric
projection onto the constraint set and the Krasnosel’skĭı-Mann algorithm for finding
a fixed point of given nonexpansive mapping. In this subsection, we will investigate
these ideas further with the aim of solving more complicated problems.
First, let us consider how to decide on the step size, which is how far the the current

approximation moves along the descent direction in an iteration of the (sub-)gradient
method. As we saw in Subsection 1.2.1, too large a step causes oscillation of the
generated sequence. This phenomenon may, at worst, cause the generated sequence to
repeat the same points eternally (it fails to converge; Figure 1.26a). On the contrary,

(a) Too large a step size causes os-
cillation of the generated sequence,
which does not converge to a solution

...

(b) Too small a step size suffers from
slow convergence

Fig. 1.26: Examples of unsuitable step sizes

too small a step size suffers from slow convergence, wherein each iteration does not
improve the current approximation enough (Figure 1.26b). Thus, we should always
give suitable step sizes to the optimization methods for them to converge quickly.
Constant and diminishing step size rules are often used [5, Section 8.2] [24, 33,

35, 41, 53, 67]. A constant step size rule gives an appropriately small positive con-
stant step; it is useful for acquiring close approximations to the solution [5, Propo-
sition 8.2.2], [41, Theorem 3.1], [33, Theorem 3.1]. Its implementation is easy, since
the only thing that needs to be done is to give a constant value to the method. Fur-
thermore, the situation in Figure 1.26b can be avoided since the step size does not
decrease. In contrast, the diminishing step size rule gives a sequence of decreasing
real numbers; it can guarantee convergence of the generated sequence to the optimal
solution [5, Proposition 8.2.6], [41, Theorem 3.2], [33, Theorem 3.2]. After the enough
iterations, the step size becomes small enough to determine that the solution has con-
verged. Hence, by adopting a diminishing step size rule, we can avoid the situation
in Figure 1.26a.

Line search. As discussed above, choosing a suitable step size is important for effi-
cient convergence. Here, we will describe the technique used in unconstrained opti-

23

mization for obtaining a suitable step size at run-time, which is called the line search.
Let us again consider the contour graph and the behavior of the steepest descent
method on it (Figure 1.27). The steepest descent method improves the current ap-

Gradient

Minimizer

Updated points
along the descent direction

Contour line

Fig. 1.27: Updated points along the descent direction

proximation by moving it in the descent direction, i.e., the opposite direction to the
gradient. Depending on the choice of step size, the updated point can be far from
or close to the current approximation. In other words, there are many candidate
update points along the descent direction, and this implies that we need to find an
appropriate one, i.e., to choose a suitable step size. Figure 1.28 is a graph of the
objective functional on this candidate line; the horizontal axis is the step size, and
the vertical axis is the value of the objective functional. One of the simplest criteria
for choosing a suitable step size is to find the minimizer of the graph. This is called
the exact line search [68, Definition (3.1)]. As shown in Figure 1.27, the minimizer
of the objective functional may not be on the candidate line. In fact, the exact line
search may require too many computations, and it may slow convergence even if it
can be done. Hence, more practical strategies, called inexact line searches, are used
to find a suitable step size at a minimal cost [68, Section 3.1].
The Armijo condition is that the step size is acceptable only if its functional value is

below a linear functional for the criterion with a negative slope. The linear functional
is plotted as the red line in Figure 1.28, and the acceptable step sizes are in the
red hatched area. This condition ensures that each iteration updates the current
approximation to a better one.
However, although the algorithm will make progress for any sufficiently small step

size, as we saw in Figure 1.26b, too small a step size suffers from slow convergence.
To deal with this issue, we can impose a curvature condition that accepts only large

24

Current approximation

F
un

ct
io

na
l v

al
ue

Step size

Fig. 1.28: Acceptable step sizes for the Armijo condition [68, Figure 3.3]

enough step sizes by taking the derivatives of the objective functional. The combina-
tion of the curvature condition and the Armijo condition is called the Wolfe condition
[68, Chapter 3], [92].
A line search is often used in unconstrained optimization [22, 95]. However, it

cannot be used directly in constrained optimization. Let us consider the candidate
line (illustrated in Figure 1.29) when the projected gradient method is used. When

Descent
direction

Updated
points

Gradient

Fig. 1.29: Updated points in the constrained case

the point moving along the descent direction is outside the constraint set, the method
projects that point onto the constraint set. This operation distorts the candidate line.
Indeed, Figure 1.29 shows that the candidate line curves along the boundary of the
constraint set. We have to deal with such distortion when we use a line search to find
a suitable step size in constrained optimization.

25

Distributed optimization. Let us consider a situation where the objective functional
is a sum of convex functionals. An instance of such a situation is the network util-
ity maximization problem [47, 52], in which the goal is to find the best allocation
of network resources. Let us discuss this problem with the help of a concrete net-
work topology modeled as a connected, undirected graph and its directed paths (Fig-
ure 1.30). In this graph, the vertices express the nodes of the network, such as routers

Fig. 1.30: Network topology of network utility maximization problem

and client computers, while the edges express links connecting pairs of nodes. The
directed paths on this graph (illustrated as sequences of blue and red arrows) express
communications flowing on the network. Here, each communication would be bet-
ter if its utility value, which is the usable transmission rate for the communication,
were higher. Hence, the sender, called the source of each communication, would like
to maximize this value. Here, the utility does not become any better if too high a
transmission rate is assigned to communication; i.e., there exists a threshold on the
transmission rate for each communication. Accordingly, each utility functional may
be modeled as a nonsmooth, convex functional [47, Definition 5]. Moreover, each
link has a capacity and a negative amount of information cannot flow. Thus, each
communication flowing on the one or more links must be within the limits of those
links. This forms the constraints of the network utility maximization problem. We
will further assume that two or more communications flow on the network. There-
fore, the task is to maximize multiple utilities fairly. To ensure fairness, the objective
functional of the network utility maximization problem should be modeled as a sum
of individual utilities appropriately.
The network utility maximization problem should be solved in a distributed way,

because we can not assume that an operator is present to manage the network so
the sources must collaborate in some way to allocate the resources in the network to
each other. Hence, to solve the constrained convex optimization problem, we would
like to use a method that can run in a distributed computing environment. Let us
examine this situation from the viewpoint of each source. Each source is connected to
a certain kind of network, such as shown in Figure 1.31. The incremental subgradient
method can be applied when there are enough links to establish a ring network.
The behavior of this method is as follows. The previous source sends the current

26

Network

Source

Source

Source

Source

(a) Networked system

Source 1

Source 4

Source 2

Source 3

(b) Communication appears in the
incremental subgradient method

{1, 2} {3, 4}

{1, 2}

{3, 4}

{1, 2}

{3, 4}

Source 1

Source 4

Source 2

Source 3

(c) Communication appears in the
parallel subgradient method

Fig. 1.31: Networked systems and incremental and parallel subgradient methods

approximation to its neighbor source. The source that received the approximation
improves it by using the subgradient method iterator with a subgradient of its own
objective functional, and it sends it to the next source. By repeating this procedure
cyclically, the incremental subgradient method minimizes the objective functional.
In the incremental subgradient method, other sources wait to receive the approxi-

mation from their previous source in order to improve their own approximations. On
the other hand, the parallel subgradient method [24], where all sources can improve the
current approximation independently and in parallel, can be used in a denser network.
In the parallel subgradient method, all sources simultaneously improve the current
approximation by using the subgradient of their own objective functional. Then, each
source has each approximation improved with each objective functional. We can effi-
ciently share these approximations by using, e.g., the MPI Allreduce procedure [65,
Subsection 5.9.6] when the connected network is dense enough. For example, suppose
there are four sources: sources 1, 2, 3, and 4. First, sources 1 and 2 exchange their
approximations, and at the same time, sources 3 and 4 exchange theirs. At this point,
sources 1 and 2 have each other’s information, and sources 3 and 4 have each other’s
as well. Next, sources 1 and 3 and sources 2 and 4 exchange all the information

27

they have. In this way, all sources can share their information by communicating two
times, not four times, per source. This sharing scheme is called a butterfly [71, Sec-
tion 5.6]. After sharing information, the sources simultaneously improve the shared
information; then they share their results again.
Similarly to the subgradient method, the incremental and parallel subgradient

methods [24, 67] use the metric projection onto the constraint set so that the gen-
erated sequence in in the constraint set. However, it may be difficult to solve the
network utilities maximization problem. If the links all have the same capacity and
if the communications are distinct, we can compute the metric projection onto the
constraint set since it is a simple box. However, this situation is rare, and the network
and the communications flowing on it are generally more complicated. In such case,
we have to minimize the objective functional on the intersection of many constraints
in order for the solution to satisfy all the capacity conditions required by all the links.
Reference [41] provides a variant of the parallel subgradient method for minimizing

the sum of convex objective functionals over the intersection of the fixed point sets of
nonexpansive mappings by using the idea behind the Krasnosel’skĭı-Mann algorithm,
and reference [43] provides a variant of the incremental subgradient method for mini-
mizing the sum of convex objective functionals over the intersection of the fixed point
sets of nonexpansive mappings. These methods do not require the metric projec-
tion; hence, they can be used to solve the optimization problem even if the metric
projection onto the constraint set cannot be easily computed. As we saw, the fixed
point set of nonexpansive mappings can express the intersection of two or more sim-
ple constraint sets, and the constraint with respect to each link of the network utility
maximization problem is a simple box. Hence, we can use these methods for solving
distributed problems such as the network utility maximization problem. Furthermore,
reference [84] provides a variant of the parallel subgradient method for minimizing
the sum of nonsmooth, convex objective functionals over the intersection of the fixed
point set of quasi-nonexpansive mappings. The class of quasi-nonexpansive mappings
is wider than the class of nonexpansive mappings. Its fixed point set can express a
more complicated situation than the fixed point set of a nonexpansive mapping, e.g.,
the level set of a given continuous, convex functional [2, Proposition 29.41].
The problem of minimizing the sum of nonsmooth, convex functionals over the in-

tersection of the fixed point set appears in many applications [23, 47, 48, 72]. The
classifier ensemble problem is an interesting instance; it arises in the field of machine
learning [23, 48]. The classification task is to fit a classifier to given training data.
In other words, it can be considered to be the task of minimizing an objective func-
tional constructed from the training data. This implies that the number of objective
functionals coincides with the number of training data, and the task as a whole is
to minimize the sum of these objective functionals. The main difficulties with this
procedure are as follows:

• the size of the training data may be too large to load onto the memory of one
computer;
• two or more indicators may have to be considered.

28

Some datasets in machine learning are too large to load onto the memory of one com-
puter. For example, the size of the click dataset [64], on 53.5 billion HTTP requests
made by users at Indiana University, reaches 2.5 TB even if it is compressed. For
dealing with such a dataset, we can divide it into parts and distribute the parts to two
or more computers. The Meiji University PC Cluster*1 is one such system for doing
this. Although each computer contained in it has 96 GB of memory (still much more
than a typical personal computer), the cluster is composed of 24 computers, meaning
it can handle 2.3 TB of data in total. Furthermore, each of its computers is inde-
pendent of the others. Hence, for the whole computation, a process on one computer
must collaborate with processes on the other computers. Here, the incremental and
parallel subgradient methods and their variants can minimize the sum of distributed
objective functionals. Hence, they can solve large problems by running them on a
system like the PC cluster.
References [23, 48] tackle the problem of multiple indicators: the objective func-

tionals on individual training data, the sparsity of the classifier, and its diversity. To
deal with these indicators, references [23, 48] model the sparsity and diversity as the
fixed point sets of certain mappings. Quasi-nonexpansive mappings can express the
level set of a functional as their fixed point set. Hence, we can model the conditions
under which the classifier will have a certain degree of sparsity and diversity into
quasi-nonexpansive mappings [23, 48]. Hence, even if the problem has two or more
indicators, we can deal with them by converting them into fixed point sets of certain
mappings and using fixed point algorithms.

Section 1.3. Proposals of this thesis and their contribu-

tions

This thesis proposes three methods for solving constrained nonsmooth optimiza-
tion problems. The first two are the incremental and parallel line search subgradient
algorithms, and the third is the fixed point quasiconvex subgradient method. All are
designed to solve constrained nonsmooth optimization problems whose constraint sets
are expressed as fixed point sets of mappings. We will consider the advantages and
disadvantages of each method and examine its results.

1.3.1 Incremental and parallel line search subgradient algorithms

Issues of the existing methods. Let us consider the minimization of the sum of
convex objective functionals on some closed, convex constraint set. To solve this
problem, we can use the incremental and parallel subgradient methods [24, 67], as
we saw in the previous section. The incremental subgradient method sequentially
and cyclically uses each part of the objective function, and the parallel subgradient

*1 Meiji University PC Cluster https://www.meiji.ac.jp/isys/hpc/pcc.html (in Japanese).

https://www.meiji.ac.jp/isys/hpc/pcc.html

29

method uses the parts independently in parallel. However, these methods use a step
size, also known as the learning rate in the field of machine learning, to determine
how far they should move the current approximation along the descent direction in
each iteration, because the subgradient method iterator is used for improving the
approximation. As we saw in the previous section, an excessively small or large step
size suffers from slow convergence.
Furthermore, the incremental and parallel subgradient methods use the same step

size for every composing objective functionals at each iteration [24, Step 1, Algo-
rithm 3.1], [67, Definition (1.5)]. However, each functional may have different prop-
erties: the position of its minimizer may be far from the minimizer of the summed
objective functional or other composing objective functionals, its shape may be dif-
ferent from the others, and so on. Of course, the suitable step size depends on these
factors, and hence, it may be different for each composing objective functional. Let
us consider the case where the minimizer of one composing objective functional (com-
posing functional 1 in Figure 1.32) is on one side of the minimizer of the summed
objective functional and the minimizer of another objective functional (composing
functional 2 in Figure 1.32) is on the opposite side. As we said, the existing in-

Composing
functional 1

Composing
functional 2

Summed
objective functional

Improved by functional 1 Improved by functional 2

Fig. 1.32: One of the directions to the minimizers of the objective functionals may
not lead the approximation to the minimizer of the summed objective functional.

cremental subgradient method uses the same step size for each composing objective
functional. This implies that the ratios of the distance moved by the improvement to
the norms of the subgradients are the same on each composing objective functional.
For simplicity, let us assume that the norms of the chosen subgradients are the same.
Then, the distances moved by making the improvements become the same. The in-
cremental subgradient method improves the approximation by using each composing

30

functional in order. First, it uses the information of composing functional 1; the ap-
proximation approaches the minimizer of the summed objective functional since the
minimizer of composing functional 1 is on the side the approximation is on. Next,
the method uses the information of composing functional 2, but the approximation
passes by the minimizer and moves to the opposite side of it since the minimizer of
composing functional 2 is on that side. Since the descent direction by composing
functional 2 is the opposite one to the minimizer of the summed objective functional,
a kind of oscillation phenomenon appears in the generated sequence. This implies
that an unsuitable step size like this may slow convergence.

Methods for overcoming the issues. A line search can be used to find an appro-
priate step size for each iteration. However, it cannot be used directly in constrained
optimization since, as we saw in the previous section in Figure 1.29, the operations
to enable the solution to fulfill the constraints distort the candidate line for choosing
the step size. To overcome this issue, we propose new variants of the incremental and
parallel subgradient methods that use the idea of the line search to find a suitable
step size in each iteration.
Let us consider the step size used in the existing incremental and parallel subgradi-

ent method. To ensure convergence to the optimal solution, the existing methods use
a diminishing step size (shown as the red line in Figure 1.33). However, the step sizes

A
cc

ep
ta

bl
e

st
ep

 s
iz

es

Number of iterations

Diminishing step size,
which is used in the existing methods
for ensuring convergence

Acceptable step sizes (step range)
extended from the diminishing step sizes

Acceptable upper bound

Acceptable lower bound

Fig. 1.33: Extending the notion of step sizes into step range

has to be decided before the method runs. For this reason, we must use the given
step size even if it is not appropriate for the current approximation or the suitable
step sizes for different composing functions are different. To overcome this issue, we
propose the incremental and parallel line search subgradient algorithms, which ex-

31

tend the notion of the diminishing step size to a candidate line called the step range.
This extension enables us to reduce the analysis involved in the step size selection to
the diminishing step size rule. Our methods require only the step range to be given
i.e., the lower and upper bounds of the step size and whose lower and upper bounds
have similar properties of the diminishing step size. The methods choose a suitable
step size from this step range at run-time. For any step size chosen from the step
range, its lower and upper bounds satisfy the properties of the diminishing step size
rule. Hence, we can perform a convergence analysis in the same way as when using
a diminishing step size rule. This extension enables us to use a line search in the
step range. At each iteration, and for each objective functional, the method chooses
a suitable step size from the step range by using the line search, and this overcoming
the above issues.

Advantages and disadvantages. The proposed methods have three merits that the
existing ones don’t have. First, the suitable step sizes chosen by the line search
accelerate the algorithms and make their solutions better. In the existing methods, we
must use the given step size even if it is not appropriate for the current approximation
or the suitable step sizes for different composing functions are different. The proposed
algorithms use suitable step sizes chosen by the line search and different step sizes for
different composing functionals. Hence, they can always use appropriate step sizes,
and this speeds convergence. The second merit is that we do not need to adjust the
step size precisely. The existing methods use the given step size. Hence, for efficient
convergence, we have to adjust the step size carefully before the method runs. In
contrast, the proposed methods only need a step range, i.e. rough candidates, to
converge efficiently, because the line search automatically chooses the learning rates
from among this range. Finally, the proposed algorithms can be applied to difficult
problems whose suitable step sizes cannot be chosen beforehand. Even when a suitable
step size cannot be specified beforehand, the line search can algorithmically find one
at run-time and make the algorithms converge efficiently to an optimal solution. In
addition, if the step range is a singleton set, our methods coincide with the existing
incremental and parallel subgradient algorithms [24, 67]. Hence, the step range is a
generalization of the step sizes used in the existing algorithms.
Now let us consider the disadvantages of the proposed methods. They use the line

search for choosing the step size from the step range at run-time. This implies that an
additional computation is required at each iteration. Hence, the computation of each
iteration is heavier than the existing ones. However, the parallel subgradient method
can run in parallel for each composing objective functional when the computing en-
vironment is composed of two or more CPUs. This implies that making good use of
parallelization alleviates the drawback of the line search procedure.
As an instance of problems appearing in a distributed computing environment,

let us consider the joint task offloading scheduling and resource allocation problem
in a multi-server mobile-edge computing network [88, Problem 11]. A multi-server
mobile-edge computing network is composed of several base stations and mobile users
connected to them (Figure 1.34). Base stations are connected to the internet directly

32

Base station

The internet

Base station

Base station

Mobile users

Fig. 1.34: Multi-server mobile-edge computing network

or via other stations, and each base station implements a computer called a Mobile-
Edge Computing (MEC) server. Consider a situation where we provide a service
to mobile users on the internet. If we could use the MEC servers implemented in
the base stations as well as our own server on the internet, we could reduce the
delay caused by the distance between our server and the mobile user and this would
release our server from some of its burden [88, Section 1]. This idea can modeled
as an optimization problem of minimizing the sum of all mobile users’ utilities. In
this situation, we can use the MEC servers, i.e., parallelization by these servers, and
all of them are connected to each other by the network. Furthermore, there is a
cost for two MEC servers communicating since they are separated. Hence, if the line
search improves the effect of one iteration, parallelization could be expected to reduce
the time needed for optimization. Moreover, the proposed methods can be used on
other nonsmooth, constrained, convex optimization problems appearing in various
applications [10, 39, 60, 62, 78, 83, 85]. This implies the usability of the proposed
methods and the possibility of contributing to solving these problems.

1.3.2 Fixed point quasiconvex subgradient method

Issues of the existing methods. Optimization problems nowadays are not limited
to only convex objectives. In particular, quasiconvex objective functionals appear
in economics, engineering, and management science [33, 35]. Furthermore, there are
various situations in which one optimizes ratio indicators, such as the debt/equity
ratio in financial and corporate planning, inventory/sales and output/employee ratios
in production planning, and cost/patient and nurse/patient ratios in healthcare and
hospital planning [86]. Under certain conditions, these ratio indicators, fractional
objective functionals in other words, have quasiconvexity [53, Lemma 3]. Here, let us
consider minimizing a continuous, quasiconvex objective functional over a nonempty,
closed, convex constraint set.
The quasiconvex subgradient method proposed by Kiwiel [53] is useful for solving

this minimization problem. This method uses a normalized normal vector to the slice
as a subgradient. A number of variants exist, such as the inexact subgradient method

33

Minimum
distance from
the given point.

Fig. 1.35: Finding the metric projection is equivalent to minimizing the distance from
the given point.

[33], the conditional subgradient method [35], and the stochastic subgradient method
[34].
These methods must assume that the metric projection onto the constraint set is

computable, because they use it to guarantee the solution is in the constraint set.
The metric projection in this case is defined as a mapping which sends a given point
to the nearest point inside the constraint set. This implies that we have to solve a
subproblem of minimizing the distance from a given point subject to the solution being
in the constraint set, as illustrated in Figure 1.35. This is an instance of constrained
convex optimization problems. Certainly, there are some sets onto which the metric
projections can be computed easily, such as boxes [2, Proposition 29.15], closed balls
[2, Example 3.18 and Proposition 3.19], [82, Section 4], and closed half-spaces [2,
Example 29.20]. However, practical problems often have various complicated sets on
which computing metric projections is difficult[11, 39, 45, 46, 93]. Hence, we have to
solve a constrained convex optimization problem at each iteration in such cases. This
additional procedure increases the cost of computing one iteration.

Method for overcoming the issue. We propose the fixed point quasiconvex subgra-
dient method for solving a constrained, nonsmooth, quasiconvex optimization prob-
lem lightly and quickly even when it is difficult to compute the metric projection
onto the constraint set. If the constraint set can be expressed as a fixed point set
of or the intersection of some fixed point sets of nonexpansive mappings, there are
methods that use these nonexpansive mappings instead of the metric projection for
convex optimization [41, 42, 43, 45]. These methods use nonexpansive mappings in-
stead of metric projections onto the constraint sets. This implies that these methods
can be expected to run more efficiently than the methods which use metric projec-
tion directly when the nonexpansive mappings can be more easily computed than
the metric projections, since the additional procedure for solving the subproblem to
find the metric projection onto the constraint set is not necessary. Inspired by these
methods of convex optimization, we developed the fixed point quasiconvex subgra-
dient method, a variant of the quasiconvex subgradient method [53], which uses the
Krasnosel’skĭı-Mann iterator [55, 63] to ensure the generated sequence converges to

34

a fixed point of the nonexpansive mapping. For minimizing a quasiconvex objective
functional, we use the idea behind the quasiconvex subgradient method [53], which
uses a normalized normal vector to the slice at the current approximation instead of
the subgradient. To ensure that the generated sequence converges to a fixed point of
the nonexpansive mapping, we use Krasnosel’skĭı-Mann iterator [55, 63].

Advantages and disadvantages. The proposed methods have three merits that the
existing ones don’t have. First, it is a widely applicable to constrained quasiconvex
optimization problems. It can minimize the objective functional even when it is
a nonconvex functional, which the existing subgradient method [41, 42, 43, 45] for
solving convex optimization problems cannot deal with. Hence, the proposed method
has wider applicability than the existing methods with respect to the class of the
objective functionals. As well, the proposed method can solve constrained quasiconvex
optimization problems that have constraint sets the existing methods [33, 34, 35, 53]
cannot deal with. Of course, the metric projection used in the existing methods
[33, 34, 35, 53] is also nonexpansive, since the nonexpansive mappings are an extended
notion of the metric projection. Hence, the proposed method can solve all of the
problems that the existing methods [33, 34, 35, 41, 42, 43, 45, 53] can solve. Second,
the proposed method can solve problems whose metric projections onto constraint
sets cannot be easily computed. Like the existing method [41, 42, 43, 45] for convex
optimization over fixed point sets of nonexpansive mappings, it uses a nonexpansive
mapping instead of the metric projection and the Krasnosel’skĭı-Mann iterator letting
the approximation approach the fixed point of the projection. Accordingly, it does not
need to solve the subproblem for finding the metric projection onto the constraint set
at each iteration. This reduces the size of the computation in each iteration, thereby
speeds convergence. Finally, the proposed method for quasiconvex optimization will
be of help in developing the field of convex optimization and expand its applications.
Convex optimization problems are actively studied [41, 42, 43, 45] and have various
applications, such as signal recovery [12], machine learning [17, 23], and network
resource allocation [39, 49]. Because any convex functional is also a quasiconvex
functional, we can deal with these applications within the framework of quasiconvex
optimization. This implies that it would contribute to solving constrained convex
optimization problems.
Let us consider the disadvantages of the proposed methods. The Krasnosel’skĭı-

Mann iterator moves the given point toward the fixed point set, but it does not
ensure that the mapped point is in the fixed point set. Hence, unlike in the existing
methods using the metric projection [33, 34, 35, 53], the obtained solution will be
near the constraint set but might not be in it. However, the convergence rate analysis
of the distance to the fixed point set allows us to estimate how many iterations will
be required for obtaining a solution near enough to the constraint set.
Our GitHub repository https://github.com/iiduka-researches/201811-kaz

contains an implementation of the fixed point subgradient method and miscellaneous
utilities for constructing nonexpansive mappings which express the desired constraint
sets. By using these implementations, the reader can easily make a nonexpansive

https://github.com/iiduka-researches/201811-kaz

35

mapping expressing his or her desired constraint set and optimize a constrained
quasiconvex optimization problem. As a numerical example, we apply this imple-
mentation of the fixed point quasiconvex subgradient method to solve a concrete
constrained quasiconvex optimization problem called the Cobb-Douglas production
efficiency problem after this section. The goal of this problem is to find the most
efficient production factors under funding level restrictions [33, Section 6]. The
objective function represents the ratio between the total profit and the total cost as
an efficiency indicator. The total profit is the numerator of the objective function and
is modeled with the Cobb-Douglas production function on the production factors.
The total cost is the denominator of the objective function and is modeled with
the affine function on the production factors. Furthermore, there are a variety of
constraints on the funding level [33, Section 6]. These constraints represent the duties
and restrictions of each production project. All of these constraints must be satisfied;
hence, the constrained set is composed as the intersection of many constraint sets,
which can be expressed as the fixed point set of a nonexpansive mapping. Of course,
all the constraint sets appearing in the Cobb-Douglas production efficiency problem
are provided in our GitHub repository.

Section 1.4. Content after this chapter

This thesis is organized as follows. Chapter 2 presents the incremental and parallel
line search subgradient algorithms and their convergence analyses. It also describes
numerical experiments in which the proposed methods are applied to machine learn-
ing. Chapter 3 presents the fixed point quasiconvex subgradient method and discusses
its convergence. Chapter 4 provides a convergence rate analysis of the fixed point qua-
siconvex subgradient method.

36

Chapter 2

Incremental and Parallel Line Search

Subgradient Algorithms

There are many instances of optimization problems whose objective functional can be
expressed as a sum of convex functionals, such as in learning with a support vector
machine. Incremental and parallel subgradient algorithms are useful algorithms for
solving them. The incremental subgradient algorithm sequentially and cyclically uses
each of the parts of the objective function, and the parallel subgradient algorithm
uses parts independently in parallel. However, they suffer from slow convergence be-
cause their learning rates must be determined before running them. This chapter
proposes the modified algorithms of them to incorporate the line search algorithm,
which automatically and algorithmically finds appropriate learning rates at run-time.
These algorithms can be applied to constrained nonsmooth convex optimization prob-
lems appearing in tasks of learning support vector machines without adjusting the
learning rates precisely. The proposed line search algorithm can determine learning
rates to satisfy weaker conditions than the ones used in the existing machine learning
algorithms. This implies that the two algorithms are generalizations of the existing
incremental and parallel subgradient algorithms for solving constrained nonsmooth
convex optimization problems. We show that they generate sequences that converge
to a solution of the constrained nonsmooth convex optimization problem under cer-
tain conditions. The main contribution of this chapter is the provision of three kinds
of experiment showing that the two algorithms can solve concrete experimental prob-
lems faster than the existing algorithms. First, we show that the proposed algorithms
have performance advantages over the existing ones in solving a test problem. Sec-
ond, we compare the proposed algorithms with a different algorithm Pegasos, which
is designed to learn with a support vector machine efficiently, in terms of prediction
accuracy, value of the objective function, and computational time. Finally, we use one
of our algorithms to train a multilayer neural network and discuss its applicability to
deep learning.
The contents of this chapter are based on

[26] K. Hishinuma and H. Iiduka. Flexible stepsize selection of subgradient meth-

37

ods for constrained convex optimization. the 10th Anniversary Conference on
Nonlinear Analysis and Convex Analysis (Oral), 2017;

[28] K. Hishinuma and H. Iiduka. Convergence analysis of incremental and parallel
line search subgradient methods in Hilbert space. Journal of Nonlinear and
Convex Analysis, 20(9):1937–1947, 2019;

[30] K. Hishinuma and H. Iiduka. Incremental and parallel machine learning algo-
rithms with automated learning rate adjustments. Frontiers in Robotics and
AI, 6:77, 2019.

Section 2.1. Introduction

In this chapter, we consider a technique to adjust the learning rates that appear
in subgradient algorithms for letting a generated sequence converge to an optimal
solution. The subgradient algorithm [5, Section 8.2] and its variants [24, 67, 83] have
been proposed as ways of solving the problem of minimizing a nonsmooth, convex
function over a closed convex set by iterative processes like the steepest descent al-
gorithm for dealing with a smooth, convex function. These algorithms iterate the
current approximate solution by shifting it along a descent direction at that point
by a given degree called a learning rate. Although descent directions are decided on
the basis of the subgradient at each point, the learning rates are generally decided
for theoretical reasons for ensuring the convergence of the generated sequence. This
implies that subgradient algorithms can be run more efficiently if we can choose more
suitable learning rates concerning the objective function at each iteration. There-
fore, we should consider how to choose better learning rates while at the same time
maintaining the convergence properties.
We can reduce a lot of practical problems to ones solvable with subgradient algo-

rithms, that is, problems of minimizing a nonsmooth, convex function over a closed
convex set. One of the important applications is learning with a support vector ma-
chine. Support vector machines are effective and popular classification learning tools
[60, 62, 78, 83]. The task of learning with a support vector machine is cast as an
empirical loss minimization with a penalty term for the norm of the classifier that
is being learned [83, Problem (1)]. If this loss objective function is convex, we can
handle this learning task by minimizing a nonsmooth, convex function over a closed
convex set. There are practical optimization algorithms for solving this minimization
problem, such as Pegasos [83], the incremental subgradient algorithm [67], and the
parallel subgradient algorithm [24]. These algorithms are variants of the subgradient
algorithm. They iteratively choose training examples and improve their approxima-
tion by using a part of the objective function which corresponds to the chosen exam-
ples. Not limited to machine learning, there exist many applications of minimizing
a nonsmooth, convex function over a closed convex set, such as signal recovery [10],
bandwidth allocation [39], and beamforming [85]. Hence, making the performance of
these algorithms better would increase the efficiency of these applications. Here, we
attempt to do so by modifying the selection of the learning rate.

38

Pegasos is a stochastic subgradient algorithm with a carefully chosen learning rate
that is designed for efficiently learning with a support vector machine [83]. This
learning rate is determined from the regularization constant of the penalty term.
Hence, this algorithm can improve approximate solutions without having to adjust
their learning rates for each individual learning task. However, it is specialized to
learning with a support vector machine, and it cannot be applied to other applications
such as deep learning.
The sequential minimal optimization (SMO) algorithm [76] is also used for learning

with a support vector machine. This algorithm can be applied to a quadratic pro-
gramming optimization problem appearing in learning with a dual form of a support
vector machine and can solve it with a small amount of memory and quickly [13, 76].
However, this algorithm deals with the dual form of the optimization problem; as
such, the number of objective variables is likely to be large when many instances are
given to the learning task. Furthermore, the class of problem that this algorithm can
deal with is limited to quadratic programming. This implies that it cannot be applied
to general nonsmooth, convex programming.
In the field of mathematical optimization, the incremental and parallel subgradi-

ent algorithms [24, 67] are useful for solving problems involving the minimization of
a nonsmooth, convex function over a closed convex set. The incremental subgradi-
ent algorithm [67] minimizes the objective function by using alternately one of the
functions composing the summed objective, while the parallel subgradient algorithm
[24] minimizes it by using all of the composing functions independently. Since the
parallel subgradient algorithm treats each of the composing functions independently,
computations with respect to each function can be parallelized. It is expected that
parallelization shortens the computational time of learning. This implies that the
parallel subgradient algorithm can learn support vector machines for larger datasets
and/or in a shorter time compared with other algorithms.
A weak point of the incremental and parallel subgradient algorithms [24, 67] is

that they need to have suitably adjusted learning rates in order to run efficiently.
However, the suitable learning rate depends on various factors, such as the number of
the composing objective functions, number of dimensions, the shape of each objective
function and constraint set, and the selection of subgradients. This implies that it is
too difficult to choose a suitable learning rate before run-time. In contrast, Pegasos
[83] uses a concrete learning rate optimized for the task of learning with a support
vector machine and does not require this learning rate to be adjusted. Therefore,
it can be used more easily than the incremental and parallel subgradient algorithms
[24, 67].
In unconstrained minimization algorithms, line searches are used to select a suitable

learning rate [22, 95]. In particular, the Wolfe conditions [92] are learning rate criteria
for the line search. The Wolfe conditions are such that the learning rate must satisfy a
sufficient decrease condition and a curvature condition [68, Chapter 3]. The sufficient
decrease condition is that the learning rate is acceptable only if its function value
is below a linear function with a negative slope. This condition ensures that the
algorithms update an approximation to a better one. However, it is not enough to

39

ensure that the algorithm makes reasonable progress because it will do so for all
sufficiently small learning rates. Therefore, a curvature condition is invoked that
generates a sequence further enough along the chosen direction.
Motivated by the idea of the line search, this chapter proposes novel incremental

and parallel subgradient algorithms that can run efficiently without precise learning
rate adjustments. Reference [14] describes a gradient-projection algorithm with a
line search that minimizes the objective function. However, this algorithm assumes
that the objective function is differentiable. In addition, it is designed for single-core
computing; it is not useful in multi-core computing. Reference [3] proposes the radar
subgradient algorithm, which is a variant of the subgradient algorithm including a
procedure for finding an effective learning rate by using a line search at each itera-
tion. The line search algorithm used in Reference [3] is inspired by the cutting-plane
method and works out a learning rate with the first-order information. However, this
algorithm deals with the whole objective function and cannot use a part of the objec-
tive function at each iteration. This implies that it cannot be used in applications that
give information to the algorithm through a data stream. In addition, the line search
algorithm used in Reference [3] may fail and is distinct from the line search proposed
in this chapter. Hence, combining this line search algorithm with the one we propose
may have a complementary effect when the properties of the optimization problem are
disadvantageous to one of the algorithms. Reference [44] gives an algorithm for solv-
ing fixed point problems, covering the constrained minimization problem discussed
in this chapter, with a line search. This algorithm has a fast convergence property,
though it decides only the coefficient of the convex combination and is not designed
for multi-core computing. The algorithm in [23, 24, 41, 42, 67] requires a suitable
learning rate in order to converge efficiently. However, as we mentioned before, the
learning rate is very difficult to adjust.
In contrast to previous reports, this chapter proposes incremental and parallel sub-

gradient algorithms with a line search to find better learning rates than the ones used
in the existing algorithms. To realize this proposal, we extend the concept of the
learning rate to a step-range, which is a set of candidates for the learning rate. The
line search procedure is given a step-range and chooses the most suitable learning
rate among it at run-time. Using a line search with a step-range has three merits.
First, the suitable learning rates chosen by the line search accelerate the algorithms
and make their solutions better. Section 2.4 shows that the proposed algorithms gave
better solutions than the one given by Pegasos [83] when they all ran the same num-
ber of iterations. The second merit is that we do not need to adjust the learning rate
precisely. The existing incremental and parallel subgradient algorithms [24, 67] can-
not converge efficiently without appropriate adjustments to their learning rates. This
is their weak point in comparison with Pegasos [83]. In contrast, the proposed algo-
rithms only need step-ranges, i.e. rough candidates, to converge efficiently, because
the line search automatically chooses the learning rates from among the step-range.
Hence, they can be easily used to learn support vector machines. Finally, the proposed
algorithms can be applied to difficult problems whose suitable learning rates cannot
be chosen beforehand. Section 2.3 provides a condition on the step-range composi-

40

tions to ensure they converge to an optimizer of the problem. Hence, even if a suitable
learning rate cannot be specified beforehand, the line search can algorithmically find
one at run-time and make the algorithms converge efficiently to an optimizer. We
show that our algorithms converge to an optimizer to the problem when the step-
range is diminishing. In addition, if the step-range is a singleton set, they coincide
with the existing incremental and parallel subgradient algorithms [24, 67]. Hence, the
step-range is a generalization of the learning rates used in the existing algorithms.
We compared the proposed algorithms with Pegasos [83] and the SMO algorithm

on various datasets [15, 58, 61] for binary and multiclass classification. The results
of the comparison demonstrated that the proposed algorithms perform better than
the existing ones in terms of the value of the objective function for learning with
a support vector machine and in terms of computational time. In particular, the
parallel subgradient algorithm dramatically reduced the computational times of the
learning tasks.
Stochastic subgradient algorithms are useful for learning with a multilayer neural

network habitually [6]. The incremental subgradient algorithm is a specialization of
the stochastic subgradient algorithm. Therefore, we can use one of our algorithms, a
variant of the incremental subgradient algorithm, to train a multilayer neural network.
We compared it with two other variants of the incremental subgradient algorithm. The
results show that our algorithm can minimize the objective function of the trained
neural network more than the others. This ability implies that it is also useful for
training not only SVMs but also neural networks, including ones for deep learning.
This chapter is organized as follows. Section 2.2 gives the mathematical prelimi-

naries and mathematical formulation of the main problem. Section 2.3 presents our
algorithms. We also show the convergence analyses of these algorithms. Section 2.4
describes numerical comparisons of the proposed algorithms with the existing ones
in Reference [24, 67, 83] using concrete machine learning datasets [15, 58, 61]. In
this section, we also describe how to use one of the proposed algorithms to train a
multilayer neural network for recognizing handwritten digits. Section 2.5 concludes
this chapter.

Section 2.2. Mathematical preliminaries

Let (H, ⟨·, ·⟩) be a real Hilbert space with its induced norm defined by ∥x∥ :=

⟨x, x⟩
1
2 . We define the notation R+ := (0,∞) and N := {1, 2, . . .}. Let xn → x denote

that the sequence {xn} converges to x, and let xn ⇀x denote that the sequence {xn}
converges weakly to x.
A subgradient g of a convex function f : H → R at a point x ∈ H is defined by

g ∈ H such that f(x)+ ⟨y − x, g⟩ ≤ f(y) for all y ∈ H. The set of all subgradients at
x is denoted as ∂f(x) [80], [87, Section 7.3].
The metric projection onto a nonempty, closed convex set C ⊂ H is denoted by PC :

H → C and defined by ∥x− PC(x)∥ = infy∈C ∥x− y∥ [2, Section 4.2, Chapter 28]. PC

satisfies the nonexpansivity condition [87, Subchapter 5.2]; i.e. ∥PC(x)− PC(y)∥ ≤

41

∥x− y∥ for all x, y ∈ H.

2.2.1 Main problem

Let fi : H → [0,∞) (i = 1, 2, . . . ,K) be convex, continuous functions, and let C be
a nonempty, closed convex subset of H. Then, we would like to

minimize f(x) :=

K∑
i=1

fi(x)

subject to x ∈ C.

(2.1)

Let us discuss Problem (2.1) in the situation that a closed convex subset C of a
real Hilbert space H is simple in the sense that PC can be computed within a finite
number of arithmetic operations. Examples of a simple, closed convex set C are a
closed ball, a half-space, and the intersection of two half-spaces [2, Examples 3.16 and
3.21, and Proposition 28.19].
The task of learning with a support vector machine can also be cast as Problem (2.1)

[83, Problem (1)]. Furthermore, there are a lot of applications not limited to learning
with a support vector machine when f is nonsmooth but convex on H and when
C ⊂ H is simple. For example, minimizing the total variation of a signal over a
convex set and Tykhonov-like problems with L1-norms [12, I. Introduction] are able
to be handled as Problem (2.1). Application of Problem (2.1) to learning with a
support vector machine will be described in Section 2.4.
Throughout this chapter, we impose two assumptions: boundedness of the subgra-

dients and the existence of an optimal solution.

Assumption 2.2.1 ([67, Assumption 2.1, Proposition 2.4]). We suppose that

(A1) for each i = 1, 2, . . . ,K, there exists Mi > 0 such that ∥g∥ ≤ Mi (x ∈ C; g ∈
∂fi(x));

(A2) there exists at least one optimal solution, i.e., argminx∈C f(x) ̸= ∅.

In addition, we define a constant M :=
∑K

i=1 Mi.

The first assumption is also used for analyzing the convergence of the existing
incremental and parallel subgradient algorithms [24, 67]. Fortunately, this assumption
is satisfied when the constraint set C is bounded [2, Proposition 16.17.(iii)].

42

Section 2.3. Proposed algorithms and their convergence

analyses

2.3.1 Incremental subgradient algorithm

Algorithm 2.3.1 is the proposed variant of the incremental subgradient algorithm
[67]. Let us compare Algorithm 2.3.1 with the existing one [67]. The difference is

Algorithm 2.3.1 Incremental subgradient algorithm

Require: ∀n ∈ N, [λn, λn] ⊂ R+.
1: n← 1, x1 ∈ C.
2: loop
3: yn,0 := xn.
4: for i = 1, 2, . . . ,K do ▷ In sequence
5: gn,i ∈ ∂fi(yn,i−1).

6: λn,i ∈ [λn, λn]. ▷ By a line search algorithm
7: yn,i := PC(yn,i−1 − λn,ign,i).
8: end for
9: xn+1 := yn,K .

10: n← n+ 1.
11: end loop

step 6 of Algorithm 2.3.1. The learning rate λn of the existing algorithm must be
decided before the algorithm runs. However, Algorithm 2.3.1 only needs the step-
range [λn, λn]. A learning rate within the range used by Algorithm 2.3.1 can be
automatically determined at run-time. Algorithm 2.3.1 coincides with the incremental
subgradient algorithm when the given step-range [λn, λn] is a singleton set, i.e. λn :=
λn := λn, which means that it is a generalization of the algorithm in [67]. In this
case, Algorithm 2.3.1 chooses only one learning rate λn from the singleton step-range
[λn, λn] = {λn}.
This difference has three merits. First, the suitably chosen learning rates in

step 6 accelerate convergence and make the solutions more accurate. Second,
Algorithm 2.3.1 does not require the learning rate to be precisely adjusted in order
for it to converge efficiently, unlike the existing incremental subgradient algorithm
[67]. Instead, Algorithm 2.3.1 only needs a rough step-range as the line search
automatically chooses learning rates from among this range. Hence, it can easily be
used to learn support vector machines. Finally, Algorithm 2.3.1 can be applied to
problems in which a suitable learning rate cannot be chosen beforehand. Hence, even
if the suitable learning rate cannot be specified, line search can algorithmically find
this learning rate and make proposed algorithms converge efficiently to an optimizer.
Algorithm 2.3.1 has the following property, which is used for proving the main

theorem.

43

Lemma 2.3.1. Suppose that Assumption 2.2.1 holds. Let {xn} be a sequence gen-
erated by Algorithm 2.3.1. Then, for all y ∈ C and for all n ∈ N, the following
inequality holds:

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2
K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

nM
2.

Proof. Fix y ∈ C and n ∈ N arbitrarily. From the nonexpansivity of PC , the definition
of subgradients, and Assumption (A1), we have

∥xn+1 − y∥2 = ∥PC(yn,K−1 − λn,Kgn,K)− PC(y)∥2

≤ ∥yn,K−1 − y − λn,Kgn,K∥2

= ∥yn,K−1 − y∥2 − 2λn,K⟨yn,K−1 − y, gn,K⟩+ λ2
n,K∥gn,K∥2

≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i⟨yn,i−1 − y, gn,i⟩+
K∑
i=1

λ2
n,i∥gn,i∥2

≤ ∥xn − y∥2 − 2
K∑
i=1

λn,i(fi(yn,i−1)− fi(y)) + λ
2

n

K∑
i=1

M2
i ,

where the second equation comes from ∥x− y∥2 = ∥x∥2 − 2⟨x, y⟩+ ∥y∥2 (x, y ∈ H).
Using the definition of subgradients and the Cauchy-Schwarz inequality, we have

∥xn+1 − y∥2

≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y))− 2

K∑
i=1

λn,i(fi(yn,i−1)− fi(xn)) + λ
2

n

K∑
i=1

M2
i .

≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y)) + 2λn

K∑
i=1

Mi∥yn,i−1 − xn∥+ λ
2

n

K∑
i=1

M2
i .

Further, the nonexpansivity of PC and the triangle inequality mean that, for all
i = 2, 3, . . . ,K,

∥yn,i−1 − xn∥ = ∥PC(yn,i−2 − λn,i−1gn,i−1)− PC(xn)∥
≤ ∥yn,i−2 − xn − λn,i−1gn,i−1∥
≤ ∥yn,i−2 − xn∥+ λn,i−1∥gn,i−1∥
≤ ∥yn,i−2 − xn∥+ λnMi−1

≤ λn

i−1∑
j=1

Mj .

44

From the above inequality and the fact that ∥yn,0 − xn∥ = ∥xn − xn∥ = 0, we find
that

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2
K∑
i=1

λn,i(fi(xn)− fi(y)) + 2λ
2

n

K∑
i=1

Mi

i−1∑
j=1

Mj + λ
2

n

K∑
i=1

M2
i

= ∥xn − y∥2 − 2
K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

n

(
K∑
i=1

Mi

)2

= ∥xn − y∥2 − 2
K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

nM
2.

This completes the proof.

2.3.2 Parallel subgradient algorithm

Algorithm 2.3.2 below is an extension of the parallel subgradient algorithm [24].
The difference between Algorithm 2.3.2 and the algorithm in [24] is step 5. The

Algorithm 2.3.2 Parallel subgradient algorithm

Require: ∀n ∈ N, [λn, λn] ⊂ R+.
1: n← 1, x1 ∈ C.
2: loop
3: for all i ∈ {1, 2, . . . ,K} do ▷ Independently
4: gn,i ∈ ∂fi(xn).

5: λn,i ∈ [λn, λn]. ▷ By a line search algorithm
6: yn,i := PC(xn − λn,ign,i).
7: end for
8: xn+1 := 1

K

∑K
i=1 yn,i.

9: n← n+ 1.
10: end loop

existing algorithm uses a given learning rate λn, while Algorithm 2.3.2 chooses a
learning rate λn from the step range [λn, λn] at run-time. We describe how to choose
a suitable learning rate from the given step range in Subsection 2.3.3.
The common feature of Algorithm 2.3.2 and the parallel subgradient algorithm [24]

is loop independence (step 3). This loop structure is not influenced by the computa-
tion order. Hence, each iteration of this loop can be computed in parallel. Therefore,
parallelization using multi-core processing should be able to reduce the time needed for
computing this loop procedure. Generally speaking, the main loop of Algorithm 2.3.2
is computationally heavier than the other subgradient algorithms including Pegasos,
because it appends the learning rate selection (line search) procedure to the existing

45

one. However, parallelization alleviates this effect of the line search procedure (This
is shown in Section 2.4).
The sequence generated by Algorithm 2.3.2 satisfies the following property.

Lemma 2.3.2. Suppose that Assumption 2.2.1 holds. Let {xn} be a sequence gen-
erated by Algorithm 2.3.2. Then, for all y ∈ C and for all n ∈ N, the following
inequality holds:

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2

K

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

nM
2.

Proof. Fix y ∈ C and n ∈ N arbitrarily. From the convexity of ∥ · ∥2, the nonexpan-
sivity of PC , the definition of subgradients, and Assumption (A1), we have

∥xn+1 − y∥2 =

∥∥∥∥∥ 1

K

K∑
i=1

PC(xn − λn,ign,i)− PC(y)

∥∥∥∥∥
2

≤ 1

K

K∑
i=1

∥xn − y − λn,ign,i∥2

=
1

K

K∑
i=1

(∥xn − y∥2 − 2λn,i⟨xn − y, gn,i⟩+ λ2
n,i∥gn,i∥2)

≤ ∥xn − y∥2 − 2

K

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

nM
2.

This completes the proof.

2.3.3 Line search algorithms

Step 6 of Algorithm 2.3.1 and step 5 of Algorithm 2.3.2 are implemented as line
search algorithms. They decide an efficient learning rate λn in [λn, λn] by using yn,i−1

in Algorithm 2.3.1 (or xn in Algorithm 2.3.2), gn,i, fi and other accessible information
on i. This is the principal idea of this chapter. We can use any algorithm that satisfies
the above condition. The following are such examples.
The simplest line search is the discrete argmin, as shown in Algorithm 2.3.3. First,

we set the ratio candidates {L1, L2, . . . , Lk} ⊂ [0, 1]. In each iteration, we compute
all of the candidate objectives for the learning rate λn,i = Ltλn + (1 − Lt)λn (t =
1, 2, . . . , k) and take the best one.
Algorithm 2.3.4 is a line search based on the Wolfe conditions. It finds a learning

rate that satisfies the sufficient decrease condition with logarithmic grids. Once this
learning rate has been found, the algorithm stops and the learning rate it found is
used in the caller algorithm. However, this algorithm may fail (step 8). To avoid such
a failure, we can make the caller algorithm use λn. This is the largest learning rate

46

Algorithm 2.3.3 Discrete argmin line search algorithm

1: xp :=

{
yn,i−1 (Algorithm 2.3.1),

xn (Algorithm 2.3.2)
.

2: λn,i ← L1λn + (1− L1)λn.
3: for Lt ∈ {L2, L3, . . . , Lk} do
4: t← Ltλn + (1− Lt)λn.
5: if fi(PC(xp − tgn,i)) < fi(PC(xp − λn,ign,i)) then
6: λn,i ← t
7: end if
8: end for

Algorithm 2.3.4 Logarithmic-interval armijo line search algorithm

1: xp :=

{
yn,i−1 (Algorithm 2.3.1),

xn (Algorithm 2.3.2)
.

2: for IR = 1, 1/a, 1/a2, . . . , 1/ak do
3: λn,i ← IRλn + (1− IR)λn.
4: if fi(PC(xp − λn,ign,i)) ≤ fi(xp)− c1⟨xp − PC(xp − λn,ign,i), gn,i⟩ then
5: stop (success).
6: end if
7: end for
8: stop (failed).

of the candidates for making an effective update of the solution. The results of the
experiments described in Section 2.4 demonstrate effectiveness of this algorithm*1.
Here, let us consider whether the proposed algorithms can be applied to problems

with a general convex objective function or not, that is, when the range of the objective
function f is not limited to [0,∞) but R. In this discussion, suppose that all the
objective functions are bounded from below by some constant on the constraint set;
i.e., there exists a constant m ∈ R such that m ≤ fi(x) for all i = 1, 2, . . . ,K and for

any x ∈ C. Let us define a function f̂i := fi +m for each i = 1, 2, . . . ,K. Then, the

function f̂i is also convex and its range is nonnegative for all i = 1, 2, . . . ,K. For any

*1 In this case, i.e., when we use Algorithm 2.3.1 or Algorithm 2.3.2 with Algorithm 2.3.4, we
have to give a parameter set {λn, λn} for the step-range, a constant c1 appearing in the Armijo
condition, a common ratio a and the number of trials k of Algorithm 2.3.4 as hyperparameters.

47

x ∈ C, the subdifferential ∂f̂(x) satisfies that

∂f̂(x) = {g ∈ H : f̂(x) + ⟨y − x, g⟩ ≤ f̂(y) for all y ∈ H}
= {g ∈ H : f(x) +m+ ⟨y − x, g⟩ ≤ f(y) +m for all y ∈ H}
= {g ∈ H : f(x) + ⟨y − x, g⟩ ≤ f(y) for all y ∈ H}
= ∂f(x).

Hence, the subdifferential ∂f̂ coincides with ∂f on the set C. This implies that, if
the same learning rates are chosen from the step ranges, Algorithm 2.3.1 (or Algo-
rithm 2.3.2) generates the same sequences when it is applied to the original problem

or the problem whose objective function is replaced by the function f̂ . In particular,
as shown in step 4, the step size decided by Algorithm 2.3.4 is influenced only by the
relative difference between fi(PC(xp − tgn,i)) and fi(PC(xp − λn,ign,i)). Hence, the
line search algorithm decides the same learning rate in either case. Obviously, the set

of optimal solutions argminx∈C f(x) coincides with argminx∈C f̂(x). Therefore, the
theorems presented in this chapter hold when the ranges of objective functions are
not only the set of nonnegative reals but also any subset bounded from below.

2.3.4 Convergence analysis of Algorithms 2.3.1 and 2.3.2

Here, we first show that the limit inferiors of {f(xn)} generated by Algorithms 2.3.1
and 2.3.2 are equal to the optimal value of f . Next, we show that {xn} converges
weakly to a solution of the main problem (2.1). The following assumption is used to
show the convergence of Algorithms 2.3.1 and 2.3.2.

Assumption 2.3.1.

∞∑
n=1

λn =∞,
∞∑

n=1

λ
2

n <∞, lim
n→∞

λn

λn

= 1,
∞∑

n=1

(λn − λn) <∞.

The following lemma states that some subsequence of the objective function value
of the generated sequence converges to the optimal value. This lemma is used to
prove the main theorem described next.

Lemma 2.3.3. Suppose that Assumptions 2.2.1 and 2.3.1 hold. For a sequence {xn},
if there exists α ∈ R+ such that, for all y ∈ C and for all n ∈ N,

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2α
K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

nM
2, (2.2)

then,

lim
n→∞

f(xn) = min
x∈C

f(x).

48

Proof. Assume that limn→∞
∑K

i=1(λn,i/λn)fi(xn) ̸= minx∈C f(x). Then, either

limn→∞
∑K

i=1(λn,i/λn)fi(xn) < minx∈C f(x) or minx∈C f(x) < limn→∞
∑K

i=1(λn,i/λn)fi(xn)

holds. First, we assume limn→∞
∑K

i=1(λn,i/λn)fi(xn) < minx∈C f(x). Recall

{xn} ⊂ C and the definition f(x) :=
∑K

i=1 fi(x) in the main problem (2.1). The
property of the limit inferior and [89, Exercise 4.1.31] ensure that

min
x∈C

f(x) ≤ lim
n→∞

f(xn)

= lim
n→∞

λn

λn

K∑
i=1

fi(xn)

Further, from the nonnegativity of fi (i = 1, 2, . . . ,K), the fact that λn ≤ λn,i and

the assumption that limn→∞
∑K

i=1(λn,i/λn)fi(xn) < minx∈C f(x) lead to

min
x∈C

f(x) ≤ lim
n→∞

K∑
i=1

λn

λn

fi(xn)

≤ lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)

< min
x∈C

f(x).

This is a contradiction. Next, we assume minx∈C f(x) < limn→∞
∑K

i=1(λn,i/λn)fi(xn)
and let ŷ ∈ argminx∈C f(x). Then, there exists ε > 0 such that

f(ŷ) + 2ε = lim
n→∞

K∑
i=1

λn,i

λn

fi(xn).

From the definition of the limit inferior, there exists n0 ∈ N such that, for all n ∈ N,
if n0 ≤ n, then

lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)− ε <

K∑
i=1

λn,i

λn

fi(xn).

Now, λn,i/λn ≤ 1 and 0 ≤ fi(ŷ) (i = 1, 2, . . . ,K) hold. Therefore, for all n ∈ N, if
n0 ≤ n, then

ε = lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)− ε− f(ŷ)

<

K∑
i=1

λn,i

λn

fi(xn)−
K∑
i=1

fi(ŷ)

≤
K∑
i=1

λn,i

λn

(fi(xn)− fi(ŷ)).

49

From inequality (2.2), for all n ∈ N, if n0 ≤ n, we have

∥xn+1 − ŷ∥2 ≤ ∥xn − ŷ∥2 − 2α

K∑
i=1

λn,i(fi(xn)− fi(ŷ)) + λ
2

nM
2

≤ ∥xn − ŷ∥2 − 2αλnε+ λ
2

nM
2

= ∥xn − ŷ∥2 − λn(2αε− λnM
2).

From Assumption 2.3.1, n1 ∈ N exists such that n0 ≤ n1, and, for all n ∈ N, if n1 ≤ n,
λn ≤ αε/M2. Hence, if n1 ≤ n, we have

0 ≤ ∥xn+1 − ŷ∥2

≤ ∥xn − ŷ∥2 − αελn

≤ ∥xn1 − ŷ∥2 − αε

n∑
k=n1

λk.

for all n ∈ N. From Assumption 2.3.1, the right side diverges negatively, which is a
contradiction. Overall, we have

lim
n→∞

K∑
i=1

λn,i

λn

fi(xn) = min
x∈C

f(x).

Next, let us assume that limn→∞
∑K

i=1(λn,i/λn)fi(xn) ̸= limn→∞ f(xn). Now,

λn,i/λn ≤ 1 and 0 ≤ fi(xn) (i = 1, 2, . . . , N) hold for all n ∈ N. Therefore, we have

lim
n→∞

K∑
i=1

λn,i

λn

fi(xn) ≤ lim
n→∞

f(xn).

Hence, from the nonnegativity of fi (i = 1, 2, . . . ,K), the fact that λn ≤ λn,i, and [89,
Exercise 4.1.31], we have

lim
n→∞

f(xn) = lim
n→∞

λn

λn

f(xn)

≤ lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)

< lim
n→∞

f(xn).

However, this is a contradiction. This completes the proof.

The following is the main theorem of this chapter.

50

Theorem 2.3.1. Suppose that Assumptions 2.2.1 and 2.3.1 hold. The sequence {xn}
generated by Algorithm 2.3.1 or 2.3.2 converges weakly to an optimal solution to the
main problem (2.1).

Proof. Let ŷ ∈ argminx∈C f(x) and fix n ∈ N. From Lemmas 2.3.1 and 2.3.2, there
exists α ∈ R+ such that

∥xn+1 − ŷ∥2 ≤ ∥xn − ŷ∥2 − 2α

K∑
i=1

λn,i(fi(xn)− fi(ŷ)) + λ
2

nM
2.

By 0 ≤ fi(ŷ), fi(xn) (i = 1, 2, . . . ,K), we have

∥xn+1 − ŷ∥2 ≤ ∥xn − ŷ∥2 − 2αλn

K∑
i=1

fi(xn) + 2αλn

K∑
i=1

fi(ŷ) + λ
2

nM
2

= ∥xn − ŷ∥2 − 2αλn

K∑
i=1

(fi(xn)− fi(ŷ)) + 2α(λn − λn)
K∑
i=1

fi(ŷ) + λ
2

nM
2

≤ ∥xn − ŷ∥2 + 2αf(ŷ)(λn − λn) + λ
2

nM
2

≤ ∥x1 − ŷ∥2 + 2αf(ŷ)
n∑

i=1

(λi − λi) +M2
n∑

i=1

λ
2

i .

From Assumption 2.3.1, the left side of the above inequality is bounded. Hence, {xn}
is bounded. Using [4, Lemma 1.7], J ∈ R exists for all ŷ ∈ argminx∈C f(x) such
that limn→∞ ∥xn − ŷ∥ = J . Moreover, from Lemma 2.3.3, a subsequence {f(xni

)} ⊂
{f(xn)} exists such that limi→∞ f(xni

) = f(ŷ). From [2, Theorem 3.32], C is a weak
closed set. Therefore, there exists a subsequence {xnij

} ⊂ {xni
} and a point u ∈ C

such that xnij
⇀u. Hence, from [2, Theorem 9.1, Proposition 9.33], we obtain

min
x∈C

f(x) ≤ f(u)

≤ lim
j→∞

f(xnij
)

= min
x∈C

f(x).

This implies that u ∈ argminx∈C f(x). Let {xnik
} ⊂ {xni

} be another subsequence

and assume xnik
⇀v ∈ argminx∈C f(x) and u ̸= v. From [70, Lemma 1], we have

lim
n→∞

∥xn − u∥ = lim
j→∞

∥xnij
− u∥ < lim

j→∞
∥xnij

− v∥ = lim
n→∞

∥xn − v∥

= lim
k→∞

∥xnik
− v∥ < lim

k→∞
∥xnik

− u∥ = lim
k→∞

∥xn − u∥.

This is a contradiction. Accordingly, any subsequence of {xni
} weakly converges

to u ∈ argminx∈C f(x). Therefore, from [87, Theorem 5.4.1], xni
⇀u. Now let

51

{xnj} ⊂ {xn} be another subsequence and assume xnj ⇀w ̸= u. Then, from [70,
Lemma 1], we have

lim
n→∞

∥xn − u∥ = lim
i→∞

∥xni − u∥ < lim
i→∞

∥xni − w∥ = lim
n→∞

∥xn − w∥

= lim
j→∞

∥xnj
− w∥ < lim

j→∞
∥xnj

− u∥ = lim
n→∞

∥xn − u∥.

This is a contradiction. Therefore, any subsequence of {xn} weakly converges to
u ∈ argminx∈C f(x). Hence, by [87, Theorem 5.4.1], xn ⇀u. This completes the
proof.

2.3.5 Convergence rates

To show the convergence rates of Algorithms 2.3.1 and 2.3.2, we assume λn :=
λn := 1/n for all n ∈ N. We also assume the existence of µ ∈ (0,∞) such that

f(x)− f(ŷ) ≥ µ∥x− ŷ∥2
(
x ∈ C, ŷ ∈ argmin

u∈C
f(u)

)
. (2.3)

The strong convexity of f implies Condition (2.3)[66, Inequality (16)]. First, We
give the following lemma, which is required to show the convergence rates of Algo-
rithms 2.3.1 and 2.3.2.

Lemma 2.3.4. ([66, Lemma 2.1], [77, Lemma 4]) Let {un} ⊂ [0,∞) be such that

un+1 ≤
(
1− p

n

)
un +

d

n2
(n ∈ N)

for some p, d ∈ (0,∞). Then
un = O(1

np) (p < 1),

un = O(logn
n) (p = 1),

un ≤ d
n(p−1) + o(1n) (p > 1).

Next, we prove two propositions that show the convergence rates of Algorithms 2.3.1
and 2.3.2.

Proposition 2.3.1 (Convergence Rate of Algorithm 2.3.1). Let {xn} be a sequence
generated by Algorithm 2.3.1 and ŷ ∈ argminy∈C f(y). Then, the following hold:

∥xn+1 − ŷ∥ = O(1
n2µ) (2µ < 1),

∥xn+1 − ŷ∥ = O(logn
n) (2µ = 1),

∥xn+1 − ŷ∥ ≤ M2

n(2µ−1) + o(1n) (2µ > 1).

Proof. From Lemma 2.3.1 and inequality (2.3), we have

∥xn+1 − ŷ∥2 ≤
(
1− 2µ

n

)
∥xn − ŷ∥2 + M2

n2
.

52

for all n ∈ N. Lemma 2.3.4 with p := 2µ, d := M2 completes the proof.

This result implies that Algorithm 2.3.1 is in the same class of convergence efficiency
as the incremental subgradient algorithm[66, Proposition 2.8].

Proposition 2.3.2 (Convergence Rate of Algorithm 2.3.2). Let {xn} be a sequence
generated by Algorithm 2.3.2 and ŷ ∈ argminy∈C f(y). Then, the following hold:

∥xn+1 − ŷ∥ = O(1
n2µ/K)

(
µ < K

2

)
,

∥xn+1 − ŷ∥ = O(logn
n)

(
µ = K

2

)
,

∥xn+1 − ŷ∥ ≤ M2

n(2µ/K−1) + o(1n)
(
µ > K

2

)
.

Proof. From Lemma 2.3.2 and inequality (2.3), we have

∥xn+1 − y∥2 ≤
(
1− 2µ

nK

)
∥xn − ŷ∥2 + M2

n2
.

for all n ∈ N. Lemma 2.3.4 with p := 2µ/K, d := M2 completes the proof.

To above analyses assumed λn = λn. However, Algorithms 2.3.1 and 2.3.2 can
use different values of λn and λn. This implies that Algorithms 2.3.1 and 2.3.2 may
converge faster than theoretical rates given here.

Section 2.4. Experiments

In this section, we present the results of experiments evaluating our algorithms and
comparing them with the existing algorithms. For our experiments, we used a MacPro
(Late 2013) computer with a 3GHz 8-Core Intel Xeon E5 CPU, 32GB 1866MHz DDR3
memory, and 500GB flash storage. The operating system was MacOS Sierra (version
10.12.6). The experimental codes were written in Python 3.6 and ran on the CPython
implementation.

2.4.1 Validation of convergence properties with a simple problem

A concrete test problem with a closed-form solution is a good way to evaluate the
performance of algorithms in detail [90, 91]. Here, we used the existing and proposed
algorithms to solve a simple problem. The goals were to compare their performances
under equal conditions, to use the best parameters for each algorithm calculated from
the theoretical analyses, and to evaluate these algorithms with the detailed indicators
such as the distance between an acquired solution and the actual solution of the test
problem. The test problem is as follows.

53

Problem 2.4.1 (Test problem). Let fi(x) := (i + 1)x2
i (x ∈ RN ; i = 1, 2, . . . ,K),

c ∈ RN , and r ∈ R. Then, we would like to

minimize f(x) :=
K∑
i=1

fi(x)

subject to ∥x− c∥ ≤ r and xi = 0 (i = 3, 4, . . . , N).

This problem is obviously an instance of Problem 2.1. Of course, the continuity
of the objective function and the boundedness of the constraint ensure the above
problem satisfies Assumption 1. We set c := (2, 1, 0, . . . , 0)⊤ and r := 1. The optimal

solution is accordingly x⋆ = ((2− /
√
2)/2, (2−

√
2)/2, 0, . . . , 0).

We set the number of dimensions to N := 16, i.e., equal to the number of logical
cores of the experimental computer. We gave x1 := (2, 1, 0, . . . , 0)⊤, the center of the
feasible set, as an initial point. We selected the incremental and parallel subgradient
algorithms for comparison. These algorithms use a priori given learning rates; that
is, they coincide with Algorithms 2.3.1, 2.3.2 with the settings λn = λn = λn ∈
(0,∞) (n ∈ N). In this comparison, we gave learning rates of λn := 1/(nN2), which
are appropriately chosen based on the following proposition related to the existing
algorithms.

Proposition 2.4.1 ([40, Lemma 2.1], [94, Lemma 3.1]). Suppose that f : RN → R is
c-strongly convex and differentiable, ∇f : RN → RN is L-Lipschitz continuous, and
µ ∈ (0, 2c/L2). Define T : RN → RN by T (x) := x− µ∇f(x) (x ∈ RN). Then, T is
a contractive mapping.

We set λn := 100/((n + 10000)N2), λn := 100/(nN2) for each n ∈ N as the pa-
rameters of the proposed algorithms. This step-range contains the learning rates of
the existing algorithms. We used Algorithm 2.3.4 with the parameters c1 := 0.99,
a := 0.5, and k := 7. We limited the iterations to 1,000 and evaluated the following
indicators:

• Fn: value of the objective function, i.e., Fn :=
∑K

i=1 fi(xn),
• Dn: distance to the optimal solution, i.e., Dn := ∥x⋆ − xn∥,
• Tn: running time of the algorithm.

The behaviors of {Fn} and {Dn} in each iteration n are shown in Figure 2.1. The
result of Algorithm 2.3.1 dropped to the optimal dramatically in terms of both {Fn}
and {Dn} within the first fifty iterations. The graphs of the other algorithms de-
creased similarly, but those of the algorithms with the line search decreased faster.
Table 2.1 lists the running times of the existing and proposed algorithms for 1,000
iterations. Compared with the existing algorithms, the proposed algorithms needed
a bit more time for running. However, they dramatically reduced the value of the
objective function. Therefore, they converged faster that the existing algorithms.

54

(a) Behavior of Fn in each iteration n (b) Behavior of Dn in each iteration n

Fig. 2.1: Numerical comparison of running the existing and proposed algorithms on
the test problem 2.4.1

Table 2.1: Running time of each algorithm in solving the test problem 2.1

Algorithm Running time (T1000 [s])

Incremental subgradient algorithm 0.34341614
Algorithm 2.3.1 0.97763861
Parallel subgradient algorithm 0.11232432
Algorithm 2.3.2 0.24512658

2.4.2 Comparison of the existing and proposed algorithms in the

task of learning with support vector machines

This subsection compares Algorithms 2.3.1 and 2.3.2 with Pegasos [83]. To evaluate
their performance, we applied them to the following learning task.

Problem 2.4.2 (The task of learning with a support vector machine [83]). Let C be a
positive real number. Given a training set {(xi, yi)}, where xi ∈ RN (i = 1, 2, . . . ,K)
and yi ∈ {1,−1} (i = 1, 2, . . . ,K), we would like to

minimize f(w) :=
1

C
∥w∥2 + 1

K

K∑
i=1

max{0, 1− yi ⟨w, xi⟩}

subject to w ∈ X := {w : ∥w∥ ≤
√
C}.

This optimization problem is introduced in [83] for learning with a support vector
machine. The first term of the objective function is a penalty term that depends on the
constraint set, and the second term is a loss function. The loss function returns higher
values if the learner w can not classify an instance (xi, yi) correctly. The norm value

55

of the learner w does not affect the classification results due to the immutability of the
signs of the decision function ⟨w, xi⟩. Therefore, we can limit this value to a constant

C. Now, let fi(w) := ((1/C) ∥w∥2 + max{0, 1 − yi ⟨w, xi⟩})/K. Then, f =
∑K

i=1 fi
holds and Problem 2.4.2 can be handled as an instance of Problem (2.1).
We used the machine learning datasets shown in Table 2.2. The “australian” data

Table 2.2: Datasets used in our experiments

Name #Instances #Attributes Missing Values Attribute Characteristics

Iris (binary class) 100 4 No Real
Iris (multiclass) 150 4 No Real
Australian 590 14 No Real
Horse-colic 368 27 Yes Categorical, Integer, Real
Breast-cancer-wisconsin 699 10 Yes Integer
Census-income 48842 14 Yes Categorical, Integer
Internet-advertisements 3279 1558 Yes Categorical, Integer, Real
MNIST 14780 784 No Integer
RANDOM1 20 100 No Real
RANDOM2 200 1000 No Real

set is from LIBSVM Data [61]. The “MNIST” data set contains handwritten “0” and
“1” digits and is provided by [58]. The “RANDOM1” and “RANDOM2” datasets
were generated using the sklearn.datasets.make classification function with
a fixed random state. The others are from the UCI Machine Learning Repository
[15]. The number of classes of “iris (multiclass)” is three, and the others are binary
classification datasets.
Missing values were complemented by using the sklearn.impute.SimpleImputer

class. Categorical attributes were binarized using the sklearn.preprocessing.OneHotEncoder
class. Each data set was scaled using the sklearn.preprocessing.StandardScaler
class. These preprocessing methods and classes are from the scikit-learn [73] package
for Python3.
The Pegasos algorithm used for this comparison is listed as Algorithm 2.4.1.

Algorithm 2.4.1 Pegasos [83, Fig. 1]

1: n← 1, w1 ∈ X.
2: loop
3: in ∈ {1, 2, . . . ,K}. ▷ Chosen uniformly at random
4: g ∈ ∂fin(wn).
5: λn := C/n.
6: wn+1 ← PX(wn − λngn).
7: n← n+ 1.
8: end loop

We set C := 10−1 and gave λn := 10−1/(n+108) to Algorithms 2.3.1 and 2.3.2. We

56

Table 2.3: Iris (binary class)

Algorithm Time [sec] Score (Training) Score (Test) Objective

Pegasos 0.12741225 1.00000000 1.00000000 0.95967555
Algorithm 2.3.1 0.28701049 1.00000000 1.00000000 0.94237229
Algorithm 2.3.2 0.03734168 1.00000000 1.00000000 0.91133305

SMO Algorithm 0.00515115 1.00000000 1.00000000 –

used Algorithm 2.3.4 with c1 := 0.99 for the line search step in Algorithms 2.3.1 and
2.3.2. The main loops in Algorithms 2.3.1 and 2.4.1 were iterated 100K times, while
the main loop in Algorithm 2.3.2 was iterated 100 times. This setting means that the
algorithms could refer to each of the functions fi (i = 1, 2, . . . ,K) 1000 times.
We added scores of the SMO algorithm, one of the major algorithms for learning

with a support vector machine, to the experimental results for each dataset. We used
the implementation of the SMO algorithm in Python *2 for calculating these scores.
First, let us look at the results for the iris (binary class) data set. Ta-

ble 2.3 lists the computational times for learning, the classification scores on the
training and test sets, and the values of the objective function. We used the
sklearn.model selection.train test split method provided by the scikit-learn
package [73] to split the dataset into training and test sets. The number of instances
in the training set was 30 and the number of instances in the test set was 70.
The results indicate that Algorithm 2.3.2 performed better than Pegasos and
Algorithm 2.3.1 in terms of computational time and value of the objective function.
In addition, Algorithm 2.3.1 worked out a better approximation than Pegasos did
in terms of the objective function. Hence, Algorithms 2.3.1 and 2.3.2 ran more
efficiently than the existing algorithm. However, the SMO algorithm ran more
quickly than the other algorithms, while keeping the highest score.
Next, let us look at the results of the multiclass classification using the

iris (multiclass) dataset. Table 2.4 lists the computational times for learn-
ing and the classification scores on the training and test sets. We used the
sklearn.model selection.train test split method provided by the scikit-
learn package [73] to split the dataset into training and test sets. To con-
struct multiclass classifiers from Algorithm 2.3.1, 2.3.2, and 2.4.1, we used
sklearn.multiclass.OneVsRestClassifier class which provides a construction
of one-versus-the-rest (OvR) multiclass classifiers. In this experiment, the number
of instances in the training set was 45 and the number of instances in the test set
was 105. The results show that Algorithms 2.3.1 and 2.3.2 performed better than
Pegasos with respect to their scores for the training and test sets. In addition,
the computational time of Algorithm 2.3.2 was shorter than those of Pegasos and
Algorithm 2.3.1. In this case, Algorithm 2.3.2 learned a classifier whose classification

*2 https://github.com/LasseRegin/SVM-w-SMO

https://github.com/LasseRegin/SVM-w-SMO

57

Table 2.4: Iris (multiclass; Algorithms 2.3.1, 2.3.2, and 2.4.1 are used as solvers for
the subproblem appearing in this multiclass classification experiment.)

Algorithm Time [sec] Score (Training) Score (Test) Avg. Objective

Pegasos 0.59731907 0.77777778 0.79047619 0.98524879
Algorithm 2.3.1 1.30901892 0.77777778 0.80952381 0.97505393
Algorithm 2.3.2 0.08996129 0.80000000 0.81904762 0.95314453

SMO Algorithm 0.05340354 0.80000000 0.82857143 –

score is similar to the one of the SMO algorithm in almost same running time.
To compare the algorithms in detail, we conducted experiments on other

datasets: australian, horse-colic, breast-cancer-wisconsin, census-income, internet-
advertisements, MNIST, RANDOM1 and RANDOM2. We performed a stratified
five-fold cross-validation with the sklearn.model selection.StratifiedKFold

class. Table 2.5 shows the averages of the computational times for learning, the
classification scores on the test sets, and the values of the objective function for each
dataset. TLE (time limit exceeded) in the table means that the experiment was
compulsorily terminated because the running time of the SMO algorithm excessively
exceeded those of the other algorithms. The classification scores are calculated using
the following formula implemented as the sklearn.base.ClassifierMixin.score

method,

(Score) :=
(#Accurate Instances)

(#Instances)
.

This value is an increasing evaluation of goodness of fit [73, Section 4].
Let us evaluate the computational times for learning, the classification scores on the

test sets, and the values of the objective function in order. For a detailed, fair, statis-
tical comparison, we used an analysis of variance (ANOVA) test and Tukey–Kramer’s
honestly significant difference (HSD) test. We used the scipy.stats.f oneway

method in the SciPy library as the implementation of the ANOVA tests and the
statsmodels.stats.multicomp.pairwise tukeyhsd method in the StatsModels
package as the implementation of Tukey–Kramer’s HSD test. The ANOVA test
examines whether the hypothesis that the given groups have the same population
mean is rejected or not. Therefore, we can use it for finding an experimental result
that has a significant difference. Tukey–Kramer’s HSD test can be used to find
specifically which pair has a significant difference in groups. We set 0.05 (5%) as
the significance level for the ANOVA and Tukey–Kramer’s HSD tests and used the
results of each fold of the cross-validation for the statistical evaluations described
below.
First, we consider the computation times for learning. All p-values computed by

the ANOVA tests were much less than 0.05; this range was from 10−26 to 10−8. This
implies that a significant difference exists in terms of the computation time between

58
T
ab

le
2.
5:

A
v
er
ag

es
of

co
m
p
u
ta
ti
o
n
al

ti
m
es

fo
r
le
ar
n
in
g,

cl
a
ss
ifi
ca
ti
on

sc
or
es

on
th
e
te
st

se
ts
,
an

d
va
lu
es

of
th
e
o
b
je
ct
iv
e

fu
n
ct
io
n
fo
r
ea
ch

d
at
a
se
t

A
u
st
ra
li
a
n

H
o
rs
e-
co
li
c

A
lg
o
ri
th
m

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

P
eg
a
so
s

2
.4
2
4
8
8
6
7
4

0
.8
2
9
2
0
9
5
7

0
.9
9
7
5
4
7
7
5

1
.5
4
0
1
1
6
7
2

0
.7
1
2
6
1
2
6
1

0
.9
9
9
0
8
8
9
2

A
lg
o
ri
th
m

2
.3
.1

6
.0
4
8
9
8
9
3
4

0
.8
4
9
3
9
5
3
1

0
.9
9
0
7
0
5
8
2

3
.9
7
3
4
9
7
8
0

0
.7
0
7
1
3
2
1
3

0
.9
9
9
0
7
4
6
7

A
lg
o
ri
th
m

2
.3
.2

0
.0
6
9
2
5
1
6
8

0
.8
5
2
2
7
3
0
0

0
.9
5
0
3
2
5
2
7

0
.0
5
8
4
1
9
1
7

0
.7
2
6
2
0
1
2
0

0
.9
6
4
8
5
2
1
6

S
M
O

A
lg
o
ri
th
m

1
.6
3
8
6
3
5
4
7

0
.8
6
2
3
8
6
9
6

–
4
.9
6
0
6
5
0
6
8

0
.7
1
1
9
3
6
9
4

–

B
re
a
st
-c
a
n
ce
r-
w
is
co
n
si
n

C
en

su
s-
in
co
m
e

A
lg
o
ri
th
m

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

P
eg
a
so
s

2
.4
9
1
1
6
9
3
2

0
.9
6
8
4
3
7
6
7

0
.9
9
2
2
8
7
3
8

1
8
0
.5
1
5
8
2
3
6
0

0
.7
0
1
9
1
6
3
8

0
.9
9
9
9
5
9
4
7

A
lg
o
ri
th
m

2
.3
.1

6
.1
2
0
6
8
3
9
0

0
.9
6
5
5
8
0
5
3

0
.9
5
9
3
1
9
0
9

4
5
6
.4
0
5
6
9
0
0
0

0
.7
1
0
2
9
0
2
9

0
.9
9
9
0
9
1
1
4

A
lg
o
ri
th
m

2
.3
.2

0
.0
6
9
0
6
7
8
9

0
.9
6
5
5
8
0
5
3

0
.8
2
9
7
0
3
7
4

0
.5
2
7
5
1
2
1
1

0
.7
1
0
3
1
0
7
8

0
.9
6
2
5
4
9
8
2

S
M
O

A
lg
o
ri
th
m

0
.9
8
6
8
8
5
1
7

0
.9
6
9
8
9
7
0
8

–
T
L
E

–
–

In
te
rn
et
-a
d
v
er
ti
se
m
en

ts
M
N
IS
T

A
lg
o
ri
th
m

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

P
eg
a
so
s

1
7
.9
0
9
8
5
6
7
1

0
.9
5
7
3
0
4
9
7

0
.9
9
9
5
4
9
3
3

6
9
.1
5
9
0
1
9
9
0

0
.9
8
6
8
7
3
5
6

0
.9
9
8
9
4
9
9
6

A
lg
o
ri
th
m

2
.3
.1

4
4
.1
8
7
0
7
6
8
7

0
.5
9
4
3
6
7
4
4

0
.9
9
9
7
2
3
0
0

1
5
3
.4
0
2
5
2
7
0
0

0
.9
9
0
3
2
4
7
2

0
.9
9
8
2
7
8
1
9

A
lg
o
ri
th
m

2
.3
.2

0
.3
0
7
8
3
5
3
4

0
.9
5
5
1
7
0
3
6

0
.8
7
8
7
9
6
7
7

0
.8
7
7
6
5
3
5
2

0
.9
9
2
6
9
2
5
3

0
.6
0
6
2
2
8
1
8

S
M
O

A
lg
o
ri
th
m

T
L
E

–
–

T
L
E

–
–

R
A
N
D
O
M
1

R
A
N
D
O
M
2

A
lg
o
ri
th
m

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

P
eg
a
so
s

0
.3
4
2
3
2
5
5
9

0
.8
8
0
0
0
0
0
0

0
.9
9
1
1
3
4
9
1

3
.9
9
6
4
2
0
1
0

0
.8
4
6
9
9
8
5
5

0
.9
9
9
4
1
9
1
0

A
lg
o
ri
th
m

2
.3
.1

1
.3
8
5
2
7
1
6
5

0
.8
6
0
0
0
0
0
0

0
.9
9
7
8
9
2
2
4

1
7
.2
1
6
1
9
4
6
7

0
.6
8
4
9
9
3
8
5

0
.9
9
9
8
2
9
5
8

A
lg
o
ri
th
m

2
.3
.2

0
.0
3
9
5
2
2
2
9

0
.9
0
0
0
0
0
0
0

0
.9
3
0
2
6
0
2
0

0
.0
4
7
0
2
9
2
8

0
.8
7
0
9
9
8
7
5

0
.9
5
7
4
0
1
1
6

S
M
O

A
lg
o
ri
th
m

0
.0
9
1
9
7
5
2
0

0
.8
4
0
0
0
0
0
0

–
1
6
.8
2
6
5
6
5
0
7

0
.7
9
7
0
0
3
1
2

–

59

the algorithms for every dataset. The results of the Tukey–Kramer’s HSD tests showed
that the computation times of Algorithm 2.3.2 for the australian, horse-colic, breast-
cancer-wisconsin, census-income, internet-advertisements, and MNIST datasets were
significantly shorter than those of Pegasos, Algorithm 2.3.1 and the SMO algorithm.
However, the null hypotheses about Algorithm 2.3.2 and the SMO algorithm for the
RANDOM1 dataset, and Algorithm 2.3.2 and Pegasos for the RANDOM2 dataset
were not rejected. Therefore, for most of the practical datasets, Algorithm 2.3.2 runs
significantly faster than the existing algorithms. However, it seems that there are a
few cases where the computation time of the Algorithm 2.3.2 roughly equals those of
the existing algorithms.
Next, we consider the classification scores on the test sets. The ANOVA tests

indicate that significant differences may exist in the census-income, internet-
advertisements, and RANDOM2 datasets. However, Tukey-Kramer’s HSD test could
not reject the null hypotheses between any two algorithms for the census-income
dataset. The results of the Tukey-Kramer’s HSD tests showed that the scores of
Algorithm 2.3.1 were significantly worse than those of the other algorithms for the
internet-advertisements and RANDOM2 datasets. Moreover, they showed that the
scores of Algorithm 2.3.2 were significantly better than those of Algorithm 2.3.1
and the SMO algorithm for the RANDOM2 dataset. Although each algorithm may
have advantages or disadvantages compared with the others on certain datasets, the
classification scores of the four algorithms were roughly similar as a whole.
Next, we consider the values of the objective function. All p-values computed by

the ANOVA tests were much less than 0.05; this range was from 10−32 to 10−12.
This implies that a significant difference exists in terms of the values of the objective
function between the algorithms for every dataset. The results of the Tukey-Kramer’s
HSD tests showed that the values of the objective function of Algorithm 2.3.2 were
significantly lower than those of Pegasos and Algorithm 2.3.1 for all datasets. There-
fore, Algorithm 2.3.1 reduced the value of objective function more than the other
algorithms.
Figure 2.2 illustrates a box-plot comparison of Pegasos, Algorithm 2.3.1, Algo-

rithm 2.3.2, and the SMO Algorithm in terms of classification scores on the test sets.
We used the results of all folds of the cross-validations and all datasets shown in Table
5 for making this box-plot comparison. The horizontal lines in the boxes represent the
median scores, and the boxes represent the upper and lower quartiles of the resulting
scores. Similar to the above discussion of the average, we find that Algorithm 2 has
the best median of the classification scores among the four algorithms. The results of
Pegasos were similar to those of Algorithm 2.3.2; however, the computation time of
Algorithm 2.3.2 was dramatically shorter than that of Pegasos. Therefore, box-plot
comparison also shows that Algorithm 2.3.2 is the most useful algorithm for learning
with a support vector machine.
In conclusion, the above comparison indicates that, whichever algorithm we use,

we can obtain classifiers whose classification abilities are similar. However, Algo-
rithm 2.3.2 runs faster than the other algorithms, and it reduces the value of the
objective function more. Therefore, the series of experiments and considerations lead

60

Fig. 2.2: Box-plot comparison of Pegasos, Algorithm 2.3.1, Algorithm 2.3.2 and SMO
Algorithm in terms of classification scores on the test sets

us to conclude that Algorithm 2.3.2 is useful for learning with a support vector ma-
chine.

2.4.3 Application to learning multilayer neural networks

Let us consider using the proposed algorithms to learn a multilayer neural network
with. Our algorithms are not limited to being used for learning support vector ma-
chines; they can also be used for optimizing general functions. Therefore, we can also
use them for learning a multilayer neural network. Here, we should note that the
incremental subgradient algorithm is a specialization of the stochastic subgradient al-
gorithm, which is a useful algorithm for learning a neural network. Hence, we decided
to apply it to a concrete task for learning a multilayer neural network and evaluate
its applicability to learning deep neural networks.
We used the MNIST database [58] of handwritten digits for this experiment. The

goal is recognizing what Arabic numerals are written on the given images. To achieve
this goal, we can use 60,000 examples contained in the training set. Each example is
composed of a 28×28 image that expresses a handwritten digit and its corresponding
label that is an integer number from zero to nine. For the evaluation and comparison
of the learning results, we used a test set containing 10,000 examples formatted in
the same way.
We constructed and trained a multilayer neural network shown in Figure 2.3 for

learning the MNIST database. We used three Affine layers with two ReLU (Rectified
Linear Unit) activation functions and, for the output, a Softmax activation function.
We used the cross-entropy error function as the objective function for training the

61

Fig. 2.3: Neural network diagram used to recognizing the MNIST handwritten digits

neural networks.
An Affine layer AW,b transforms a given vector x ∈ Rn into

AW,b(x) := Wx+ b

with the parameter W ∈ Rm×n and b ∈ Rm, where n is the number of dimensions
of the input vector and m is the number of dimensions of the output vector. The
first Affine layer transforms a 784(= 28 × 28)-dimensional vector, which expresses a
given image, into a 300-dimensional vector. The second Affine layer transforms a 300-
dimensional vector into a 100-dimensional vector. The third Affine layer transforms a
100-dimensional vectors into a 10-dimensional vector, which expresses each probability
that the given image is the corresponding number. We used the number of dimensions
described in [57] for each Affine layer.
The ReLU function transforms each element xk (k = 1, 2, . . . , n) of a given vector

x ∈ Rn into max{0, xk}. The Softmax function transforms a given vector x :=
(xk)

n
k=1 ∈ Rn as follows:

Softmax(x) :=
1∑n

k=1 e
xk

(ex1 , ex2 , . . . , exk)⊤,

where the number e is the Napier’s constant. We define the cross-entropy error
E : Rn → R, which is used as the objective function for training neural networks, as
follows:

E(x) := −
9∑

k=0

yk log(xk),

where the vector x := (xk)
9
k=0 ∈ R10 is the output of the current neural network and

yk (k = 0, 1, 2, . . . , 9) is one if the label is k and zero otherwise.
In this experiment, we wanted to minimize the cross-entropy error of the training

dataset concerning the parameters Wk, bk for each Affine layer Ak(k = 1, 2, 3). The
number of dimensions of the parameters is 784×300+300 = 235500 for the first Affine
layer, 300× 100 + 100 = 30100 for the second Affine layer, and 100× 10 + 10 = 1010
for the third Affine layer. Hence, the total number of dimensions of the variables for
this minimization problem is 235500 + 30100 + 1010 = 266610.

62

We ran Algorithm 2.3.1 with the Discrete Argmin Line Search described in Al-
gorithm 2.3.3 and compared its behaviors when we used a constant learning rate
λn,i := 0.1, diminishing learning rate λn,i := (0.1 × 20)/n, and learning rates found
by the line search in the step-range [(0.1×20)/(n+100), (0.1×20)/n] for the number
of iterations (n = 1, 2, . . .). We set the coefficients for each step-size such that these
upper bounds would be equal to each other when the algorithm exits. To use the
proposed algorithm, we have to compute the subgradients of the objective function.
Here, we used approximations of them worked out by the backpropagation algorithm.
We used the computer described in Subsection 2.1 for these experiments. We wrote

the experimental codes in Python 3.6.6 with the NumPy 1.15.4 library. We divided the
datasets into 600 mini-batches, each of which contained 100 examples; in other words,
we solved the problem to minimize the sum of 600 objective functions. We converted
and flattened the handwritten digit images into vectors and divided their elements by
255 for regularization. The parameters for each Affine layer were initialized using a
Gaussian distribution of mean zero and variance 0.01.
Figure 2.4 shows the behavior of the values of the objective function for each it-

eration. The violet line labelled “Constant” shows the result of using the constant

Fig. 2.4: Behavior of the values of the objective function for each iteration

learning rate, while the green line labelled “Diminishing” shows the result of using
the diminishing learning rate, and the cyan line labelled “Line Search” shows that
of using the learning rate computed with the line search. Overall, we can see that
all the results decrease monotonously. This implies that Algorithm 2.3.1 can mini-
mize the objective function with any of the above learning rate settings. The range
of reduction of the result by using the diminishing learning rate is less than others.
One possible reason is that learning rate becomes too small to minimize the objective
function sufficiently. Indeed, from the second to fourth iteration, the result for the
diminishing learning rate fell steeply, but this variation became smaller and smaller
after the sixth iteration. In contrast to this result, the results for the constant learn-
ing rate and the learning rate computed with the line search minimized the objective
function continuously and dramatically. In particular, we can see that the line search
found the most efficient learning rates of these experiments.

63

Next, let us examine the classification accuracies. Figure 2.5 shows the behavior

(a) Result for training data (b) Result for test data

Fig. 2.5: Behavior of the classification accuracies for training and test data

of the classification accuracies for the training and test data. The left-hand graph
(Figure 2.5a) shows the classification accuracies for the training data and the right-
hand graph (Figure 2.5b) shows those for the test data. The legends of these graphs
are the same as in Figure 2.4. We can see that all the results increased, heading
for 100%. For both data, the score of “Line Search” is higher than others and the
score of “Diminishing” is the lowest. This order is the same as what we saw in
Figure 2. Therefore, using the learning rates computed by the line search makes us
able to minimize the objective function most and to achieve the best parameters for
the neural network to recognize the handwritten digits.

Section 2.5. Conclusion

We proposed novel incremental and parallel subgradient algorithms with a line
search that determines suitable learning rates automatically, algorithmically, and ap-
propriately for learning support vector machines. We showed that the algorithms
converge to optimal solutions of constrained nonsmooth convex optimization prob-
lems appearing in the task of learning support vector machines. Experiments justi-
fied the claimed advantages of the proposed algorithms. We compared them with a
machine learning algorithm Pegasos, which is designed to learn with a support vector
machine efficiently, in terms of prediction accuracy, value of the objective function,
and computational time. Regarding the parallel subgradient algorithm in particu-
lar, the issue of the computational overhead of the line search can be resolved using
multi-core computing. Furthermore, we confirmed that we can apply our incremental
subgradient algorithm with the line search to a neural network and they can train it
effectively. Overall, our algorithms are useful for efficiently learning a support vector
machine and for training a neural network including deep learning.

64

Chapter 3

Fixed Point Quasiconvex Subgradient

Method

Constrained quasiconvex optimization problems appear in many fields, such as eco-
nomics, engineering, and management science. In particular, fractional programming,
which models ratio indicators such as the profit/cost ratio as fractional objective func-
tions, is an important instance. Subgradient methods and their variants are useful
ways for solving these problems efficiently. Many complicated constraint sets onto
which it is hard to compute the metric projections in a realistic amount of time ap-
pear in these applications. This implies that the existing methods cannot be applied
to quasiconvex optimization over a complicated set. Meanwhile, thanks to fixed point
theory, we can construct a computable nonexpansive mapping whose fixed point set
coincides with a complicated constraint set. This chapter proposes an algorithm that
uses a computable nonexpansive mapping for solving a constrained quasiconvex op-
timization problem. We provide convergence analyses for constant and diminishing
step-size rules. Numerical comparisons between the proposed algorithm and an exist-
ing algorithm show that the proposed algorithm runs stably and quickly even when
the running time of the existing algorithm exceeds the time limit.
The contents of this chapter are based on

[25] K. Hishinuma and H. Iiduka. Convergence property, computational perfor-
mance, and usability of fixed point quasiconvex subgradient method. the 6th
Asian Conference on Nonlinear Analysis and Optimization (Oral), 2017;

[27] K. Hishinuma and H. Iiduka. Iterative method for solving constrained qua-
siconvex optimization problems based on the Krasnosel’skĭı-Mann fixed point
approximation method. RIMS Workshop on Nonlinear Analysis and Convex
Analysis (Oral), 2017;

[31] K. Hishinuma and H. Iiduka. Fixed point quasiconvex subgradient method.
European Journal of Operational Research, 282(2):428–437, 2020.

65

Section 3.1. Introduction

This chapter considers the constrained quasiconvex optimization problem. This
problem is composed of a quasiconvex objective functional and a closed convex con-
straint set. We call a functional of which any slice is convex a quasiconvex functional,
and the class of this functional is a generalization of convex functionals. Quasiconvex
functionals inherit some nice properties of convex functionals [35]. However, they do
not have all the important properties of convex functionals, such as convexity of the
sum of convex functionals, or give a guarantee of the coincidence of local optimality
and global optimality. Therefore, the constrained quasiconvex optimization problem
is difficult to solve in general.
Fractional programming is an important instance of constrained quasiconvex opti-

mization problems. In economics, there are various situations in which one optimizes
ratio indicators, such as the debt/equity ratio (in financial and corporate planning),
inventory/sales and output/employee ratios (in production planning), and cost/pa-
tient and nurse/patient ratios (in health care and hospital planning) [86]. Under
certain conditions, these ratio indicators, fractional objective functionals in other
words, have quasiconvexity [53, Lemma 3]. Therefore, these problems can be dealt
with as constrained quasiconvex optimizations. Here, we will examine the numeri-
cal behaviors of the existing and proposed algorithms when they are applied to the
Cobb-Douglas production efficiency problem [7, Problem (3.13)], [33, Problem (6.1)],
[86, Section 1.7], which is an instance of a fractional programming and constrained
quasiconvex optimization problem. Furthermore, the demand for techniques to solve
optimization problems is nowadays not only limited to convex objectives. In particu-
lar, optimization problems whose objective functionals are quasiconvex have appeared
in economics, engineering, and management science [33, 35]. Therefore, this chapter
builds an algorithm that can efficiently solve constrained quasiconvex optimization
problems even if they have some complexity.
Subgradient methods with the usual Fenchel subdifferential, an expansion of the

gradient for nonsmooth functionals, are useful for solving problems in convex opti-
mization [5, Section 8.2], [41, 42, 43, 45, 56]. We need to use an alternative notion of
the usual Fenchel subdifferential since the usual Fenchel subdifferential is defined for
a convex functional [8, Subsection 2.1], [53, Subsection 2.2], [81, Proposition 8.12].
Indeed, the usual Fenchel subdifferential may be empty even for a differential noncon-
vex functional [8, Subsection 2.1]. This implies that we cannot use it directly to solve
quasiconvex optimization problems. Fortunately, various, extended subdifferentials
for nonconvex functionals have been proposed [74, Section 4], [81, Definition 8.3]. As
an instance of them, we can define subdifferentials for quasiconvex or more general
functionals by the procedure described in [74, Section 4] to construct them with direc-
tional derivatives. These subdifferentials inherit some of the properties, called axioms
for subdifferentials [74, Axioms (S1–S4)], from the usual Fenchel subdifferential for
convex functionals; however, they may not be easily computable. Furthermore, an
essential issue is that a local minimizer might not coincide with the global minimizer
in quasiconvex optimization. This issue reduces the subdifferential till it contains only

66

one vector, i.e., the zero vector, meaning that the methods lose any clue as to the
direction of the global minimizer. Hence, we cannot ensure the convergence of the
generated sequence to the global minimizer of the quasiconvex optimization problem
when the usual subgradient methods are used. For the unconstrained quasiconvex
optimization problem, Konnov [54] introduced a subgradient method that uses a nor-
malized normal vector to the slice at a current approximation as a subgradient. This
idea overcomes the above issue, since there certainly exists a nonzero normal vec-
tor to the slice which indicates the direction to the minimizer even if the current
approximation is a non-global local minimizer.
Kiwiel [53] proposed a subgradient method that uses a normalized normal vector

to the slice as a subgradient (we will call it a subgradient throughout this chapter) for
solving the constrained quasiconvex optimization problem. Hu et al. [33] analyzed its
convergence properties when inexact subgradients are used and/or when it includes
computational errors. Furthermore, a number of subgradient-method variants exist
for solving quasiconvex optimization problems, such as the conditional subgradient
methods [35] and the stochastic subgradient method [34].
The existing methods assume the computability of the metric projection onto the

constraint set, because they use the metric projection to guarantee that the solution
is in the constraint set. The metric projection onto the constraint set is defined as a
mapping which translates a given point into the nearest point inside the constraint set.
Therefore, in general, we have to solve a subproblem of minimizing the distance from
a given point subject to the solution being in the constraint set. Certainly, there are
some sets onto which the metric projections can be computed easily, such as boxes [2,
Proposition 29.15], closed balls [2, Example 3.18 and Proposition 3.19], [82, Section 4],
and closed half-spaces [2, Example 29.20]. However, various complicated sets on which
computing the metric projections is difficult appear in practical problems [11, 39, 45,
46, 93]. Therefore, we have to develop a new algorithm that can run lightly and
quickly even when it is difficult to compute the metric projection onto the constraint
set.
On the other hand, if the constraint set can be expressed as a fixed point set of

or the intersection of some fixed point sets of nonexpansive mappings, there are al-
gorithms that use these nonexpansive mappings instead of the metric projection for
convex optimization [41, 42, 43, 45]. Fixed point sets of nonexpansive mappings have
great powers of expression. Any metric projection onto a closed convex set is also
a nonexpansive mapping whose fixed point set coincides with these sets [2, Proposi-
tion 4.16]. We can build a nonexpansive mapping whose fixed point set coincides with
the intersection of the fixed point sets of two or more given nonexpansive mappings
[2, Proposition 4.9, 4.47]. Furthermore, there are complicated convex sets called gen-
eralized convex feasible sets that are defined by closed convex sets whose intersection
may be empty. They can also be expressed using concrete nonexpansive mappings
[45, Definition (8)], [93, Definition (50)]. The algorithms listed at the beginning of
this paragraph use nonexpansive mappings instead of metric projections onto the con-
straint sets. Therefore, if these nonexpansive mappings can be more easily computed
than the metric projections, it can also be expected that their algorithms will run

67

more efficiently than algorithms which use metric projections directly.
The existing algorithms for solving convex optimization problems over fixed point

sets of nonexpansive mappings are realized by combining a fixed point iterator, which
generates a sequence converging to some fixed point of a given nonexpansive mapping,
with the existing subgradient methods. The Krasnosel’skĭı-Mann iterator [55, 63] and
Halpern iterator [20] are useful fixed point iterators for finding a fixed point of given
nonexpansive mapping. Both generate a sequence converging to some fixed point of
a given nonexpansive mapping.
In contrast to the existing literature, this chapter proposes a novel algorithm which

minimizes a given quasiconvex functional over the fixed point set of a given non-
expansive mapping. To realize this algorithm, we combine the Krasnosel’skĭı-Mann
iterator [55, 63] with the existing subgradient method [53] for solving quasiconvex op-
timization problems. The goal of this chapter is to show that our algorithm can solve
constrained quasiconvex optimization problems whose constraint set is too complex
for the existing algorithms to solve in a realistic amount of time.
This chapter offers three contributions. The first is to provide a widely applicable

algorithm for solving constrained quasiconvex optimization problems. The nonex-
pansive mappings are an extended notion of the metric projection, since the metric
projection is also nonexpansive. Therefore, this chapter allows more varied modeling
for constrained quasiconvex optimization problems.
The second contribution is to present the theoretical convergence properties of our

algorithm. We analyzed the convergence properties for constant and diminishing
step-size rules. These results show by how much the error increases when a constant
step-size rule is adopted what conditions are required for the generated sequence to
converge to the solution of the optimization problem.
The last contribution is to overcome the issue of the existing methods; that is,

we show that the proposed algorithm can solve problems whose metric projections
onto constraint sets cannot be easily computed. We conduct a numerical comparison
of our algorithm and the existing algorithm. The results show that our algorithm
can solve actual problems even when the constraint sets are too complex to find the
metric projection onto them and when the existing algorithm cannot run in a realistic
amount of time.
This chapter is organized as follows. Section 3.2 gives the mathematical prelimi-

naries. Section 3.3 defines our algorithm and presents its convergence analyses. Sec-
tion 3.4 shows numerical comparisons between the proposed algorithm and the exist-
ing subgradient method, by solving a constrained quasiconvex optimization problem
named the Cobb-Douglas production efficiency problem. Section 3.5 concludes this
chapter.

Section 3.2. Mathematical preliminaries

First, we present the main problem considered in this chapter, i.e., Problem 3.2.1,
which is called a constrained quasiconvex optimization problem.

68

Problem 3.2.1. Let H be a real Hilbert space with inner product ⟨·, ·⟩ and its
induced norm ∥·∥, and let f be a continuous functional on H. In addition, suppose
that the functional f has quasiconvexity, i.e. f((1 − α)x + αy) ≤ max{f(x), f(y)}
holds for any x, y ∈ H and for any α ∈ [0, 1]. Let X,D be nonempty closed convex
subsets of H. Then, we would like to

minimize f(x) subject to x ∈ X ∩D.

We define the set of minima and the minimum value of Problem 3.2.1 by X⋆ :=
argminx∈X∩D f(x) and f⋆ := infx∈X∩D f(x), respectively.
We use the following notation in this chapter. N is the set of natural numbers

without zero, and R is the set of real numbers. B := {x ∈ H : ∥x∥ ≤ 1} is the unit
ball in this Hilbert space, and S := {x ∈ H : ∥x∥ = 1} is the unit sphere in that
space. Id is the identity mapping of H onto itself. The boundary of a set C ⊂ H is
denoted by bdC, the closure of this set is denoted by clC, and the diameter of this
set is denoted by diam(C) := sup{∥u− v∥ : u, v ∈ C}.
The metric projection onto a closed, convex set C ⊂ H is denoted by PC and defined

as PC(x) ∈ C and ∥x− PC(x)∥ = infy∈C ∥x− y∥ for any x ∈ H. For any α ∈ R, the
α-slice of a functional f : H → R is denoted by lev<α f := {x ∈ H : f(x) < α} and
the α-trench of a functional f : H → R is denoted by lev≤α f := {x ∈ H : f(x) ≤ α}.
We call a functional f : H → R is coercive if lim∥x∥→∞ f(x) =∞ [2, Definition 11.11].
The coerciveness of a functional is equivalent to the boundedness of all trenches of it
[2, Proposition 11.12]. The fixed point set of a mapping T : H → H is denoted by
Fix(T) := {x ∈ H : T (x) = x}.
This chapter makes full use of the nonexpansivity of some mapping for analyz-

ing the convergence of the proposed algorithm. Hence, let us define two kinds of
nonexpansive condition. A mapping T : H → H is said to be nonexpansive if
∥T (x)− T (y)∥ ≤ ∥x− y∥ for any x, y ∈ H, and it is said to be firmly nonexpansive

if ∥T (x)− T (y)∥2 + ∥(Id−T)x− (Id−T)y∥2 ≤ ∥x− y∥2 for any x, y ∈ H. Obviously,
a firmly nonexpansive mapping is also a nonexpansive mapping [2, Subchapter 4.1].
The properties of these nonexpansivities are described in detail in [2, Chapter 4], [87,
Chapter 6].
Useful algorithms for solving Problem 3.2.1 were proposed in [33, 35, 53, 54]. How-

ever, they assume that the metric projection onto the set X ∩ D can be computed
explicitly. Unfortunately, there are many complicated convex sets onto which con-
structing and/or computing the projection are difficult [11, 45, 46, 93]. This chapter
assumes a weaker and expanded condition for the constraint set X, only requiring the
existence of a certain nonexpansive mapping expressing this set. Below, we list the
conditions assumed throughout in this chapter.

Assumption 3.2.1. We suppose that

(A1) the effective domain dom(f) := {x ∈ H : f(x) < ∞} coincides with the whole
space H;

(A2) there exists some firmly nonexpansive mapping T : H → H whose fixed point

69

set Fix(T) coincides with the constraint set X;
(A3) the constraint set X = Fix(T) and the feasible set X ∩ D are nonempty and

there exists at least one minima, i.e. X⋆ ̸= ∅.

Assumptions (A2–3) mean that any closed convex sets which can be expressed as
a fixed point set of some (firmly) nonexpansive mapping are accepted as constraint
sets. Fixed point sets of nonexpansive mappings can express a variety of constraint
sets, including not only the sets onto which the metric projections can be calculated
such as is used in the existing literature [33, 35, 53], but also complicated sets onto
which metric projections cannot be easily calculated [11, 45, 46, 93].
We can construct more complex sets by combining simpler nonexpansive mappings.

The following proposition gives the fundamental, variously applicable transformations
for building nonexpansive mappings.

Proposition 3.2.1. Let T1, T2, . . . , TN : H → H be nonexpansive mappings (includ-
ing metric projections onto some convex sets), and suppose that the intersection of
these fixed point sets is nonempty. Let α ∈ (0, 1/2]. Then,

(T1) the mapping
∑N

i=1 Ti/N is also a nonexpansive mapping, and its fixed point set

coincides with
∩N

i=1 Fix(Ti) [2, Propositions 4.9 and 4.47];
(T2) the mapping α Id+(1 − α)T1 is a firmly nonexpansive mapping, and its fixed

point set coincides with Fix(T1) [2, Remark 4.37 and Proposition 4.47].

The transformation (T1) ensures that we can make a nonexpansive mapping whose
fixed point set coincides with the intersection of the fixed point sets of two or more
nonexpansive mappings. The transformation (T2) provides us with a way to con-
vert any nonexpansive mapping into a firmly nonexpansive mapping whose fixed
point sets correspond with the given one. Our GitHub repository (URL: https:
//github.com/iiduka-researches/201811-kaz) provides these implementations of
the transformations (T1 and T2) as higher-order functions average and firm up in
Python. By using our code, the reader can easily make a nonexpansive mapping
expressing his or her desired constraint set.
Furthermore, let us examine an instance of convex sets that can be expressed as

fixed point sets of some nonexpansive mappings, called the generalized convex feasible
sets [45, Definition (10)], [93, Subsection 4.B]. Here, let us consider several closed
convex sets Xi ⊂ H for i = 0, 1, . . . ,K, and suppose that the metric projections
{PXi

}Ki=0 onto these convex sets {Xi}Ki=0 can be easily calculated. If the intersection
of these sets is not empty, we can use the transformation and construction procedures
described before to make a nonexpansive mapping whose fixed point set coincides
with it. Hence, let us consider the opposite case; that is, there is a possibility that
the intersection of the sets {Xi}Ki=1 is empty. Then, we cannot use the straightfor-
ward way because the emptiness of the constraint set violates Assumption (A3). To
design an alternative constraint set, let us define a functional [45, Definition (8)], [93,

https://github.com/iiduka-researches/201811-kaz
https://github.com/iiduka-researches/201811-kaz

70

Definition (50)]

g(x) :=
1

2

K∑
i=1

wi

(
min
y∈Xi

∥x− y∥
)2

(x ∈ H), (3.1)

where
∑K

i=1 wi = 1. This functional g stands for the mean square value from the
point x to the sets {Xi}Ki=1 with respect to the weights {wi}Ki=1. Therefore, we can
consider the set of points which minimize this functional [45, Definition (10)], [93,
Definition (50)],

Xg :=

{
x ∈ X0 : g(x) = min

y∈X0

g(y)

}
,

as an alternative constraint set in terms of the mean square norm. This set is called the
generalized convex feasible set. We can construct a nonexpansive mapping whose fixed
point set coincides with this set, and thus, we can deal with the minimization problem
over this constraint set by using the algorithm presented later. The way to construct
this nonexpansive mapping is described in [45, Definition (9)], [93, Definition (50)].
Various subdifferentials have been proposed for quasiconvex functionals, such as

the classical subdifferential [53, Definition (10)], the Greenberg-Pierskalla subdiffer-
ential [18, Section 3] and its variants such as the star subdifferential [8, Definition 7],
Plastria’s lower subdifferential [75, Section 2], and so on [8, Subsection 2.1], [53, Defi-
nition (6)–(9)], [74, Section 5]. The Greenberg-Pierskalla subdifferential is one of the
most important concepts of subdifferentials for generalized convex functionals because
it is a general notion that can be easily handled [74, Section 5]. However, it does not
account for the norm of its subgradients and gives only directions. Plastria’s lower
subdifferential is proposed as another important concept whose properties are closer
to those of the usual Fenchel subdifferential for convex functionals [74, Section 5].
In this chapter, conforming to [33, 35, 54], we use the subdifferential defined as the
normal cones to the slice of the functional f . That is, given a point x ∈ H, we call
the set

∂⋆f(x) := {g ∈ H : ⟨g, y − x⟩ ≤ 0 (y ∈ lev<f(x) f)}

the subdifferential of the quasiconvex functional f at a point x ∈ H [33, Definition 2.3],
[35, Definition 2.1], [53, Definition (9)], [54, Section 1]. We also call its element a
subgradient.
This subdifferential ∂⋆f(·) has some favorable properties, as listed in the following

proposition.

Proposition 3.2.2 ([2, Proposition 6.2.(iv)], [53, Lemma 3], [74, Propositions 6
and 8]). Suppose that Assumption 3.2.1 holds, and assume that f is a continuous
quasiconvex functional. Then, the following hold.

(P1) ∂⋆f(·) coincides with the closure of the Greenberg-Pierskalla subdifferential, i.e.,
the union of the Greenberg-Pierskalla subdifferential and the singleton set {0}.

71

(P2) The Greenberg-Pierskalla subdifferential, Plastria’s lower subdifferential, and the
usual Fenchel subdifferential are contained in the subdifferential ∂⋆f(x) for any
x ∈ H.*1

(P3) For any x ∈ H, the subdifferential ∂⋆f(x) is nonempty, and also contains some
nonzero vector.

(P4) ∂⋆f(·) is a nonempty closed convex cone.

First, we defined the subdifferential ∂⋆f(·) as the closure of the Greenberg-Pierskalla
subdifferential, such as is shown in Proposition (P1). This implies that the subdif-
ferential ∂⋆f(·) is an extension of the Greenberg-Pierskalla subdifferential, and some
properties of this subdifferential can also be used. For example, ∂⋆f(x) coincides
with the whole space H if x is a minimizer of f . This proposition ensures that the
subdifferential ∂⋆f(·) coincides with the closure of the Greenberg-Pierskalla subdif-
ferential, which is not always closed [33, Subsection 2.1]. Hence, this subdifferential
∂⋆f(·) overcomes the problem of the non-closedness of the Greenberg-Pierskalla sub-
differential; it has been used in the recent literature [33, 34, 35]. Furthermore, as
shown in Proposition (P2), the subdifferential is also a superset of Plastria’s lower
subdifferential and the usual Fenchel subdifferential. Since the subdifferential ∂⋆f(·)
is a cone as shown in Proposition (P4), this property ensures that every arbitrarily
scaled element of the Plastria’s lower subdifferential or the usual Fenchel subdifferen-
tial can be used as a subgradient in the discussion of this chapter. Proposition (P3)
ensures the existence of nonzero subgradients at all points. This fact guarantees that
the algorithm described later can always find a subgradient, which is required for
the computation. In addition, Proposition (P4) shows that the normalized vector of
a subgradient is also a subgradient. Our algorithm implicitly uses this property for
choosing a subgradient whose norm is 1.
A subgradient in ∂⋆f(·) is computable when, for example, the functional is formed

as a fractional function, a typical instance of a quasiconvex function, with concrete
conditions. The following proposition gives the conditions for the quasiconvexity and
subgradient computability of fractional functions.

Proposition 3.2.3 ([53, Lemmas 3 (i) and 4]). Let a be a convex functional on H,
and let b be a finite, positive functional on H. Suppose that f(x) := a(x)/b(x) for any
x ∈ H, the interior of dom(f) is convex, and one of the following conditions holds:

(i) b is affine;
(ii) a is nonnegative on the interior of dom(f) and b is concave;
(iii) a is nonpositive on the interior of dom(f) and b is convex.

Then, the functional f is a quasiconvex functional on the interior of dom(f). Fur-
thermore, the functional (a − αb)(·) is convex and ∂(a − αb)(x) ⊂ ∂⋆f(x) for any
x ∈ H, where α := f(x) and ∂(a − αb) is the usual Fenchel subdifferential of the
functional (a− αb)(·).

*1 Furthermore, the other four kinds of subdifferential presented in [74, Section 5] are also con-
tained in the subdifferential ∂⋆f(x). Please refer to [74, Proposition 15] for more details.

72

The following defines a property named the Hölder condition of a functional. This
property is used in turn to describe some of the properties of the quasi-subgradient
and to establish the convergence of subgradient methods [35, Section 2].

Definition 3.2.1 (Hölder condition [54, Definition 1]). A functional f : H → R is
said to satisfy the Hölder condition with degree β > 0 at a point x ∈ H on a set
M ⊂ H if there exists a number L ∈ R such that

|f(z)− f(x)| ≤ L ∥z − x∥β (z ∈M).

The Hölder condition with degree 1 is equivalent to Lipschitz continuity. Further-
more, when f is a convex functional, it is also equivalent to the bounded subgradient
assumption frequently assumed in convergence analyses of subgradient methods for
solving convex optimization problems [35, Section 2]. For more details on this prop-
erty, see Example 3.3.1 described later.
The following Proposition 3.2.4 is a key lemma which relates the distance to the set

of minima to its functional value. While nearly the same assertion in Euclidian spaces
is presented in [54, Proposition 2.1], this proposition extends it to Hilbert spaces. We
should remark that the condition for a point x is slightly modified from the original
one for the later discussion. Nevertheless, we can similarly prove this proposition.

Proposition 3.2.4 ([54, Proposition 2.1]). Suppose that the functional f satisfies the
Hölder condition with degree β > 0 at a point x⋆ ∈ X⋆ on the set cl(lev<f(x) f) for
some point x ∈ H such that f⋆ < f(x). Then, we have

f(x)− f⋆ ≤ L ⟨g, x− x⋆⟩β (g ∈ ∂⋆f(x) ∩ S).

Proof. Fix g ∈ ∂⋆f(x) ∩ S arbitrarily. The continuity and quasiconvexity of f imply
its level set lev<f(x) f is open and convex. This lev<f(x) f is not an empty set, since
it has at least the point x⋆. The continuity of f also ensures bd(lev<f(x) f) ̸= ∅.
Set r := inf{∥x⋆ − u∥ : u ∈ bd(lev<f(x) f)}. Then, there exists a sequence {uk} ⊂

bd(lev<f(x) f) such that ∥x⋆ − uk∥ ≤ r+1/k for all k ∈ N. The openness of lev<f(x) f
implies that it is a distinct set from its boundary, i.e., f(x) ≤ f(u) for any u ∈
bd(lev<f(x) f). Hence,

f(x)− f⋆ ≤ f(uk)− f⋆

≤ L ∥uk − x⋆∥β

< L

(
r +

1

k

)β

for all k ∈ N. It follows that

f(x)− f⋆ ≤ Lrβ . (3.2)

From the definition of r, the open ball with center x⋆ and radius r is contained
inside lev<f(x) f . Therefore, x⋆ + (1 − 1/k)rg ∈ lev<f(x) f holds for any k ∈ N, and

73

we have (
1− 1

k

)
r − ⟨g, x− x⋆⟩ =

(
1− 1

k

)
r ∥g∥2 − ⟨g, x− x⋆⟩

=

⟨
g, x⋆ +

(
1− 1

k

)
rg − x

⟩
≤ 0

for all k ∈ N. This implies that r ≤ ⟨g, x− x⋆⟩. Applying this inequality to inequal-

ity (3.2) gives f(x)− f⋆ ≤ L ⟨g, x− x⋆⟩β . This completes the proof.

The following propositions are used to prove the theorems presented later.

Proposition 3.2.5 ([70, Lemma 1]). Let {xk} be a sequence in the Hilbert space H
and suppose that it converges weakly to x. Then for any y ̸= x, lim infk→∞ ∥xk − x∥ <
lim infk→∞ ∥xk − y∥.

Proposition 3.2.6 ([2, Proposition 10.25]). Every quasiconvex continuous functional
on a real Hilbert space H has weakly lower semicontinuity. That is to say, we have
f(x) ≤ lim infn→∞ f(xn) for any sequence {xn} ⊂ H which converges weakly to a
point x ∈ H if the functional f is a quasiconvex continuous functional on a real
Hilbert space H.

Proposition 3.2.7 ([2, Proposition 11.8]). Let C be a convex subset of H, and let f
be a strictly quasiconvex functional on the Hilbert space H, i.e., f(αx + (1 − α)y) <
max{f(x), f(y)} for any α ∈ (0, 1) and for any two distinct points x, y ∈ H. Then, f
has at most one minimizer over C.

Section 3.3. Quasiconvex subgradient method over a

fixed point set

We propose Algorithm 3.3.1 for solving Problem 3.2.1 with Assumption 3.2.1. This

Algorithm 3.3.1 Fixed point quasiconvex subgradient method for solving Prob-
lem 3.2.1

Require:
f : H → R, T : H → H, D ⊂ H;
{vk} ⊂ (0,∞), {αk} ⊂ (0, 1].

Ensure:
{xk} ⊂ D.

1: x1 ∈ D.
2: for k = 1, 2, . . . do
3: gk ∈ ∂⋆f(xk) ∩ S.
4: xk+1 := PD(αkxk + (1− αk)T (xk − vkgk)).
5: end for

74

algorithm iteratively generates the next point xk+1 from the current approximation
xk in order to improve it. Specifically, step 3 of this algorithm finds a regularized
subgradient of the functional f at the current approximation xk. Step 4 is composed
of two improving iterators: one is the subgradient method iterator xk − vkgk to
improve approximations with respect to the functional value, and the other is the
Krasnosel’skĭı-Mann iterator [55, 63] αk Id+(1−αk)T to improve approximations with
respect to the distance to the fixed point set Fix(T). To ensure that the generated
sequence is contained in the set D, we project each generated point onto this set (this
operation is optional because the metric projection operator PD coincides with the
identity mapping Id if the set D is the whole space H). By repeating steps 3–4, this
algorithm generates a sequence converging to a point in the solution set X⋆.
Assumption 3.2.1 supposes that the effective domain dom(f) coincides with the

whole space H. Nevertheless, we can also apply to this algorithm a functional whose
effective domain does not fill H. For example, let us consider a case that the effective
domain dom(f) differs from the whole space H, the set D is contained inside this
domain, and the initial point x1 is an element of this set. Then, we can consider
the computation of Algorithm 3.3.1 is limited in the set D, a subset of the effective
domain dom(f). This implies that, with appropriate approximation of f , we can apply
a functional whose effective domain does not fill the whole space of this algorithm
when the range of the nonexpansive mapping T is contained in this domain. We will
illustrate an example of making an approximate function as Example 3.3.3.
Before moving on to the convergence analyses, we will give the assumptions and

lemmas describing the fundamental properties of Algorithm 3.3.1.

Assumption 3.3.1. (A4) For any k ∈ N such that f⋆ < f(xk) and for all x⋆ ∈ X⋆,
the functional f satisfies the Hölder condition with degree β > 0 at the point
x⋆ on the set cl(lev<f(xk) f).

(A5) The generated sequence {xk} is bounded.
(A6) The real sequence {αk} ⊂ (0, 1] satisfies 0 < lim infk→∞ αk ≤ lim supk→∞ αk <

1.

In the following, we have to ensure that Assumption (A5), i.e., the boundedness of
the sequence generated by Algorithm 3.3.1, holds. If we know the estimated range of
the solution candidates, the simplest way to bound the generated sequence is to let
the set D be a closed ball with a large enough diameter. We can compute the metric
projection onto a closed ball easily [2, Example 3.18]. For example, giving 1016B as
the set D to Algorithm 3.3.1 satisfies Assumption (A5).
Even when the boundedness of the set D cannot be guaranteed, we can ensure the

boundedness of the generated sequence if the objective functional is coercive. Here, we
present a sufficient condition for ensuring the boundedness of the sequence generated
by Algorithm 3.3.1 without supposing the boundedness of the set D.

Proposition 3.3.1. Let {xk} ⊂ H be a sequence generated by Algorithm 1. Suppose
that Assumption 3.3.1 holds and there exists a number k0 ∈ N such that vk < 1 for
all k ≥ k0. Assume that f is coercive. If one of the following holds,

75

(i) Assumption (A4) holds,
(ii) the whole space H is an N -dimensional Euclidean space Rn,

then Assumption (A5) is satisfied.

Proof. Let us prove this proposition by dividing it into case (i) and (ii). First, suppose
that case (i) holds. We will proceed by way of contradiction and suppose that the
sequence {xk} is unbounded. Then, there exists a subsequence {xki} of the sequence
{xk} such that limi→∞ ∥xki∥ =∞. The coercivity of f implies that limi→∞ f(xki) =
∞. Fix x⋆ ∈ X⋆ arbitrarily. Assumption (A4) guarantees that

|f(z)− f⋆| ≤ L ∥z − x⋆∥β

for all z ∈ cl(lev<f(xi) f) and for any i ∈ N. Since limi→∞ f(xki
) =∞, we have

|f(z)− f⋆| ≤ L ∥z − x⋆∥β

for all z ∈ H. Considering the point z appearing in the above inequality to be limited
in the set x⋆ +B, we obtain

f(z) ≤ f⋆ + L ∥z − x⋆∥β

≤ f⋆ + L

for all z ∈ x⋆ +B. Set δ to be the right side of the above inequality, i.e., δ := f⋆ +L.
Then, the set x⋆ +B is obviously a subset of the bounded trench lev≤δ f .
From the assumption of this proposition, there exists a number k0 ∈ N such that

vk < 1 for all k ≥ k0. For each k ≥ k0, let us consider the two separate cases: the
case where the point xk belongs to the trench lev≤δ f , and its negation. First, let us
consider the positive case; i.e., xk ∈ lev≤δ f for k ≥ k0. The nonexpansivity of PD

and T and the fact that x⋆ ∈ Fix(PD) ∩ Fix(T) ensure that

∥xk+1 − x⋆∥ = ∥PD(αkxk + (1− αk)T (xk − vkgk))− x⋆∥
≤ ∥αkxk + (1− αk)T (xk − vkgk)− x⋆∥
≤ αk ∥xk − x⋆∥+ (1− αk) ∥T (xk − vkgk)− x⋆∥
≤ αk ∥xk − x⋆∥+ (1− αk) ∥xk − vkgk − x⋆∥
≤ ∥xk − x⋆∥+ (1− αk)vk

for any k ≥ k0 such that xk ∈ lev≤δ f . Here, both xk and x⋆ belong to the bounded
trench lev≤δ f , and both 1− α and vk are less than or equal to 1. Hence,

∥xk+1 − x⋆∥ ≤ diam(lev≤δ f) + 1 <∞

holds for any k ≥ k0 such that xk ∈ lev≤δ f . Next, let us consider the negative case;
i.e., xk ̸∈ lev≤δ f for k ≥ k0. The nonexpansivity of PD and T and the fact that

76

x⋆ ∈ Fix(PD) ∩ Fix(T) ensure that

∥xk+1 − x⋆∥ = ∥PD(αkxk + (1− αk)T (xk − vkgk))− x⋆∥
≤ ∥αkxk + (1− αk)T (xk − vkgk)− x⋆∥
≤ αk ∥xk − x⋆∥+ (1− αk) ∥T (xk − vkgk)− x⋆∥
≤ αk ∥xk − x⋆∥+ (1− αk) ∥xk − vkgk − x⋆∥

for any k ≥ k0 such that xk ̸∈ lev≤δ f . Let us consider the right term of the right side
of the above inequality. Its squared value is bounded from above as follows:

∥xk − vkgk − x⋆∥2 = ∥xk − x⋆∥2 − 2vk ⟨gk, xk − x⋆⟩+ vk ⟨gk, vkgk⟩

= ∥xk − x⋆∥2 − vk ⟨gk, xk − x⋆⟩ − vk ⟨gk, xk − (x⋆ + vkgk)⟩

for any k ≥ k0 such that xk ̸∈ lev≤δ f . Here, xk ̸∈ lev≤δ f implies that f⋆ ≤
f⋆ + L = δ < f(xk) for f ≥ k0. Therefore, we have x⋆ ∈ lev≤f(xk) f and x⋆ + vkgk ∈
x⋆ + B ⊂ lev≤f(xk) f for any k ≥ k0 such that xk ̸∈ lev≤δ f . Since the definition of
gk ∈ ∂⋆f(xk)∩S together with the preceding discussion implies that ⟨gk, xk − x⋆⟩ ≥ 0
and ⟨gk, xk − (x⋆ + vkgk)⟩ ≥ 0, we have

∥xk − vkgk − x⋆∥ ≤ ∥xk − x⋆∥

for any k ≥ k0 such that xk ̸∈ lev≤δ f . Hence, we have

∥xk+1 − x⋆∥ ≤ ∥xk − x⋆∥

for any k ≥ k0 such that xk ̸∈ lev≤δ f . From the results for the both cases where
xk ∈ lev≤δ f or not, we have

∥xk − x⋆∥ ≤ max{∥x1 − x⋆∥ , ∥x2 − x⋆∥ , . . . , ∥xk0 − x⋆∥ ,diam(lev≤δ f) + 1}
<∞

for all k ∈ N. However, this contradicts the assumption that the sequence {xk}
is unbounded. Therefore, we arrive at a contradiction and the boundedness of the
sequence {xk} has been proved under this case.

Now let us suppose that case (ii) holds. In an N -dimensional Euclidean space RN ,
every closed, bounded set is compact [87, Problem 3.1.6]. Therefore, the nonempty,
compact set x⋆ + B contains a point x̄ such that f(x̄) = maxx∈x⋆+B f(x) [87, The-
orem 2.5.7]. Set δ := f(x̄) ≥ f⋆. Then, the set x⋆ + B is a subset of the bounded
trench lev≤δ f = lev≤f(x̄) f . From the assumption of this proposition, there exists a
number k0 ∈ N such that vk < 1 for all k ≥ k0. For each k ≥ k0, let us consider the
two separate cases: the case where the point xk belongs to the trench lev≤δ f , and its
negation. First, let us consider the positive case; i.e., xk ∈ lev≤δ f for k ≥ k0. The

77

nonexpansivity of PD and T and the fact that x⋆ ∈ Fix(PD) ∩ Fix(T) ensure that

∥xk+1 − x⋆∥ = ∥PD(αkxk + (1− αk)T (xk − vkgk))− x⋆∥
≤ ∥αkxk + (1− αk)T (xk − vkgk)− x⋆∥
≤ αk ∥xk − x⋆∥+ (1− αk) ∥T (xk − vkgk)− x⋆∥
≤ αk ∥xk − x⋆∥+ (1− αk) ∥xk − vkgk − x⋆∥
≤ ∥xk − x⋆∥+ (1− αk)vk

for any k ≥ k0 such that xk ∈ lev≤δ f . Here, both xk and x⋆ belong to the bounded
trench lev≤δ f , and both 1− α and vk are less than or equal to 1. Hence,

∥xk+1 − x⋆∥ ≤ diam(lev≤δ f) + 1 <∞

holds for any k ≥ k0 such that xk ∈ lev≤δ f . Next, let us consider the negative case;
i.e., xk ̸∈ lev≤δ f for k ≥ k0. The nonexpansivity of PD and T and the fact that
x⋆ ∈ Fix(PD) ∩ Fix(T) ensure that

∥xk+1 − x⋆∥ = ∥PD(αkxk + (1− αk)T (xk − vkgk))− x⋆∥
≤ ∥αkxk + (1− αk)T (xk − vkgk)− x⋆∥
≤ αk ∥xk − x⋆∥+ (1− αk) ∥T (xk − vkgk)− x⋆∥
≤ αk ∥xk − x⋆∥+ (1− αk) ∥xk − vkgk − x⋆∥

for any k ≥ k0 such that xk ̸∈ lev≤δ f . Let us consider the right term of the right side
of the above inequality. Its squared value is bounded from above as follows:

∥xk − vkgk − x⋆∥2 = ∥xk − x⋆∥2 − 2vk ⟨gk, xk − x⋆⟩+ vk ⟨gk, vkgk⟩

= ∥xk − x⋆∥2 − vk ⟨gk, xk − x⋆⟩ − vk ⟨gk, xk − (x⋆ + vkgk)⟩

for any k ≥ k0 such that xk ̸∈ lev≤δ f . Here, xk ̸∈ lev≤δ f implies that f⋆ ≤
f⋆ + L = δ < f(xk) for f ≥ k0. Therefore, we have x⋆ ∈ lev≤f(xk) f and x⋆ + vkgk ∈
x⋆ + B ⊂ lev≤f(xk) f for any k ≥ k0 such that xk ̸∈ lev≤δ f . Since the definition of
gk ∈ ∂⋆f(xk)∩S together with the preceding discussion implies that ⟨gk, xk − x⋆⟩ ≥ 0
and ⟨gk, xk − (x⋆ + vkgk)⟩ ≥ 0, we have

∥xk − vkgk − x⋆∥ ≤ ∥xk − x⋆∥

for any k ≥ k0 such that xk ̸∈ lev≤δ f . Hence, we have

∥xk+1 − x⋆∥ ≤ ∥xk − x⋆∥

for any k ≥ k0 such that xk ̸∈ lev≤δ f . From the results for the both cases where
xk ∈ lev≤δ f or not, we have

∥xk − x⋆∥ ≤ max{∥x1 − x⋆∥ , ∥x2 − x⋆∥ , . . . , ∥xk0
− x⋆∥ ,diam(lev≤δ f) + 1}

<∞

78

for all k ∈ N. This implies that the sequence {xk} is bounded, and this completes the
proof.

The assumption on the step-size, i.e., the existence of a number k0 such that vk < 1
for all k ≥ k0, is satisfied whenever we adopt a diminishing step-size rule which is
discussed in Subsection 3.3.2 since the step-size sequence decreasingly converges to
zero. Furthermore, it is also satisfied when we adopt a constant step-size rule which
is discussed in Subsection 3.3.1 with a small enough constant step-size v < 1. Overall,
the coerciveness of the objective functional f (and the smallness of the step-sizes) is
a sufficient condition for ensuring the boundedness of the generated sequence in the
convergence analyses of constant or diminishing step-size rules.
Here let us give some examples which satisfy Assumption 3.3.1. The first exam-

ple shows the applicability of Algorithm 3.3.1 to constrained convex optimization
problems.

Example 3.3.1 ([2, Remark 4.34.(iii), Propositions 4.47 and 16.20]). Suppose that f

is a continuous, convex functional on H, T̃ is a nonexpansive mapping of H into itself,
and D is a closed, bounded, convex subset of H. Set T := (Id+T̃)/2. Furthermore,
assume that the feasible set Fix(T) ∩D is nonempty. Set αk := 1/2 for every k ∈ N.
If H is finite-dimensional, or if the usual Fenchel subdifferential of f maps every
bounded subset of H to a bounded set, then T is a firmly nonexpansive mapping,
Fix(T) coincides with the fixed point set Fix(T), and Assumption 3.3.1 holds.

This example shows that, if the set D is bounded, our algorithm can be applied to
nonsmooth convex optimization problems over fixed point sets of nonexpansive map-
pings [41, 42, 43, 45]. The following discussion is predicated upon Assumption (A5),
i.e., that the generated sequence is bounded, since it is required for evaluating the dis-
tance between the generated sequence and the fixed point set (Lemma 3.3.2). Indeed,
the existing analysis of the fixed point subgradient method for convex optimization
assumes the generated sequence is bounded [40, Assumption (A2)], [41, Assump-
tion 3.1]. However, we can guarantee the boundedness. As we described above, the
simplest D that satisfies the requirements is a ball with a large enough diameter.
The transformation T̃ 7→ (Id+T̃)/2 converts the given nonexpansive mapping T̃

into a corresponding firmly nonexpansive mapping T whose fixed point set coincides
with the given one [2, Remark 4.37 and Proposition 4.47]. This implies that any non-
expansive mapping whose fixed point set coincides with the constraint set can be used
as T̃ . Of course, since any metric projection operator is a firmly nonexpansive map-
ping [2, Proposition 4.16], we can solve an optimization problem over the constraint
set onto which the metric projection can be computed. In Section 3.4, we will describe
a concrete example of constructing a firmly nonexpansive mapping. Furthermore, our
algorithm extends the existing subgradient methods for convex optimization, since
any of the usual Fenchel subgradients of a convex functional is also a subgradient as
defined in this chapter. Hence, the convergence analyses of our algorithm (described
later) will be very useful for not only quasiconvex optimization [33, 35, 53, 54] but
also convex optimization [41, 42, 43, 45].

79

Let us consider the simplest example of a (nonconvex) quasiconvex objective func-
tional. The next example shows that a typical quasiconvex functional, called the
capped-l1 norm, appearing in sparse regularization of machine learning tasks [9, Equa-
tion (25)], [96, Appendix C.3.1] can be minimized using Algorithm 3.3.1.

Example 3.3.2. Let f(x) := min{∥x∥ , α} for some α > 0, and let T := Id. Set
{vk} ⊂ (0, α] and αk := 1/2 for all k ∈ N. Use gk := xk/ ∥xk∥ ∈ ∂⋆f(xk)∩S for each
k ∈ N until xk reaches the solution. Then, this setting satisfies Assumption 3.3.1.

Proof. The fixed point set Fix(T) = Fix(Id) is obviously the whole space H. There-
fore, the minimum value of f is 0 and its minimizer is only the origin. For any z ∈ H,
we have

|f(z)− f(x⋆)| = min{∥z∥ , α}
≤ ∥z − x⋆∥ .

This implies that f satisfies the Hölder condition with degree 1 at its minimizer x⋆

on the whole space H. Expanding ∥xk+1∥2 = ∥xk − (vk/2)gk∥2 and using Proposi-
tion 3.2.4 with the above result, we have

∥xk+1∥2 = ∥xk∥2 − vk ⟨gk, xk − x⋆⟩+
(vk
2

)2
≤ ∥xk∥2 − vk min{∥xk∥ , α}+

(vk
2

)2
for all k ∈ N. When the index k ∈ N satisfies ∥xk∥ ≤ α,

∥xk+1∥2 ≤ ∥xk∥2 − vk ∥xk∥+
(vk
2

)2
≤ 5

4
α2

holds. The nonnegativeness of both sides of the above inequality ensures that ∥xk+1∥
is bounded from above by

√
5α/2 for any k ∈ N satisfying ∥xk∥ ≤ α. In the opposite

case, i.e. if the index k ∈ N satisfies α < ∥xk∥,

∥xk+1∥2 ≤ ∥xk∥2 − vkα+
(vk
2

)2
= ∥xk∥2 − vk

(
α− vk

4

)
holds. Therefore, we have ∥xk+1∥ ≤ ∥xk∥ for any k ∈ N satisfying α < ∥xk∥. Com-
bining the conclusions of both cases, we can see that the sequence {∥xk∥} is bounded
from above by max{∥x1∥ ,

√
5α/2}. This completes the proof.

Here we should remark that Assumption 3.3.1 does not guarantee that the sequence
generated by Algorithm 3.3.1 converges to some optimum. For example, let us con-
sider the case where f(x) := min{|x| , 1} for any real x ∈ R and the initial point

80

x1 := 3/2. Even though it violates the assumption of Example 3.3.2, let us assume
vk := 2 for all k ∈ N. Then, this setting still satisfies Assumption 3.3.1. However, as
illustrated in Figure 3.1, we can see that the generated sequence does not converge to
an optimum. In each step, the approximation is moved in the direction of the origin

Fig. 3.1: Illustration of case where the generated sequence repeats 1/2 and −1/2 and
does not converge to the origin.

by 1. In this counterexample, the first step moves the initial point 3/2 to the point
1/2. After that, the algorithm eternally iterates so as to move approximations to
their symmetric point with respect to the origin. Therefore, the generated sequence
repeats 1/2 and −1/2 and does not converge to the optimum 0. The convergence
theorems presented later describe what is required to make the generated sequence
converge to the optimum and/or how much error can occur in the solution.
Finally, we present a concrete application that can be dealt with as a quasiconvex

optimization problem. The following fractional programming problem is called the
Cobb-Douglas production efficiency problem and satisfies Assumption 3.3.1.

Example 3.3.3 ([7, Problem (3.13)], [33, Problem (6.1))], [86, Section 1.7]). Let
us consider the problem in an Euclidean space; i.e., suppose that H := Rn. Set
D := [0,M]n for some M > 0, and set αk := 1/2 for any k ∈ N. We give two positive
scalars a0, c0 > 0 and two n-dimensional positive vectors in advance, a, c ∈ (0,∞)n

such that
∑n

i=1 ai = 1. Let

f(x) :=

{
−a0

∏n
j=1 x

aj
j

⟨c,x⟩+c0
(x ∈ [0,∞)n),

0 (otherwise),

and assume that T is a firmly nonexpansive mapping from Rn to itself and Fix(T) ∩
D ̸= ∅ holds. Run Algorithm 3.3.1 with an initial point x1 ∈ [0,M]n. Then, Assump-
tion 3.3.1 holds.

Proof. The generated sequence {xk} is obviously bounded, since it is contained inside
[0,M]n. Fix x⋆ ∈ X⋆ arbitrarily. The assumptions of this example imply that the
feasible set Fix(T) ∩D has a point u ∈ (0,∞)n. Hence, the functional value of this
point f(u) is strictly less than f(v) = 0 for any v ∈ bd([0,∞)n). This means that
X⋆ ⊂ (0,∞)n holds; that is, any optimum x⋆ ∈ X⋆ belongs to the interior of [0,∞)n.
Therefore, there exists some δ > 0 such that the closed ball with center x⋆ and radius
2δ is contained inside [0,∞)n. Let us discuss the satisfiability of the Hölder condition

on the set [δ,∞)n and on its complement [δ,∞)n separately (see Figure 3.2 for the

81

relation between the point x⋆ and these two disjoint sets). First, fix z ∈ [δ,∞)n

Fig. 3.2: Relation between the point x⋆, the set [δ,∞)n, and its complement

arbitrarily. Denoting the element-wise (Hadamard) division of x and y by x⊘ y, the
gradient of the functional f can be written as

∇f(x) =
−a0

∏n
j=1 x

aj

j

(⟨c, x⟩+ c0)2
c+
−a0

∏n
j=1 x

aj

j

⟨c, x⟩+ c0
(a⊘ x) (x ∈ [δ,∞)n).

Letting c̃ be a vector whose elements are each the minimum of c, an upper bound of
the norms of the gradients can be evaluated by using the theorem of arithmetic and
geometric means [21, Inequality (2.5.2)], as follows:

∥∇f(x)∥ ≤
a0
∏n

j=1 x
aj

j

(⟨c, x⟩+ c0)2
∥c∥+

a0
∏n

j=1 x
aj

j

⟨c, x⟩+ c0
∥a⊘ x∥

≤ a0
∥c̃∥

(
1

⟨c, x⟩+ c0
∥c∥+ ∥a⊘ x∥

)
≤ a0
∥c̃∥

(
1

δ ∥c̃∥+ c0
∥c∥+ ∥a∥

δ

)
<∞ (x ∈ [δ,∞)n).

This implies that the image (∥∇f(·)∥)([δ,∞)n) is bounded. The mean value theorem
[68, Inequality (A.55)] ensures the existence of some α ∈ (0, 1) such that

f(z) = f(x⋆) + ⟨∇f((1− α)x⋆ + αz), z − x⟩ .

The convexity of [δ,∞) and the boundedness of ∥∇f(·)∥ on [δ,∞)n imply that
∥∇f((1− α)x⋆ + αz)∥ ≤ (a0/ ∥c̃∥)(∥c∥ /(δ ∥c̃∥ + c0) + ∥a∥ /δ). Therefore, the
Cauchy-Schwarz inequality gives us the desired inequality as follows:

|f(z)− f(x⋆)| = |⟨∇f((1− α)x⋆ + αz), z − x⟩|
≤ ∥∇f((1− α)x⋆ + αz)∥ ∥z − x∥

≤ a0
∥c̃∥

(
1

δ ∥c̃∥+ c0
∥c∥+ ∥a∥

δ

)
∥z − x∥ .

This implies that the functional f satisfies the Hölder condition with degree 1 at the
point x⋆ on the set [δ,∞)n.

82

Next, fix z̄ ∈ [δ,∞)n arbitrarily. The closed ball with center x⋆ and radius δ is
contained inside [δ,∞)n. Hence, ∥x⋆ − z∥ ≥ δ holds. From the definition of f , the
maximum value of f is 0 and its range is less than or equal to 0. Therefore,

|f(z)− f(x⋆)| ≤ f(x⋆)

δ
∥x⋆ − z∥

holds. Hence, letting L := max{(a0/ ∥c̃∥)(∥c∥ /(δ ∥c̃∥ + c0) + ∥a∥ /δ), f(x⋆/δ)}, it is
clear that f satisfies the Hölder condition with degree 1 at the point x⋆ on the set
Rn. This completes the proof.

In Section 3.4, we will define the Cobb-Douglas production efficiency problem and
show the numerical behavior of Algorithm 3.3.1 when it solves a concrete instance of
this problem. Hence, we will put off explaining the problem in detail till later and
limit ourselves here to a brief description.
The Cobb-Douglas production efficiency problem was introduced by Bradley and

Frey [7]. Hu, Yang, and Sim proposed an algorithm for solving this problem by re-
garding it as a constrained quasiconvex optimization problem [33]. The fact that the
objective functional f is quasiconvex allows us to treat it as a quasiconvex optimiza-
tion problem. The study by Hu et al. [33] is also based on this fact; it ensures the
quasiconvexity of the objective functional. However, the existing results including
that of [33] assume that the projection onto the constraint set is easily computable.
Let us consider the meaning of this objective function. The numerator expresses

the total profit defined by the production factors xj for each j = 1, 2, . . . , n. This
numerator is modeled with the Cobb-Douglas production function. In this problem,
we consider the total cost for the production activities to be an affine function with
respect to the production factors {xj}nj=1. This cost function is set as the denominator
of the objective function. Hence, the objective function f represents the ratio of
the total profit and the total cost. In addition, it is known that the numerator,
i.e., the Cobb-Douglas production function, is convex [59, Section 2], and therefore,
Proposition 3.2.3 guarantees that f is quasiconvex.
The sequence generated by Algorithm 3.3.1 must be contained in the box [0,M]n,

because its complement includes points that make the denominator of the function
f zero. Therefore, we set the domain to D = [0,M]n ⊂ [0,∞)n. However, from the
definition of f , setting f(x) := 0 when x is out of the set [0,∞)n makes it possible to
expand its domain to the whole space while maintaining continuity. This is an example
of an appropriate approximation of the objective function described on page 74.
The following lemmas show the fundamental properties of Algorithm 3.3.1.

Lemma 3.3.1. Let {xk} ⊂ H be a sequence generated by Algorithm 3.3.1. Suppose
that Assumptions 3.2.1 and (A4) hold. Then, for any k ∈ N that satisfies f⋆ < f(xk),
the following inequality holds.

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2vk(1− αk)

(
f(xk)− f⋆

L

) 1
β

+ (1− αk)v
2
k.

83

Proof. Fix x⋆ ∈ X⋆ and k ∈ N arbitrarily. The convexity of ∥·∥2 and the nonexpan-
sivity of PD and T ensure that

∥xk+1 − x⋆∥2 = ∥PD(αkxk + (1− αk)T (xk − vkgk))− PD(x⋆)∥2

≤ ∥αkxk + (1− αk)T (xk − vkgk)− x⋆∥2

≤ αk ∥xk − x⋆∥2 + (1− αk) ∥T (xk − vkgk)− T (x⋆)∥2

≤ αk ∥xk − x⋆∥2 + (1− αk) ∥xk − x⋆ − vkgk∥2

= ∥xk − x⋆∥2 − 2vk(1− αk) ⟨gk, xk − x⋆⟩+ (1− αk)v
2
k. (3.3)

On the other hand, Assumption (A4) and Proposition 3.2.4 ensure that(
f(xk)− f⋆

L

) 1
β

≤ ⟨gk, xk − x⋆⟩ .

Applying this inequality to inequality (3.3), we obtain

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2vk(1− αk)

(
f(xk)− f⋆

L

) 1
β

+ (1− αk)v
2
k.

This completes the proof.

Similar lemmas are presented in the literature that discuss algorithms which use
the metric projection onto the constraint set [34, Lemma 3.1], [35, Lemma 3.2], [53,
Lemma 6]. This implies that the generated sequence is guaranteed to be contained
in the constraint set. Therefore, the proofs of these lemmas use a property which
ensures xk ∈ X∩D and f⋆ ≤ f(xk). However, the algorithm presented here generates
a sequence that may not be in the fixed point set of T , in other words, it may be out
of the feasible set. The convergence analyses are carefully divided into cases where
f⋆ < f(xk) holds and cases where it does not hold. The above lemma describes
that the existing results hold for the proposed algorithm only if the positive case
f⋆ < f(xk) holds and even if the containedness of the generated sequence in the fixed
point set cannot be guaranteed.

Lemma 3.3.2. Let {xk} ⊂ H be a sequence generated by Algorithm 3.3.1. Suppose
that Assumptions 3.2.1 and (A5) hold and the real sequence {vk} is bounded. Then,
for each x ∈ Fix(T) ∩D, there exists M1 ≥ 0 such that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − (1− αk) ∥xk − T (xk − vkgk)∥2 + vkM1 (k ∈ N).

Proof. Fix x ∈ Fix(T)∩D and k ∈ N arbitrarily, and setM1 := supk∈N(2 |⟨gk, x− T (xk − vkgk)⟩|).
The boundedness of {xk} and {vk} ensures that there exist M2,M3 ∈ R such that

∥xj∥ ≤M2, vj ≤M3

84

for all j ∈ N. Therefore,

∥x− T (xj − vjgj)∥ ≤ ∥x∥+ ∥xj∥+ vj

≤ ∥x∥+M2 +M3 <∞

for all j ∈ N. The Cauchy-Schwarz inequality, together with this boundedness of the
real sequence {∥x− T (xk − vkgk)∥}, indicates that M1 ≤ ∥x∥+M2 +M3 <∞.

From the convexity of ∥·∥2, we have

∥xk+1 − x∥2 = ∥PD(αkxk + (1− αk)T (xk − vkgk))− PD(x)∥2

≤ ∥αk(xk − x) + (1− αk)(T (xk − vkgk)− x)∥2

≤ αk ∥xk − x∥2 + (1− αk) ∥T (xk − vkgk)− x∥2 . (3.4)

Let us consider the term ∥T (xk − vkgk)− x∥2. Using the firm nonexpansivity of T ,
we expand this term into

∥T (xk − vkgk)− x∥2

≤ ∥xk − vkgk − x∥2 − ∥(Id−T)(xk − vkgk)− (Id−T)(x)∥2

= ∥xk − x∥2 − 2vk ⟨gk, xk − x⟩+ v2k

− ∥xk − T (xk − vkgk)∥2 + 2vk ⟨gk, xk − T (xk − vkgk)⟩ − v2k

= ∥xk − x∥2 − ∥xk − T (xk − vkgk)∥2 + 2vk ⟨gk, x− T (xk − vkgk)⟩ .

In view of the definition of M1, the set {2 ⟨gk, x− T (xk − vkgk)⟩ : k ∈ N} is bounded
from above by it. Therefore, we obtain

∥T (xk − vkgk)− x∥2 ≤ ∥xk − x∥2 − ∥xk − T (xk − vkgk)∥2 + vkM1.

Applying this inequality to inequality (3.4) yields the desired inequality:

∥xk+1 − x∥2

≤ αk ∥xk − x∥2 + (1− αk)
(
∥xk − x∥2 − ∥xk − T (xk − vkgk)∥2 + vkM1

)
≤ ∥xk − x∥2 − (1− αk) ∥xk − T (xk − vkgk)∥2 + vkM1

This completes the proof.

3.3.1 Constant step-size rule

The following theorem shows how precise the generated solution is when the con-
stant step-size rule is used.

85

Theorem 3.3.1. Let v > 0 and vk := v for all k ∈ N and {xk} ⊂ H be a sequence
generated by Algorithm 3.3.1. Suppose that Assumptions 3.2.1 and 3.3.1 hold. Then,
the sequence {xk} satisfies

lim inf
k→∞

f(xk) ≤ f⋆ + L
(v
2

)β
, and lim inf

k→∞
∥xk − T (xk)∥2 ≤Mv

for some M ≥ 0.

Proof. We prove each inequality in order. First, we consider whether the inequality

lim inf
k→∞

f(xk) ≤ f⋆ + L
(v
2

)β
(3.5)

holds. We will proceed by way of contradiction. Suppose that the inequality does not
hold; i.e.,

f⋆ + L
(v
2

)β
< lim inf

k→∞
f(xk).

The left-hand side of this inequality is strictly less than the right-hand side. Hence,
with the positivity of L, we can choose a positive δ1 such that

f⋆ + L
(v
2
+ δ1

)β
< lim inf

k→∞
f(xk)

holds. The property of the limit inferior guarantees that there exists k0 ∈ N such that

f⋆ + L
(v
2
+ δ1

)β
< f(xk) (k ≥ k0). (3.6)

Obviously, this implies that f⋆ < f(xk) for any k ≥ k0. Therefore, all assumptions of
Lemma 3.3.1 are satisfied when k ≥ k0, and the following inequality holds for some
x⋆ ∈ X⋆ ̸= ∅:

∥xk+1 − x⋆∥2

≤ ∥xk − x⋆∥2 − 2v(1− αk)

(
f(xk)− f⋆

L

) 1
β

+ (1− αk)v
2

for all k ≥ k0. Applying inequality (3.6) to the above inequality, we have

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2vδ1(1− αk)

≤ ∥xk0
− x⋆∥2 − 2vδ1

k∑
j=k0

(1− αk) (3.7)

for all k ≥ k0. From Assumption (A6), lim supk→∞ αk < 1 holds. Hence, a starting
index k1 ∈ N greater than k0 exists such that the subsequence {αk}k≥k1 is bounded

86

above by some positive real that is strictly less than 1. This means that inequal-
ity (3.7) does not hold for large enough k ≥ k1, and we have arrived at a contradiction.
Therefore, inequality (3.5) holds.
Next, let us prove the remaining part of this theorem, in other words, show that

the inequality

lim inf
k→∞

∥xk − T (xk)∥2 ≤Mv

holds for some positive real M > 0. Fix x ∈ Fix(T) arbitrarily. Lemma 3.3.2
guarantees the existence of a nonnegative real M1 ≥ 0 such that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − (1− αk) ∥xk − T (xk − vgk)∥2 + vM1 (3.8)

for all k ∈ N. In view of Assumption (A6), lim infk→∞(1 − αk) is positive; i.e., it is
not equal to zero. We will again proceed by way of contradiction and suppose that

lim inf
k→∞

∥xk − T (xk − vgk)∥2 ≤
2vM1

lim infk→∞(1− αk)
(3.9)

does not hold and

2vM1

lim infk→∞(1− αk)
< lim inf

k→∞
∥xk − T (xk − vgk)∥2

holds. In the same ways choosing δ1 in the first part of this proof, we can find a
positive δ2 > 0 that satisfies

2vM1

lim infk→∞(1− αk)
+ δ2 < lim inf

k→∞
∥xk − T (xk − vgk)∥2 .

The property of the limit inferior guarantees that a positive number k2 ∈ N exists
such that

2vM1

lim infk→∞(1− αk)
+ δ2 < ∥xk − T (xk − vgk)∥2

for all k ≥ k2. Applying the above inequality to inequality (3.8), we obtain

∥xk+1 − x∥2

≤ ∥xk − x∥2 − (1− αk)

(
2vM1

lim infk→∞(1− αk)
+ δ2

)
+ vM1

for all k ≥ k2. The fundamental property of the limit inferior also ensures the existence
of a number k3 ∈ N larger than k2 such that lim infk→∞(1−αk)/2 < (1−αk) for any
k ≥ k3. Therefore, we have

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − δ2
2
lim inf
k→∞

(1− αk)

≤ ∥xk3
− x∥2 − δ2

2
(k − k3 + 1) lim inf

k→∞
(1− αk)

87

for all k ≥ k3. Since the above inequality does not hold for large enough k ≥ k3, we
have arrived at a contradiction. Therefore, inequality (3.9) holds.
With this inequality, let us evaluate the squared distance between an element of

the generated sequence and its transformed point by the nonexpansive mapping T .
Using the triangle inequality and the nonexpansivity of T , we have

∥xk − T (xk)∥2 ≤ (∥xk − T (xk − vgk)∥+ ∥T (xk − vgk)− T (xk)∥)2

≤ (∥xk − T (xk − vgk)∥+ v)
2

= ∥xk − T (xk − vgk)∥2 + 2v ∥xk − T (xk − vgk)∥+ v2

for any k ∈ N. Now, since x is a fixed point of the mapping T , we expand the
second term of the above expression as ∥xk − T (xk − vgk)∥ ≤ 2 ∥xk − x∥+ v for any
k ∈ N. Furthermore, Assumption (A5) ensures the existence of a positive real M2 > 0
bounding the set {∥xk − x∥ : k ∈ N} from above. Hence, we finally obtain

∥xk − T (xk)∥2 ≤ ∥xk − T (xk − vgk)∥2 + 4v(M2 + v)

for any k ∈ N. Taking the limit inferior of both sides of the above inequality yields

lim inf
k→∞

∥xk − T (xk)∥2 ≤ lim inf
k→∞

∥xk − T (xk − vgk)∥2 + 4v(M2 + v).

Set M := 2(M1/ lim infk→∞(1− αk) + 2(M2 + v)) ∈ R. Applying inequality (3.9) to
the above, we obtain the desired inequality as follows:

lim inf
k→∞

∥xk − T (xk)∥2 ≤ 2

(
M1

lim infk→∞(1− αk)
+ 2(M2 + v)

)
v

≤Mv.

This completes the proof.

3.3.2 Diminishing step-size rule

Finally, we prove the weak convergence theorem of Algorithm 3.3.1. To let the
generated sequence weakly converge to some optimum, we can use a specific step-size
called a diminishing step-size. The following theorem describes this condition and
shows that the generated sequence weakly converges.

Theorem 3.3.2. Let {xk} ⊂ H be a sequence generated by Algorithm 3.3.1. Suppose
that

(i) Assumptions 3.2.1 and 3.3.1 hold,
(ii) and the real sequence {vk} ⊂ (0,∞) satisfies

lim
k→∞

vk = 0, and
∞∑
k=1

vk =∞.

88

Then, there exists a subsequence of the generated sequence {xk} which converges
weakly to a point in X⋆. In addition, if

(iii) the whole space H is an N -dimensional Euclidean space RN ,
(iv) and the solution x⋆ ∈ X⋆ is unique,

then, the whole sequence {xk} converges to this unique solution x⋆.

Assumption (A3) and Proposition 3.2.7 show that the strict quasiconvexity of the
objective function is a sufficient condition for the uniqueness of the solution x⋆ ∈ X⋆.
Before proving the above theorem, we prove the following lemma which will be

needed later.

Lemma 3.3.3. Suppose that Assumptions 3.2.1 and 3.3.1 hold, and suppose that the
real sequence {vk} ⊂ (0,∞) satisfies

lim
k→∞

vk = 0, and
∞∑
k=1

vk =∞.

Let {xk} ⊂ H be the sequence generated by Algorithm 3.3.1 with this real sequence
{vk}. Then,

lim inf
k→∞

f(xk) ≤ f⋆

holds.

Proof. We will proceed by way of contradiction and suppose that the conclusion
lim infk→∞ f(xk) ≤ f⋆ does not hold, that is, lim infk→∞ f(xk) > f⋆. There ex-
ists a positive number δ > 0 and an index k0 ∈ N such that f⋆ + δ < f(xk) for all
k ≥ k0. Furthermore, the assumption that the real sequence {vk} converges to zero
guarantees the existence of an index k1 ≥ k0 such that vk < (δ/L)1/β for all k ≥ k1.
Applying these two inequalities to Lemma 3.3.1, we have

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2vk(1− αk)

(
f(xk)− f⋆

L

) 1
β

+ (1− αk)v
2
k

< ∥xk − x⋆∥2 − vk(1− αk)

(
δ

L

) 1
β

< ∥xk1 − x⋆∥2 −
(
δ

L

) 1
β

k∑
n=k1

vk(1− αk) (k ≥ k1).

Assumption (A6) guarantees the existence of a positive number α and an index k2 ≥
k1 such that α < 1− αk for any k ≥ k2. This implies that the above inequality does
not hold for a sufficiently large k ≥ k2; hence, we arrive at a contradiction. This
completes the proof.

Now let us prove Theorem 3.3.2 with the above result.

89

Proof of Theorem 3.3.2. Let the limit superior of the real sequence {αk} be denoted
by ᾱ ∈ (0, 1). Fix x⋆ ∈ X⋆ arbitrarily. We will prove the assertion by separating
the problem into two cases: the case where there exists a number k0 ∈ N such that
∥xk+1 − x⋆∥ ≤ ∥xk − x⋆∥ for all k ≥ k0, and its negation.
First, let us consider the positive case; i.e., there exists a number k0 ∈ N such

that ∥xk+1 − x⋆∥ ≤ ∥xk − x⋆∥ for all k ≥ k0. The property of the limit superior
guarantees the existence of a number k1 ≥ k0 such that αk < ᾱ + (1 − ᾱ)/2 for all
k ≥ k1. Therefore, applying this relationship between ᾱ and αk to Lemma 3.3.2, an
estimate of ∥xk − T (xk − vkgk)∥ for any k ≥ k1 can be obtained as follows:

1

2
(1− ᾱ) ∥xk − T (xk − vkgk)∥2 ≤ (1− αk) ∥xk − T (xk − vkgk)∥2

≤ ∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2 + vkM1. (3.10)

In this case, the monotonicity and boundedness of the subsequence {∥xk − x⋆∥}k≥k1

are assured. Hence, this subsequence converges to some nonnegative real. Since we
have assumed that the real sequence {vk} converges to zero, the left-hand side of
inequality (3.10) converges to zero. On the other hand, ∥xk − T (xk)∥ for each k ∈ N
can be expanded with the triangle inequality and by noting the nonexpansivity of T
as follows:

∥xk − T (xk)∥ ≤ ∥xk − T (xk − vkgk)∥+ ∥T (xk − vkgk)− T (xk)∥
≤ ∥xk − T (xk − vkgk)∥+ vk.

From the assumption of this theorem and the previous discussion, both terms on the
right-hand side above converge to zero with respect to k. Hence, we find that the real
sequence {∥xk − T (xk)∥} converges to zero.
The property of the limit inferior of the real sequence {f(xk)} guarantees the

existence of a subsequence {f(xki
)} converging to lim infk→∞ f(xk). Note that

Lemma 3.3.3 asserts that this limit inferior is less than or equal to the minimum
value f⋆. There exist a point u ∈ H and a subsequence {xkij

} ⊂ {xki
} converging

weakly to the point u, since {xki
} is a bounded sequence in H. Now, suppose that

u is not a fixed point of T . Since the real sequence {∥xk − T (xk)∥} converges to
zero and T is a nonexpansive mapping, Proposition 3.2.5 produces a contradiction as
follows:

lim inf
j→∞

∥∥∥xkij
− u
∥∥∥ < lim inf

j→∞

∥∥∥xkij
− T (u)

∥∥∥
≤ lim inf

j→∞

(∥∥∥xkij
− T

(
xkij

)∥∥∥+ ∥∥∥T (xkij

)
− T (u)

∥∥∥)
≤ lim inf

j→∞

∥∥∥xkij
− u
∥∥∥ .

Therefore, we can see that u is a fixed point of T . Proposition 3.2.6 means that the
objective functional f has weakly lower semicontinuity. The weak convergence of the

90

sequence {xkij
} implies

f(u) ≤ lim inf
j→∞

f(xkij
) = lim

i→∞
f(xki) ≤ f⋆;

that is, u is an optimum.
To deal with the positive case, let us consider the weak convergence of {xk} and

its subsequences. Take another subsequence {xkil
} ⊂ {xki

} that converges weakly to
a point v ∈ H. A similar discussion to the one for obtaining u ∈ X⋆ ensures that the
point v is also an optimum. To show the uniqueness of the weak accumulation points
of the sequence {xki

}, let us assume that u ̸= v. Since the sequence {∥xk − x⋆∥}
converges, Proposition 3.2.5 leads us to a contradiction:

lim
k→∞

∥xk − u∥ = lim
j→∞

∥∥∥xkij
− u
∥∥∥ < lim

j→∞

∥∥∥xkij
− v
∥∥∥

= lim
j→∞

∥xk − v∥ = lim
l→∞

∥∥∥xkil
− v
∥∥∥ < lim

l→∞

∥∥∥xkil
− u
∥∥∥

= lim
k→∞

∥xk − u∥ .

Hence, we can see that u is the same point as v, and the uniqueness of all weak
accumulation points of the sequence {xki

} is proven. This uniqueness implies that
the sequence {xki

} converges weakly to u ∈ X⋆. Now take another subsequence
{xkm

} ⊂ {xk} that converges weakly to a point w ∈ H, and suppose that u is a
different point from v. From the fact that the sequence {∥xk − x⋆∥} converges and
from Proposition 3.2.5, we can deduce that

lim
k→∞

∥xk − u∥ = lim
i→∞

∥xki − u∥ < lim
i→∞

∥xki − w∥

= lim
j→∞

∥xk − w∥ = lim
m→∞

∥xkm
− w∥ < lim

m→∞
∥xkm

− u∥

= lim
k→∞

∥xk − u∥ .

However, this is a contradiction. Hence, the sequence {xk} converges weakly to some
optimum. This proves the positive case.
Next, let us consider the negative case, in other words, the case where a subsequence
{xki
} ⊂ {xk} exists that satisfies ∥xki

− x⋆∥ < ∥xki+1 − x⋆∥ for all i ∈ N. A similar
discussion to the one for finding the number k1 in the positive case guarantees the
existence of i0 ∈ N satisfying αki

< ᾱ + (1 − ᾱ)/2 for all i ≥ i0. The distances from
the point x⋆ to each point xki+1 where i ≥ i0 from Lemma 3.3.2 are as follows:

∥xki+1 − x∥2 ≤ ∥xki
− x∥2 − (1− αki

) ∥xki
− T (xki

− vki
gki

)∥2 + vki
M1

≤ ∥xki
− x∥2 − 1

2
(1− ᾱ) ∥xki

− T (xki
− vki

gki
)∥2 + vki

M1.

Here, we have assumed that ∥xki+1 − x⋆∥ is greater than ∥xki
− x⋆∥ for all i ∈ N and

the real sequence {vk} converges to zero. Thus, the above inequality implies that the

91

real sequence {∥xki − T (xki − vkigki)∥} converges to zero with respect to i. On the
other hand, the distances ∥xki − T (xki)∥ for each i ∈ N can be estimated from the
nonexpansivity of T as follows:

∥xki
− T (xki

)∥ ≤ ∥xki
− T (xki

− vki
gki

)∥+ ∥T (xki
− vki

gki
)− T (xki

)∥
≤ ∥xki

− T (xki
− vki

gki
)∥+ vki

.

Since both terms of the right-hand side of the above inequality converge to zero, the
left-hand side also converges to zero.
We will proceed by way of contradiction; suppose that lim supi→∞ f(xki

) > f⋆.
This implies the existence of δ > 0 and a subsequence {xkij

} ⊂ {xki
} such that

f⋆ + δ < f(xkij
) for all j ∈ N. Since ∥xki − x⋆∥ < ∥xki+1 − x⋆∥ and f⋆ < f(xkij

)

hold for any j ∈ N, we can use Lemma 3.3.1 to get

vkij

(
1− αkij

)(
2

(
δ

L

) 1
β

− vkij

)
< 0

for all j ∈ N. The above inequality does not hold for sufficiently large j ∈ N, since
the real sequence {vk} converges to zero. Therefore, we arrive at a contradiction, and
thus, lim supi→∞ f(xki) ≤ f⋆.
The boundedness of the sequence {xki

} guarantees the existence of a subsequence
{xkij

} ⊂ {xki
} that weakly converges to some point u ∈ H. To show that u is a fixed

point of the mapping T , let us assume that it is not. Recall that the real sequence
{∥xki

− T (xki
)∥} converges to zero. Hence, the nonexpansivity of T together with

Proposition 3.2.5 produces a contradiction,

lim inf
j→∞

∥∥∥xkij
− u
∥∥∥ < lim inf

j→∞

∥∥∥xkij
− T (u)

∥∥∥
≤ lim inf

j→∞

(∥∥∥xkij
− T

(
xkijl

)∥∥∥+ ∥∥∥T (xkij

)
− T (u)

∥∥∥)
≤ lim inf

j→∞

∥∥∥xkij
− u
∥∥∥ .

Therefore, we have u ∈ Fix(T). In addition, Proposition 3.2.6 means that the objec-
tive functional f has weakly lower semicontinuity. Hence,

f(u) ≤ lim inf
j→∞

f(xkij
) ≤ lim sup

i→∞
f(xki

) ≤ f⋆

holds. This implies conclusively that there exists a subsequence of {xk} which weakly
converges to the optimum u ∈ X⋆.
Let us prove the additional statement of this theorem. The following proof is played

under the assumption that the solution x⋆ ∈ X⋆ is unique and the whole space is an
N -dimensional Euclidean space, i.e., H = RN .
The existence of a subsequence {xki

} that weakly converges to a unique solution
x⋆ has been guaranteed. In Euclidean space, weak convergence coincides with strong

92

convergence. Therefore, the sequence {xki} converges to a unique x⋆. If some number
k0 ∈ N exists such that ∥xk+1 − x⋆∥ ≤ ∥xk − x⋆∥ for all k ≥ k0, the whole sequence
{xk} converges to a point in X⋆. Let us consider the opposite case. Let {ki} ⊂ N be
the sequence of all indexes satisfying ∥xki

− x⋆∥ < ∥xki+1 − x⋆∥ (and ki < ki+1 for
any i ∈ N). According to the assumption, this sequence is infinite. The sequence {xki

}
is now bounded, and this implies that it has a subsequence converging to a unique
optimum x⋆ ∈ X⋆. The above discussion ensures that any converging subsequence
of {xki} converges to a unique optimum x⋆ ∈ X⋆. This further implies that {xki}
also converges to this optimum x⋆ ∈ X⋆. From the assumed settings, ∥xj+1 − x⋆∥ ≤
∥xj − x⋆∥ holds for any index j ∈ N that does not belong to the set {ki}. The
convergence of the sequence {xki

} means that, for any ϵ > 0, there exists an index

î ∈ N such that
∥∥xkî

− x⋆
∥∥ < ϵ. Furthermore, for any index k ≥ kî that does not

belong to the set {ki},
∥∥xkî

− x⋆
∥∥ ≤ ∥xki

− x⋆∥ < ϵ also holds for i := max{ki : ki ≤
k} ≥ kî. This implies that the whole sequence {xk} converges to a unique optimum
x⋆ ∈ X⋆. This completes the proof.

Section 3.4. Numerical experiments

To confirm that Algorithm 3.3.1 converges to the optimum and evaluate its per-
formance, we ran it and an existing algorithm [53, Algorithm (14)] on a concrete
constrained quasiconvex optimization problem, i.e., the Cobb-Douglas production ef-
ficiency problem [7, Problem (3.13)], [33, Problem (6.1)], [86, Section 1.7]. Let us
redefine Example 3.3.3 with concrete constraints as follows.

Problem 3.4.1 ([7, Problem (3.13)], [33, Problem (6.1)], [86, Section 1.7]). Suppose
that H := Rn. Let a0, c0 > 0 and let a, c ∈ (0,∞)n such that

∑n
i=1 ai = 1. Further-

more, let bi ∈ [0,∞)n, p
i
∈ [0,∞)n, and pi ∈ (0,∞]n for i = 1, 2, . . . ,m. Then, we

would like to

minimize f(x) :=

{
−a0

∏n
j=1 x

aj
j

⟨c,x⟩+c0
(x ∈ [0,∞)n),

0 (otherwise),

subject to p
i
≤ ⟨bi, x⟩ ≤ pi (i = 1, 2, . . . ,m),

x ∈ D := [0,M]n,

where M > 0.

This problem is an instance of Example 3.3.3. Indeed, metric projections onto any
closed half spaces, including boxes, can be computed explicitly [2, Example 29.20], and
the transformations (T1–2) enable us to build a firmly nonexpansive mapping whose
fixed point set coincides with their intersection. Our GitHub repository, https://
github.com/iiduka-researches/201811-kaz, provides the means to make a metric
projection onto a given half space and the transformations (T1–2). We used these
implementation in the following experiments.

https://github.com/iiduka-researches/201811-kaz
https://github.com/iiduka-researches/201811-kaz

93

Before discussing our experiments, let us examine the background of this problem.
The goal is to find the most efficient production factors under funding-level restric-
tions [33, Section 6]. As mentioned in Section 3.3, the objective function f represents
the ratio between the total profit (what is obtained) and the total cost (how much ex-
penditure is required) as an efficiency indicator. We also described how the total profit
and the total cost are modeled in Section 3.3. The total profit is the numerator of the
objective function and is modeled with the Cobb-Douglas production function on the
production factors x ∈ Rn. The total cost is the denominator of the objective function
and is modeled with the affine function on the production factors x ∈ Rn. There are
a variety of constraints on the funding level [33, Section 6]. These constraints rep-
resent the duties and restrictions of each production project i = 1, 2, . . . ,m. These
indicators are modeled with affine functions and we set two parameters p

i
, qi as lower

and upper bounding constraints to the indicator of each project i = 1, 2, . . . ,m.
We conducted numerical experiments in three cases. First, in the unbounded con-

straint case, which is treated in the existing literature [33], we set M := 100 and did
not guarantee the uniqueness of the optima, which is required for letting the gener-
ated sequence converge. Second, in the bounded constraint case, we set M := 100
and guaranteed the uniqueness of optima, as shown in Section 3.3. In practice, we
cannot manufacture products infinitely because there are many restrictions on the
amount of materials, capital, human resources, number and/or capacity of machines,
environments, and so on. Therefore, this case has realistic experimental assumptions
for optimizing production efficiency. Furthermore, we conducted an optimization over
the generalized convex feasible sets.
We compared Algorithm 3.3.1 with Algorithm 3.4.1 called the exact quasi-

subgradient method. In order for it to run, this algorithm requires a computation

Algorithm 3.4.1 The exact quasi-subgradient method [53, Algorithm (14)]

Require:
f : Rn → R, X ∩D ⊂ Rn: the feasible set;
PX : Rn → Rn, the metric projection onto the constraint set X;
{vk} ⊂ (0,∞), {αk} ⊂ (0, 1].

Ensure:
{xk} ⊂ Rn.

1: x1 ∈ Rn.
2: for k = 1, 2, . . . do
3: gk ∈ ∂⋆f(xk) ∩ S.
4: xk+1 := PX∩D(xk − vkgk).
5: end for

of the metric projection onto the feasible set X ∩ D. Here, we used a trust-
region algorithm for constrained optimization, trust-constr, implemented as the
scipy.optimize.minimize solver provided by the SciPy fundamental library for
scientific computing [51]. This algorithm also requires the step-sizes {vk} for it to

94

run. We set its error tolerance a tenth of vk for each k = 1, 2, That is, we solved
the subproblem to

find ∥xk+1 − (xk − vkgk)∥2 ≤ min
u∈X
∥u− (xk − vkgk)∥2 +

vk
10

subject to xk+1 ∈ X ∩D,

as the computation of the metric projection in step 4 with the existing optimization
solver.
In contrast to the existing algorithm which finds the metric projection onto the

constraint set in the above way, we constructed a firmly nonexpansive mapping whose
fixed point set coincides with the constraint set and gave it to Algorithm 3.3.1. Here,
the constraint set is the intersection of the half-spaces {x : p

i
≤ ⟨bi, x⟩} and {x :

⟨bi, x⟩ ≤ pi} for i = 1, 2, . . . ,m. The metric projection onto each half-space can be
easily computed [2, Example 29.20]:

P{x:p
i
≤⟨bi,x⟩}(x) :=

{
x (p

i
≤ ⟨bi, x⟩),

x+
p
i
−⟨bi,x⟩
∥bi∥2 bi (otherwise)

,

P{x:⟨bi,x⟩≤pi}(x) :=

{
x (⟨bi, x⟩ ≤ pi),

x+ pi−⟨bi,x⟩
∥bi∥2 bi (otherwise)

for all i = 1, 2, . . . ,m and for any x ∈ H. To construct a nonexpansive mapping
whose fixed point set coincides with the intersection of the above sets, we use the
transformation (T1) and construct

T̃ (x) :=
1

m

m∑
i=1

P{x:p
i
≤⟨bi,x⟩}(x) + P{x:⟨bi,x⟩≤pi}(x)

2

for any x ∈ H. This mapping T̃ is nonexpansive, but not firmly nonexpansive.
Therefore, we convert the nonexpansive mapping T̃ into the corresponding firmly
nonexpansive one T by using the transformation (T2):

T :=
Id+T̃

2
.

We gave T to Algorithm 3.3.1 in the experiment.
Our experimental environment was as follows: Python 3.6.6 with NumPy 1.15.0 [69]

and SciPy 1.1.0 [51] libraries on macOS High Sierra version 10.13.6 on Mac Pro (Late
2013) with a 3 GHz 8 Cores Intel Xeon E5 CPU and 32GB 1800MHz DDR3 ECC
memory. We used the time.process time method for the evaluating computational
time of each algorithm. The method was implemented with the clock gettime(2)

system call and had a 10−6 second resolution. Our GitHub repository, https://
github.com/iiduka-researches/201811-kaz, provides the codes that were used
in the experiments. It has the implementations of Algorithms 3.3.1 and 3.4.1 and

https://github.com/iiduka-researches/201811-kaz
https://github.com/iiduka-researches/201811-kaz

95

miscellaneous utilities including higher-order functions to be used for composing a
nonexpansive mapping.
We ran Algorithms 3.3.1 and 3.4.1 with five different randomly chosen initial points,

limited their computational time to ten seconds, and evaluated the average of the
computed number of iterations k and the following values:

Vfunc :=
1

8

8∑
i=1

f(x⋆
(i)), Vdist :=

1

8

8∑
i=1

∥∥∥x⋆
(i) − T (x⋆

(i))
∥∥∥ ,

where x⋆
(i) is the solution obtained for each sampling i = 1, 2, . . . , 8.

3.4.1 Unbounded constraint case

Here, we ran Algorithms 3.3.1 and 3.4.1 on Problem 3.4.1 with the following set-
tings: n := 100; m := 100; a0, c0 ∈ (0, 10], ã ∈ (0, 1]n, c ∈ (0, 10]n were chosen
randomly; a := ã/

∑n
i=1 ai; bi ∈ [0, 1)n, p

i
∈ [0, 25 ∥bi∥) were chosen randomly for

each i = 1, 2, . . . ,m; pi :=∞ for all i = 1, 2, . . . ,m; and M := +∞.
The experimental results are shown in Table 3.1. The proposed algorithm (Algo-

Table 3.1: Results of unbounded constraint case.

k Vfunc Vdist

Alg. 3.3.1 (vk := 10−1) 11495.5 -0.00092189 3.18571477× 10−13

Alg. 3.3.1 (vk := 10−2) 11539.5 -0.00061939 3.17169706× 10−13

Alg. 3.3.1 (vk := 10−3) 11459.2 -0.00049238 3.10991757× 10−13

Alg. 3.3.1 (vk := 10−1/k) 11474.5 -0.00046070 3.05626418× 10−13

Alg. 3.3.1 (vk := 10−2/k) 11264.5 -0.00045498 3.16790812× 10−13

Alg. 3.3.1 (vk := 10−3/k) 11318.4 -0.00045426 3.28061131× 10−13

Alg. 3.4.1 (vk := 10−1) 160.4 -0.00050596 4.04768150× 10−13

Alg. 3.4.1 (vk := 10−2) 39.6 -0.00045707 4.12640954× 10−13

Alg. 3.4.1 (vk := 10−3) 25.1 -0.00045306 4.00174170× 10−13

Alg. 3.4.1 (vk := 10−1/k) 36.1 -0.00045750 4.23263890× 10−13

Alg. 3.4.1 (vk := 10−2/k) 26.6 -0.00045353 3.99258739× 10−13

Alg. 3.4.1 (vk := 10−3/k) 20.5 -0.00045275 4.10328799× 10−13

rithm 3.3.1) can iterate the computation more times than the existing one within the
same computational time. Algorithm 3.3.1 does not require any subproblem to be
solved, while Algorithm 3.4.1 requires one to be solved in order to find a metric projec-
tion onto the constraint set. Therefore, the required time for computing an iteration
of Algorithm 3.3.1 is much less than that of Algorithm 3.4.1. According to the values
of D, both Algorithms 3.3.1 and 3.4.1 for any step-size (and no matter whether a
constant or diminishing step-size rule was used) can obtain the solution belonging to
the constraint set. Indeed, our experimental environment (NumPy) used the float64

96

data type (double precision float: sign bit, 11-bit exponent, and 52-bit mantissa) to
express a real number, and its resolution is 10−15. By considering the number of
dimensions as well, we can regard all values of D to be almost zero. Let us examine
the functional values of the obtained solutions. When we applied Algorithms 3.3.1
and 3.4.1 to the problem with the same step-size, we found that the function value of
the solution obtained by Algorithm 3.3.1 is better than that of Algorithm 3.4.1. In
particular, the function value obtained by Algorithm 3.3.1 with vk := 10−1 is nearly
twice as good as Algorithm 3.4.1 with the same step-size. Since Algorithm 3.3.1 can
iterate the main loop more times than Algorithm 3.4.1, it can reduce the functional
value sufficiently.

3.4.2 Bounded constraint case

Next, we evaluated Algorithms 3.3.1 and 3.4.1 when they were run with the follow-
ing settings: n := 100; m := 100; a0, c0 ∈ (0, 10], ã ∈ (0, 1]n, c ∈ (0, 10]n were chosen
randomly; a := ã/

∑n
i=1 ai; bi ∈ [0, 1)n, p

i
∈ [0, 25 ∥bi∥), pi ∈ (75 ∥bi∥ , 100 ∥bi∥]

were chosen randomly for each i = 1, 2, . . . ,m; and M := 100. As shown in Exam-
ple 3.3.3, this case satisfies Assumption 3.3.1. Therefore, the sequence generated by
Algorithm 3.3.1 is guaranteed to converge to some optimum.
The experimental results are shown in Table 3.2. The existing algorithm (Algo-

Table 3.2: Results of bounded constraint case.

k Vfunc Vdist

Alg. 3.3.1 (vk := 10−1) 6254.0 -0.00092536 1.21925957× 10−13

Alg. 3.3.1 (vk := 10−2) 6208.9 -0.00050503 5.22534774× 10−3

Alg. 3.3.1 (vk := 10−3) 6276.1 -0.00019717 6.42589842× 10−4

Alg. 3.3.1 (vk := 10−1/k) 6293.8 -0.00014214 1.28281187× 10−5

Alg. 3.3.1 (vk := 10−2/k) 6245.6 -0.00014163 8.56673942× 10−6

Alg. 3.3.1 (vk := 10−3/k) 6294.0 -0.00014162 8.33884360× 10−6

All Results of Alg. 3.4.1 0.0 — —

rithm 3.4.1) with all step-size rules could not compute even one iteration within the
time limit, 10 seconds. Algorithm 3.4.1 required about 15 seconds to compute the
first iteration. In this case, Algorithm 3.4.1 must compute the metric projection onto
the intersection of two hundred halfspaces and a box, but this intersection is too
complex in shape to compute quickly. Therefore, it could not deal with this instance.
In contrast, Algorithm 3.3.1 solved this instance. In particular, Algorithm 3.3.1 with
vk := 10−1 found the solution having the best function value and belonging to the
constraint set. Therefore, it can solve problems even if their constraint sets have
complex shapes.

97

3.4.3 Optimization over generalized convex feasible sets

Finally, let us consider the case in which conflicts of constraints exist, i.e., the
intersection of the constraint sets may be empty. Even in this case, the proposed
algorithm can be used if the constraints are extended to generalized convex feasible
sets, such as described in Section 3.2.
In the two previous subsections, we computed the metric projection with the con-

strained smooth optimization solver provided by the SciPy library. However, it is diffi-
cult to find the metric projection onto the set of minimizers of the functional (3.1) due
to the discontinuity of its Hessian matrix and the complexity of the problem. There-
fore, in this subsection, we will examine only the performance of Algorithm 3.3.1.
The settings of this experiment were as follows: n := 100; m := 100; a0, c0 ∈

(0, 10], ã ∈ (0, 1]n, c ∈ (0, 10]n were chosen randomly; a := ã/
∑n

i=1 ai; bi ∈ [0, 1)n,
p
i
, pi ∈ [0, 100 ∥bi∥) were chosen randomly for each i = 1, 2, . . . ,m; and M := +∞.

The existence of a constraint i ∈ {1, 2, . . . ,m} which satisfies pi < p
i
was guaranteed.

This implies that the intersection of at least one pair of constraints is empty. We
used [45, Definition (9)] for constructing a firmly nonexpansive mapping whose fixed
point set coincides with the constraint set. As in the previous subsection, this case
also satisfies Assumption 3.3.1.
The experimental results are shown in Table 3.3. Algorithm 3.3.1 solved the prob-

Table 3.3: Results of bounded constraint case.

k Vfunc Vdist

Alg. 3.3.1 (vk := 10−1) 4988.9 -0.00015650 2.48927983× 10−1

Alg. 3.3.1 (vk := 10−2) 4914.4 -0.00012585 2.58656058× 10−1

Alg. 3.3.1 (vk := 10−3) 4833.6 -0.00012377 2.59531605× 10−1

Alg. 3.3.1 (vk := 10−1/k) 4823.4 -0.00012363 2.59665629× 10−1

Alg. 3.3.1 (vk := 10−2/k) 4818.4 -0.00012378 2.59656373× 10−1

Alg. 3.3.1 (vk := 10−3/k) 4773.6 -0.00012380 2.59626252× 10−1

lem similarly for each step-size rule; the results scarcely depended on the step-size
rule. With a constant step-size vk = 10−1 for all k ∈ N, it gave the best score in
terms of Vfunc and Vdist. Although the time required for computing one iteration
exceeded those of the two previous experiments, it approximated the solution of this
complicated problem in 10 seconds.

Section 3.5. Conclusion

We proposed the novel algorithm for solving the constrained quasiconvex optimiza-
tion problem even if the metric projection onto its constraint set cannot be computed
easily. We showed its convergence for constant and diminishing step-size rules. When
the step-size is constant, the limit inferiors of the functional value and the degree of

98

approximation to the fixed point are guaranteed to be optimal and tolerate errors
proportioned to the step-size. When the step-size is diminishing, the existence of a
subsequence of the generated sequence such that it converges to the solution of the
problem is ensured. Furthermore, when the problem satisfies certain conditions, the
whole generated sequence converges to the solution.
The numerical experiments showed that our algorithm runs stably and lightly even

if the constraint set is too complex for the existing method to run quickly. There-
fore, the proposed algorithm is useful for solving complicated constrained quasiconvex
optimization problems.

99

Chapter 4

Convergence Rate Analysis of Fixed

Point Quasiconvex Subgradient

Method

This chapter investigates the rate of convergence of the sequence generated by the
fixed point quasiconvex subgradient method. As we saw in the previous chapter, the
fixed point quasiconvex subgradient method solves the constraint quasiconvex opti-
mization problem, whose task is to minimize a given quasiconvex functional over the
fixed point set of a given nonexpansive mapping. In this chapter, we evaluate its effi-
ciency by discussing the rate of convergence of the method in terms of both the value
of the objective functional and the distance to the constraint set. Furthermore, we
prove a theorem which provides a sufficient condition for ensuring that the generated
sequence converges to the optimal solution in a finite number of iterations.
The contents of this chapter are based on

[29] K. Hishinuma and H. Iiduka. Convergence rate analyses of fixed point quasicon-
vex subgradient method. Joint Conference NACA-ICOTA2019: International
Conference on Nonlinear Analysis and Convex Analysis, International Confer-
ence on Optimization: Techniques and Applications (Oral), 2019;

[31] K. Hishinuma and H. Iiduka. Fixed point quasiconvex subgradient method.
European Journal of Operational Research, 282(2):428–437, 2020;

[32] K. Hishinuma and H. Iiduka. Supplementary data S1 for the article entitled
“fixed point quasiconvex subgradient method”. https://doi.org/10.1016/

j.ejor.2019.09.037, 2020.

Section 4.1. Introduction

Continuing from the previous chapter, this chapter considers the constrained qua-
siconvex optimization problem and the properties of the fixed point quasiconvex sub-
gradient method which can be used to solve it. The previous chapter presented

https://doi.org/10.1016/j.ejor.2019.09.037
https://doi.org/10.1016/j.ejor.2019.09.037

100

convergence theorems of the proposed method and an experimental efficiency evalua-
tion. This chapter unravels the (theoretical) efficiency of the fixed point quasiconvex
subgradient method on the basis of several diffferent convergence rate analyses.
Many applications in economics, engineering, and management science can be

framed as constrained quasiconvex optimization problems [33, 35]. In particular,
the fractional programming problem is an important instance of constrained quasi-
convex optimization, because it can be used as a model for optimizing ratio indicators
such as the debt/equity ratio in financial and corporate planning, inventory/sales and
output/employee ratios in production planning, and cost/patient and nurse/patient
ratios in health care and hospital planning [86]. The previous chapter proposed the
fixed point quasiconvex subgradient method for solving constrained quasiconvex op-
timization problems. This method optimizes a quasiconvex objective functional over
the fixed point set of a given nonexpansive mapping. The convergence theorem guar-
antees that the generated sequence converges to a solution under certain conditions.
However, in practical use, we cannot run the algorithm forever. Hence, in addition
to showing whether the generated sequence converges, we need to show how fast the
generated sequence converges; i.e., we have to analyze its convergence rate.
Reference [53] analyses the rate of convergence of the sequence generated by the

quasiconvex subgradient method which uses the metric projection onto the constraint
set. Reference [33] further analyses it under consideration of noise and errors in the
generated sequence. However, both references consider a quasiconvex subgradient
method that uses the metric projection onto the constraint set. Hence, they both
assume that the metric projection is computable. In contrast to these studies, the
previous chapter describes an algorithm which does not need a computable metric pro-
jection onto the constraint set. Instead of the metric projection, that algorithm uses
a nonexpansive mapping whose fixed point set expresses the constraint set. However,
the previous chapter evaluated its efficiency only in numerical experiments.
In this chapter, we analyze the rate of convergence of the algorithm presented in

the previous chapter from three viewpoints. The first viewpoint is the behavior of the
level sets made by the generated sequence. This shows the efficiency of minimizing
the objective functional. Next, we analyze the rate of convergence in terms of the
value of the objective functional. In this analysis, we use the result from the first
viewpoint. Finally, we analyze the rate of convergence in terms of the distance to the
constraint set. The existing studies [33, 53] do not consider this, because the metric
projection obviously ensures the generated sequence is in the constraint set. But,
the nonexpansive mappings used in the proposed algorithm cannot guarantee that
the generated sequence will be in the constraint set. Hence, this chapter evaluates
the efficiency of the proposed algorithm when the generated sequence approaches the
constraint set. In addition, it proves a finite convergence theorem for the fixed point
quasiconvex subgradient method. This theorem provides the condition under which
the generated sequence reaches the solution in a finite number of iterations.
The convergence rate analyses of the fixed point quasiconvex subgradient method

turns out to be similar to the analyses of the existing methods. This shows that the
fixed point quasiconvex subgradient method can be regarded as an extension of the

101

existing quasiconvex subgradient method. To improve the usability of the algorithm,
the convergence rate analyses, including proof of the finite convergence theorem, give
a barometer of how many times we have to iterate the algorithm before it obtains a
good enough approximation.
This chapter is organized as follows. Section 4.2 gives the mathematical prelimi-

naries. Section 4.3 discusses the rate of convergence of the fixed point quasiconvex
subgradient method. Section 4.4 concludes this chapter.

Section 4.2. Mathematical preliminaries

4.2.1 Notation and definitions

We use the following notation in this chapter. Let H be a real Hilbert space with
inner product ⟨·, ·⟩ : H × H → R and its induced norm ∥·∥ : H → R. N is the set
of natural numbers without zero, and R is the set of real numbers. B := {x ∈ H :
∥x∥ ≤ 1} is the unit ball in this Hilbert space, and S := {x ∈ H : ∥x∥ = 1} is the
unit sphere in that space. Id is the identity mapping of H onto itself. The boundary
of a set C ⊂ H is denoted by bdC; the closure of this set is denoted by clC.
The metric projection onto a closed, convex set C ⊂ H is denoted by PC and defined

as PC(x) ∈ C and ∥x− PC(x)∥ = infy∈C ∥x− y∥ for any x ∈ H. For any α ∈ R, the α-
slice of a functional f : H → R is denoted by lev<α f := {x ∈ H : f(x) < α}. A func-
tional f : H → R is called quasiconvex if f(αx+(1−α)y) ≤ max{f(x), f(y)} for every
x, y ∈ H and α ∈ [0, 1] [1, Definition 5.1], [19, Definition (4.4)]. The effective domain
of a functional f : H → R is denoted by dom(f) := {x ∈ H : f(x) <∞}. A mapping
T : H → H is said to be nonexpansive if ∥T (x)− T (y)∥ ≤ ∥x− y∥ for any x, y ∈ H,

and it is said to be firmly nonexpansive if ∥T (x)− T (y)∥2+∥(Id−T)x− (Id−T)y∥2 ≤
∥x− y∥2 for any x, y ∈ H. Obviously, a firmly nonexpansive mapping is also a non-
expansive mapping [2, Subchapter 4.1]. The properties of these nonexpansivities are
described in detail in [2, Chapter 4], [87, Chapter 6]. The fixed point set of a mapping
T : H → H is denoted by Fix(T) := {x ∈ H : T (x) = x}.
For given a point x ∈ H, we call the set ∂⋆f(x) := {g ∈ H : ⟨g, y − x⟩ ≤ 0 (y ∈

lev<f(x) f)} the subdifferential of the quasiconvex functional f at a point x ∈ H [33,
Definition 2.3], [35, Definition 2.1], [53, Definition (9)], [54, Section 1]. We also call
its element a subgradient.

4.2.2 Main problem and propositions

Let us recall the constrained quasiconvex optimization problem: given a quasi-
convex continuous functional f : H → R and two nonempty, closed, convex sets
X,D ⊂ H whose intersection is also nonempty, we would like to

minimize f(x) subject to x ∈ X ∩D. (4.1)

102

We define the set of minima and the minimum value of Problem 4.1 by X⋆ :=
argminx∈X∩D f(x) and f⋆ := infx∈X∩D f(x), respectively.
We list the conditions assumed throughout in this chapter.

Assumption 4.2.1. We suppose that

(A1) the effective domain dom(f) coincides with the whole space H;
(A2) there exists some firmly nonexpansive mapping T : H → H whose fixed point

set Fix(T) coincides with the constraint set X;
(A3) the constraint set X = Fix(T) and the feasible set X ∩ D are nonempty and

there exists at least one minima, i.e. X⋆ ̸= ∅.

We will use the following propositions.

Proposition 4.2.1. Let C ⊂ H be a nonempty, convex set, and suppose that x ∈ C,
y ̸∈ C. Then, there exists α ∈ [0, 1] such that x+ α(y − x) ∈ bd(C).

Proof. Define α := sup{α̂ ∈ [0, 1] : x + α̂(y − x) ∈ C} and fix ϵ > 0 arbitrarily.
From the properties of the supremum, there exists β > α − ϵ/ ∥y − x∥ such that
x+ β(y − x) ∈ C. Thus, we have

∥(x+ α(y − x))− (x+ β(y − x))∥ = (α− β) ∥y − x∥ < ϵ.

Since ϵ > 0 was chosen arbitrarily, the above inequality implies that the point (x +
α(y − x)) is an adherent point of C. Furthermore, there exists γ > α + ϵ/ ∥y − x∥
such that x + γ(y − x) ̸∈ C due to the properties of the supremum. Hence, we also
have

∥(x+ α(y − x))− (x+ γ(y − x))∥ = (γ − α) ∥y − x∥ < ϵ.

Since ϵ > 0 was chosen arbitrarily, the above inequality implies that the point (x +
α(y−x)) is an adherent point of the complement of C. Therefore, x+α(y−x) belongs
to the boundary of C. This completes the proof.

Proposition 4.2.2 ([2, Corollary 2.15]). Let x, y ∈ H, and let α ∈ R. Then,

∥αx+ (1− α)y∥2 = α ∥x∥2 + (1− α) ∥y∥2 − α(1− α) ∥x− y∥2

holds.

Section 4.3. Proposed method and its efficiency

4.3.1 Proposed method

In this chapter, we discuss the efficiency of the fixed point quasiconvex subgradient
method for solving Problem 4.1. First, let us recall the fixed point quasiconvex
subgradient method presented in the previous chapter. For the problem defined by

103

Algorithm 4.3.1 Fixed point quasiconvex subgradient method

Require:
f : H → R, T : H → H, D ⊂ H;
{vk} ⊂ (0,∞), {αk} ⊂ (0, 1].

Ensure:
{xk} ⊂ D.

1: x1 ∈ D.
2: for k = 1, 2, . . . do
3: gk ∈ ∂⋆f(xk) ∩ S.
4: xk+1 := PD(αkxk + (1− αk)T (xk − vkgk)).
5: end for

(f, T,D) and for the given parameters {vk} and {αk}, the algorithm generates the
sequence {xk}. Step 4 yields each element in {xk} by using the generator composed of
the subgradient method iterator xk−vkgk to improve the approximations with respect
to the functional value and the Krasnosel’skĭı-Mann iterator [55, 63] αk Id+(1−αk)T
to improve approximations with respect to the distance to the fixed point set Fix(T).
The previous chapter examined the convergence of Algorithm 4.3.1 with two dif-

ferent step-size rules: constant and diminishing. A constant step size {vk} is to a
constant value v ∈ R if we adopt the constant step-size rule, while it is decreasing
to satisfy certain conditions if we adopt the diminishing step-size rule. Here, let us
review the results.

Assumption 4.3.1. (A4) For any k ∈ N such that f⋆ < f(xk) and for all x⋆ ∈ X⋆,
the functional f satisfies the Hölder condition with degree β > 0 at the point
x⋆ on the set cl(lev<f(xk) f).

(A5) The generated sequence {xk} is bounded.
(A6) The real sequence {αk} ⊂ (0, 1] satisfies 0 < lim infk→∞ αk ≤ lim supk→∞ αk <

1.

Lemma 4.3.1. Let {xk} ⊂ H be a sequence generated by Algorithm 4.3.1. Suppose
that Assumptions 4.2.1 and (A4) hold. Then, for any k ∈ N that satisfies f⋆ < f(xk),
the following inequalities hold.

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2vk(1− αk) ⟨gk, xk − x⋆⟩+ (1− αk)v
2
k (4.2)

≤ ∥xk − x⋆∥2 − 2vk(1− αk)

(
f(xk)− f⋆

L

) 1
β

+ (1− αk)v
2
k.

Theorem 4.3.1. Let v > 0 and vk := v for all k ∈ N and {xk} ⊂ H be a sequence
generated by Algorithm 4.3.1. Suppose that Assumptions 4.2.1 and 4.3.1 hold. Then,
the sequence {xk} satisfies

lim inf
k→∞

f(xk) ≤ f⋆ + L
(v
2

)β
, and lim inf

k→∞
∥xk − T (xk)∥2 ≤Mv

104

for some M ≥ 0.

Theorem 4.3.2. Let {xk} ⊂ H be a sequence generated by Algorithm 4.3.1. Suppose
that

(i) Assumptions 4.2.1 and 4.3.1 hold,
(ii) and the real sequence {vk} ⊂ (0,∞) satisfies

lim
k→∞

vk = 0, and

∞∑
k=1

vk =∞.

Then, there exists a subsequence of the generated sequence {xk} which converges
weakly to a point in X⋆. In addition, if

(iii) the whole space H is an N -dimensional Euclidean space RN ,
(iv) and the solution x⋆ ∈ X⋆ is unique,

then, the whole sequence {xk} converges to this unique solution x⋆.

4.3.2 Value of the objective functional

We discuss the rate of convergence of Algorithm 4.3.1 in terms of the value of the
objective functional and the distance to the fixed point set. Furthermore, we discuss
a sufficient condition to obtain finite convergence to some solution.
Let us start with the convergence rate analysis in terms of the objective function.

Here, we will use the following concepts originally introduced in [33, 53].

Definition 4.3.1 ([33, Section 5], [53, Section 6]). Let x⋆ ∈ X⋆. Define the following
notations:

(i) x⋆
k :∈ argminx∈{x1,x2,...,xk} f(x),

(ii) rk := sup{r > 0 : x⋆ + rB ⊂ lev<f(x⋆
k)
f}.

x⋆
k expresses the best solution acquired until the k-th iteration, and rk expresses the

distance between the level set of x⋆
k and the optimal solution. The difference between

the above definitions and the original ones is in considering the possibility that the
generated sequence may be out of the fixed point set, in other words, the constraint
set.
We start by proving the following lemma which leads us to the convergence rate of

Algorithm 4.3.1.

Lemma 4.3.2. Let {xk} ⊂ H be a sequence generated by Algorithm 4.3.1, and
suppose that Assumptions 4.3.1 and 4.2.1 hold. Assume that the sequence {vk} is
bounded. Then,

rk ≤
∥xi − x⋆∥2 +

∑k
j=i(1− αj)v

2
j

2
∑k

j=i vj(1− αj)

105

for any x⋆ ∈ X⋆, k ∈ N, and i ∈ {1, 2, . . . , k}.

Proof. Fix x⋆ ∈ X⋆, k ∈ N, and i ∈ {1, 2, . . . , k} arbitrarily. If rk is nonpositive, the
statement obviously holds. Therefore, let us consider the case where rk is positive in
the following. Fix δ ∈ (0, rk) arbitrarily. The definition of rk and monotonicity of the
sequence {rk} imply that x⋆−δgj belongs to the level set lev<f(x⋆

j)
f ⊂ lev<f(xj) f for

any j = 1, 2, . . . , k. Therefore, ⟨gj , (x⋆ − δgj)− xj⟩ ≤ 0 holds for all j = 1, 2, . . . , k.
Rearranging this inequality with the property ∥gj∥ = 1, we have

⟨gj , x⋆ − xj⟩ ≤ δ

for all j = 1, 2, . . . , k. Here, the assumption rk > 0 implies that f⋆ < f(xj) for all
j = 1, 2, . . . , k. Hence, all assumptions of Lemma 4.3.1 are satisfied and

∥xj+1 − j⋆∥2 ≤ ∥xj − x⋆∥2 − 2vj(1− αj) ⟨gj , xj − x⋆⟩+ (1− αj)v
2
j

≤ ∥xj − x⋆∥2 − 2δvj(1− αj) + (1− αj)v
2
j

is guaranteed by inequality (4.2) for all j = 1, 2, . . . , k. Summing the above inequali-
ties from j = i to j = k yields

0 ≤ ∥xi − x⋆∥2 − 2δ

k∑
j=i

vj(1− αj) +

k∑
j=i

(1− αj)v
2
j .

Transposing the term of δ, we get

δ ≤
∥xi − x⋆∥2 +

∑k
j=i(1− αj)v

2
j

2
∑k

j=i vj(1− αj)
.

The arbitrariness of δ ∈ (0, rk) implies that

rk ≤
∥xi − x⋆∥2 +

∑k
j=i(1− αj)v

2
j

2
∑k

j=i vj(1− αj)
.

This completes the proof.

In general settings, we can use this lemma to analyze the convergence rate in
terms of rk. The following two propositions present such an analysis for constant and
diminishing step-size rules.

Proposition 4.3.1 (Convergence rate analysis for constant step-size rule). Let
{xk} ⊂ H be a sequence generated by Algorithm 4.3.1, and suppose that the
assumptions in Theorem 4.3.1 hold. Then, there exists a number k0 ∈ N such that

rk ≤
1

1− lim supj→∞ αj

(
∥xk0

− x⋆∥2

(k − k0 + 1)v
+

(
1− 1

2
lim inf
j→∞

αj

)
v

)

106

holds for all k ≥ k0, in other words,

rk = O(1/k + v).

Furthermore,

rk ≤
∥x1 − x⋆∥2

2(1− α)kv
+

1

2
v

holds for all k ∈ N when the sequence {αk} satisfies αk = α ∈ (0, 1) for all k ∈ N.

Proof. Assumption (A6) implies that there exists a number k0 ∈ N such that

0 <
1

2

(
1− lim sup

k→∞
αk

)
≤ 1− αk ≤ 1− 1

2
lim inf
k→∞

αk < 1

for all k ≥ k0. Therefore, Lemma 4.3.2 with i := k0 leads to the finding that

rk ≤
∥xk0

− x⋆∥2 +
∑k

j=k0
(1− αj)v

2
j

2
∑k

j=k0
vj(1− αj)

≤ ∥xk0 − x⋆∥2 + (1− lim infj→∞ αj/2)(k − k0 + 1)v2

(1− lim supj→∞ αj)(k − k0 + 1)v

=
1

1− lim supj→∞ αj

(
∥xk0 − x⋆∥2

(k − k0 + 1)v
+

(
1− 1

2
lim inf
j→∞

αj

)
v

)
for all k ≥ k0.
Furthermore, if {αk} satisfies αk = α ∈ (0, 1) for all k ∈ N, Lemma 4.3.2 with

i := 1 leads to

rk ≤
∥x1 − x⋆∥2 +

∑k
j=i(1− αj)v

2
j

2
∑k

j=i vj(1− αj)

=
∥x1 − x⋆∥2 + (1− α)kv2

2(1− α)kv

=
∥x1 − x⋆∥2

2(1− α)kv
+

1

2
v

for all k ∈ N. This completes the proof.

Proposition 4.3.2 (Convergence rate analysis for diminishing step-size rule). Let
{xk} ⊂ H be a sequence generated by Algorithm 4.3.1, and suppose that the assump-
tions in Theorem 4.3.2 hold. Let c be a positive real number and assume that vk = c/k
for all k ∈ N. Then, there exists a number k0 ∈ N such that

rk ≤
∥xk0 − x⋆∥2 + 2c2(1− lim infj→∞ αj/2)

2c(1− lim supj→∞ αj)(log(k + 1)− log(k0))

107

holds for all k ≥ k0, in other words,

rk = O(1/ log(k + 1)).

In addition,

rk ≤
∥x1 − x⋆∥2 + 2c2(1− α)

2c(1− α) log(k + 1)

holds for all k ∈ N when the sequence {αk} satisfies αk = α ∈ (0, 1) for all k ∈ N.

Proof. Assumption (A6) implies that there exists a number k0 ∈ N such that

0 <
1

2

(
1− lim sup

k→∞
αk

)
≤ 1− αk ≤ 1− 1

2
lim inf
k→∞

αk < 1

holds for all k ≥ k0. Therefore, Lemma 4.3.2 with i := k0 leads to the finding that

rk ≤
∥xk0

− x⋆∥2 +
∑k

j=k0
(1− αj)v

2
j

2
∑k

j=k0
vj(1− αj)

≤
∥xk0

− x⋆∥2 + c2(1− lim infj→∞ αj/2)
∑k

j=k0
1/j2

2c(1− lim supj→∞ αj)
∑k

j=k0
1/j

holds for all k ≥ k0. Using inequalities
∑∞

j=1 1/j
2 ≤ 2, log(k + 1) − log(k0) ≤∑k

j=k0
1/j, we have

rk ≤
∥xk0

− x⋆∥2 + 2c2(1− lim infj→∞ αj/2)

2c(1− lim supj→∞ αj)(log(k + 1)− log(k0))

for all k ≥ k0.
In addition, if {αk} satisfies αk = α ∈ (0, 1) for all k ∈ N, Lemma 4.3.2 with i := 1

leads to

rk ≤
∥x1 − x⋆∥2 +

∑k
j=i(1− αj)v

2
j

2
∑k

j=i vj(1− αj)

=
∥x1 − x⋆∥2 + c2(1− α)

∑k
j=i 1/j

2

2(1− α)
∑k

j=i 1/j

≤ ∥x1 − x⋆∥2 + 2c2(1− α)

2(1− α) log(k + 1)

for all k ∈ N. This completes the proof.

108

The following theorem guarantees that the convergence rate with respect to the
functional value can be bounded from above by one with respect to rk under certain
assumptions. This implies that, under the assumptions, we can deduce the conver-
gence rate with respect to the functional value from the result of analyzing rk. We
give this result after proving the following theorem.

Theorem 4.3.3. Suppose that the whole space H is an N -dimensional Euclidean
space RN . Let {xk} ⊂ H be a sequence generated by Algorithm 4.3.1 and suppose
that Assumptions 4.3.1 and 4.2.1 hold. Assume that f⋆ < f(x⋆

k) holds. Then,

f(x⋆
k)− f⋆ ≤ Lrβk

holds for all k ∈ N.

Proof. Fix k ∈ N and x⋆ ∈ X⋆ arbitrarily. Furthermore, fix j ∈ N arbitrarily. The
complement of the slice lev<f(x⋆

k)
f , i.e., the set {x ∈ RN : f(x⋆

k) ≤ f(x)}, is nonempty
because x⋆

k obviously belongs to it. Therefore, from the definition of rk, there exists
a point vj ∈ RN such that

vj ̸∈ lev<f(x⋆
k)
f and ∥x⋆ − vj∥ ≤ rk + 1/j

hold. The assumption f⋆ < f(x⋆
k) implies that x⋆ ∈ lev<f(x⋆

k)
f , and the above

discussion obtained the property vj ̸∈ lev<f(x⋆
k)
f . Therefore, by proposition 4.2.1,

a number αj ∈ [0, 1] exists such that wj := x⋆ + αj(vj − x⋆) ∈ bd(lev<f(x⋆
k)
f).

Let us consider the lower and upper bounds of the norm ∥x⋆ − wj∥. Here, the fact
wj ̸∈ lev<f(x⋆

k)
f from the continuity of the objective functional f implies that rk ≤

∥x⋆ − wj∥ holds. The upper bound of the norm ∥x⋆ − wj∥ is thus

∥x⋆ − wj∥ = ∥x⋆ − (x⋆ + αj(vj − x⋆))∥
= αj ∥x⋆ − vj∥
≤ ∥x⋆ − vj∥
≤ rk + 1/j.

The sequence {wj} is bounded, since ∥wj∥ ≤ ∥x⋆∥ + ∥x⋆ − wj∥ ≤ ∥x⋆∥ + rk + 1 for
all j ∈ N. Therefore, together with the closedness of the boundary bd(lev<f(x⋆

k)
f),

there exists a subsequence {wjt} ⊂ {wj} and a point uk ∈ bd(lev<f(x⋆
k)
f) such that

wjt converges to uk. The continuity of ∥·∥ leads us to the finding that

∥x⋆ − uk∥ = lim
l→∞

∥x⋆ − wjl∥

= rk

due to the previous confirmation of the boundedness of the norm ∥x⋆ − wjt∥; i.e.,
rk ≤ ∥x⋆ − wjt∥ ≤ rk + 1/jt holds for any t ∈ N. Furthermore, the continuity of the
objective functional f ensures the coincidence f(uk) = f(x⋆

k). Now, Assumption (A4)

109

guarantees that the functional f satisfies the Hölder condition with degree β > 0 at
the point x⋆ on the set cl(lev<f(xk) f). Therefore, we have

f(x⋆
k)− f⋆ = f(uk)− f⋆

≤ L ∥x⋆ − uk∥β

= Lrβk .

This completes the proof.

This theorem directly induces the following corollary giving the convergence rate
in terms of the objective functional when the diminishing step-size rule is adopted.

Corollary 4.3.1. Suppose that the whole space H is an N -dimensional Euclidean
space RN and the assumptions in Theorem 4.3.2 hold. Let c be a positive real number
and assume that vk = c/k for all k ∈ N. Then, a number k0 ∈ N exists such that

f(x⋆
k)− f⋆ ≤ L

(
∥xk0 − x⋆∥2 + 2c2(1− lim infj→∞ αj/2)

2c(1− lim supj→∞ αj)(log(k + 1)− log(k0))

)β

holds for all k ≥ k0, in other words,

f(x⋆
k)− f⋆ = O

(
1

(log(k + 1))
β

)
.

In addition,

f(x⋆
k)− f⋆ ≤ L

(
∥x1 − x⋆∥2 + 2c2(1− α)

2c(1− α) log(k + 1)

)β

holds for all k ∈ N when the sequence {αk} satisfies αk = α ∈ (0, 1) for all k ∈ N.

Proof. This is an immediate consequence of Proposition 4.3.2 and Theorem 4.3.3.

4.3.3 Distance to the fixed point set

We thus far have discussed the convergence rate of Algorithm 4.3.1 in terms of the
value of the objective functional. This subsection shows another convergence rate
analysis of Algorithm 4.3.1, namely in terms of the distance to the fixed point set.
The following theorem gives the convergence rate in terms of the distance to the fixed
point set with respect to the averaged norm.

Theorem 4.3.4. Suppose that the assumptions in Theorem 4.3.2 hold. If f⋆ < f(xk)
for all k ∈ N, then

1

k

k∑
j=1

∥xj − T (xj)∥ = O(1/k).

110

Proof. Fix k ∈ N arbitrarily. Using Proposition 4.2.2 and the fact that PD is a
nonexpansive mapping and x⋆ is its fixed point, we have

∥xk+1 − x⋆∥2 = ∥PD(αkxk + (1− αk)T (xk − vkgk))− PD(x⋆)∥2

≤ ∥αk(xk − x⋆) + (1− αk)(T (xk − vkgk)− x⋆)∥2

= αk ∥xk − x⋆∥2 + (1− αk) ∥T (xk − vkgk)− x⋆∥2

− αk(1− αk) ∥xk − T (xk − vkgk)∥2 .

Here, x⋆ is also a fixed point of the nonexpansive mapping T . Therefore, we can
expand the second term of the above expression as follows:

∥T (xk − vkgk)− x⋆∥2 = ∥T (xk − vkgk)− T (x⋆)∥2

≤ ∥xk − x⋆ − vkgk∥2

= ∥xk − x⋆∥2 − 2vk ⟨xk − x⋆, gk⟩+ v2k.

Now, the assumption f⋆ < f(xk) ensures that −⟨xk − x⋆, gk⟩ ≤ 0 holds because gk is
a normal vector of the slice lev<f(xk) f at xk. Hence, we have

∥T (xk − vkgk)− x⋆∥2 = ∥xk − x⋆∥2 + v2k.

Overall, we have

∥xk+1 − x⋆∥2 ≤ αk ∥xk − x⋆∥2 + (1− αk)(∥xk − x⋆∥2 + v2k)

− αk(1− αk) ∥xk − T (xk − vkgk)∥2

= ∥xk − x⋆∥2 − αk(1− αk) ∥xk − T (xk − vkgk)∥2 + (1− αk)v
2
k.

Assumption (A6) guarantees that a number k0 ∈ N exists such that lim infj→∞ αj/2 <
αk < (1 + lim supj→∞ αj)/2 holds for all k ≥ k0. Note that Assumption (A6) also
ensures that 0 < lim infj→∞ αk/2 and (1+lim supj→∞ αj)/2 < 1. Therefore, together
with the above inequality, we have

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 +
(
1− 1

2
lim inf
j→∞

αj

)
v2k

− 1

4

(
lim inf
j→∞

αj

)(
1− lim sup

j→∞
αj

)
∥xk − T (xk − vkgk)∥2

≤ ∥xk0 − x⋆∥2 +
(
1− 1

2
lim inf
j→∞

αj

) k∑
j=k0

v2j

− 1

4

(
lim inf
j→∞

αj

)(
1− lim sup

j→∞
αj

) k∑
j=k0

∥xj − T (xj − vjgj)∥2

111

if k ≥ k0. This inequality implies that

k∑
j=1

∥xj − T (xj − vjgj)∥2

≤
k0−1∑
j=1

∥xj − T (xj − vjgj)∥2

+ 4

(
lim inf
j→∞

αj

)−1(
1− lim sup

j→∞
αj

)−1
∥xk0 − x⋆∥2 +

(
1− 1

2
lim inf
j→∞

αj

) k∑
j=k0

v2j

holds*1. Here, we assume that

∑∞
j=1 v

2
j converges. Therefore, the right side of the

above inequality is bounded from above with respect to k. This implies that the

sequence {
∑k

j=1 ∥xj − T (xj − vjgj)∥2} is also bounded from above. Let M ∈ R
denote an upper bound of this sequence.
Let us estimate the distance before and after applying the nonexpansive mapping

to each approximation xk. Using the parallelogram law and the nonexpansivity of T ,
we obtain

∥xk − T (xk)∥2 = ∥xk − T (xk − vkgk) + T (xk − vkgk)− T (xk)∥2

≤ 2 ∥xk − T (xk − vkgk)∥2 + 2 ∥T (xk − vkgk)− T (xk)∥2

≤ 2 ∥xk − T (xk − vkgk)∥2 + 2v2k.

Summing the above inequalities with respect to k and dividing both sides by k, we
get

1

k

k∑
j=1

∥xj − T (xj)∥2 ≤
1

k

2

k∑
j=1

∥xj − T (xj − vjgj)∥2 + 2

k∑
j=1

v2j

≤ 1

k

2M + 2

∞∑
j=1

v2j

 .

This completes the proof.

4.3.4 Finite convergence

We discussed two convergence analyses for Algorithm 4.3.1 with the diminishing
step-size rule. By placing assumptions on the problem to be solved, we can also prove
finite convergence. The following proposition describes the requirements to obtain an
optimal solution in a finite number of iterations.

*1 If k is less than k0, we consider
∑k

j=k0
v2j = 0 here.

112

Proposition 4.3.3. Let {xk} ⊂ H be a sequence generated by Algorithm 4.3.1, and
suppose that the assumptions in Theorem 4.3.2 hold. Furthermore, assume that X⋆

has a nonempty interior and the sequence {xk} is contained inside Fix(T). Then,
xk ∈ X⋆ for some k ∈ N.

Proof. We will proceed by way of contradiction and suppose that the conclusion does
not hold, that is, f⋆ < f(xk) for all k ∈ N. Fix x⋆ ∈ X⋆ arbitrarily. We deduce the
following from inequality (4.2):

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2vk(1− αk) ⟨gk, xk − x⋆⟩+ (1− αk)v
2
k

≤ ∥x1 − x⋆∥2 − 2

k∑
j=1

vj(1− αj) ⟨gj , xj − x⋆⟩+
k∑

j=1

(1− αj)v
2
j

≤ ∥x1 − x⋆∥2 − 2

(
min

j=1,2,...,k
⟨gj , xj − x⋆⟩

) k∑
j=1

(1− αj)vj +
k∑

j=1

v2j

for all k ∈ N. The nonnegativity of the left side of the above inequality ensures that

min
j=1,2,...,k

⟨gj , xj − x⋆⟩ ≤ ∥x1 − x⋆∥2

2
∑k

j=1(1− αj)vj
+

∑k
j=1 v

2
j

2
∑k

j=1(1− αj)vj
(4.3)

for all k ∈ N. Now, there exists a positive real δ > 0 which satisfies δB + x⋆ ⊂ X⋆

because X⋆ has a nonempty interior. Therefore, δ ≤ δ + ⟨gk, xk − (x⋆ + δgk)⟩ =
⟨gk, xk − x⋆⟩ holds for any k ∈ N. This property with inequality (4.3) implies

0 < δ ≤ min
j=1,2,...,k

⟨gj , xj − x⋆⟩

≤ ∥x1 − x⋆∥2

2
∑k

j=1(1− αj)vj
+

∑k
j=1 v

2
j

2
∑k

j=1(1− αj)vj

for all k ∈ N. However, both terms of the right side of the above inequality converge
to zero since lim supk→∞ αk < 1,

∑∞
j=1 vj = ∞ and

∑∞
j=1 v

2
j < ∞. Therefore, we

arrive at a contradiction. This completes the proof.

The nonemptiness of the interior of minima appears in many interesting applica-
tions, such as surrogate relaxation of discrete programming problems [16, 33]. When
we construct a nonexpansive mapping that transforms a given point into a fixed point
of itself (an example of such a mapping is a metric projection, but notice that the
assumption of this sentence is not limited to it) and give a fixed point of the mapping
as the initial point to the algorithm, the generated sequence is contained within the
fixed point set of the mapping due to its convexity. Therefore, Proposition 4.3.3 can
be applied to these situations.

113

Section 4.4. Conclusion

By introducing an indicator computed using the radius of the level set, the rate
of convergence in terms of the value of the objective functional can be estimated.
Not only the value but also the rate of convergence in terms of the distance to the
constraint set can be guaranteed by the theorem proved in this chapter. The finite
convergence theorem provides a sufficient condition for the algorithm to terminate in
a finite number of iterations. These results determine the detailed behavior of the
fixed point quasiconvex subgradient method.

114

Acknowledgments

The author would like to express his sincere appreciation to Professor Hideaki Iiduka
and Professor Wataru Takahashi for their valuable advice and constant encourage-
ment during the preparation of this thesis. The author also would like to thank
Professor Yoichi Hayashi, Professor Hisao Tamaki and Professor Yukihiro Iguchi for
their valuable advice and supports.
This work was supported by the Japan Society for the Promotion of Science (JSPS

KAKENHI Grant Number JP17J09220). The author was trained in highly developed
information technology at the Security and Programming Camp 2011 held by the
Information-technology Promotion Agency Japan (IPA), the Ministry of Economy,
Trade and Industry (METI), and the Ministry of Education, Culture, Sports, Science
and Technology (MEXT). The author would like to thank these public organizations
for their supports.

115

Bibliography

[1] D. Aussel. New developments in quasiconvex optimization. In S. A. R. Al-Mezel,
F. R. M. Al-Solamy, and Q. H. Ansari, editors, Fixed Point Theory, Variational
Analysis, and Optimization, chapter 5, pages 139–169. Chapman and Hall/CRC,
2014.

[2] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Springer International Publishing, second edition, 2017.

[3] C. Beltran and F. J. Heredia. An effective line search for the subgradient method.
Journal of Optimization Theory and Applications, 125(1):1–18, 2005.

[4] V. Berinde. Iterative Approximation of Fixed Points, volume 1912 of Lecture
Notes in Mathematics. Springer–Verlag, Berlin Heidelberg, 2007.

[5] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimiza-
tion. Athena Scientific, 2003.

[6] L. Bottou. Stochastic gradient learning in neural networks. In Proceedings of
Neuro-Nı̂mes 91, Nimes, France, 1991. EC2.

[7] S. P. Bradley and S. C. Frey. Fractional programming with homogeneous func-
tions. Operations Research, 22(2):350–357, 1974.

[8] Y. Censor and A. Segal. Algorithms for the quasiconvex feasibility problem.
Journal of Computational and Applied Mathematics, 185(1):34–50, 2006.

[9] Y. Cheung and J. Lou. Proximal average approximated incremental gradient
descent for composite penalty regularized empirical risk minimization. Machine
Learning, 106(4):595–622, 2017.

[10] P. L. Combettes. A block-iterative surrogate constraint splitting method for
quadratic signal recovery. IEEE Transactions on Signal Processing, 51(7):1771–
1782, 2003.

[11] P. L. Combettes and P. Bondon. Hard-constrained inconsistent signal feasibility
problems. IEEE Transactions on Signal Processing, 47(9):2460–2468, 1999.

[12] P. L. Combettes and J. C. Pesquet. A douglas–rachford splitting approach to
nonsmooth convex variational signal recovery. IEEE Journal of Selected Topics
in Signal Processing, 1(4):564–574, 2007.

[13] N. Cristianini, J. Shawe-Taylor, et al. An introduction to support vector machines
and other kernel-based learning methods. Cambridge university press, 2000.

[14] J. Y. B. Cruz and W. D. Oliveira. On weak and strong convergence of the pro-
jected gradient method for convex optimization in real Hilbert spaces. Numerical
Functional Analysis and Optimization, 37(2):129–144, 2016.

[15] D. Dheeru and E. K. Taniskidou. UCI machine learning repository, 2017.

116

[16] M. E. Dyer. Calculating surrogate constraints. Mathematical Programming,
19(1):255–278, 1980.

[17] K. Fujiwara, K. Hishinuma, and H. Iiduka. Evaluation of stochastic approxima-
tion algorithm and variants for learning support vector machines. Linear and
Nonlinear Analysis, 4(1):29–61, 2018.

[18] H. Greenberg andW. Pierskalla. Quasi-conjugate functions and surrogate duality.

Cahiers Centre Études Recherche Opér, 15:437–448, 1973.
[19] N. Hadjisavvas. Convexity, generalized convexity, and applications. In S. A. R.

Al-Mezel, F. R. M. Al-Solamy, and Q. H. Ansari, editors, Fixed Point Theory,
Variational Analysis, and Optimization, chapter 4, pages 139–169. Chapman and
Hall/CRC, 2014.

[20] B. Halpern. Fixed points of nonexpansive maps. Bulletin of the American Math-
ematical Society, 73:957–961, 1967.

[21] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University
Press, second edition, 1988.

[22] W. L. Hare and Y. Lucet. Derivative-free optimization via proximal point meth-
ods. Journal of Optimization Theory and Applications, 160(1):204–220, 2014.

[23] Y. Hayashi and H. Iiduka. Optimality and convergence for convex ensemble
learning with sparsity and diversity based on fixed point optimization. Neuro-
computing, 273:367–372, 2018.

[24] K. Hishinuma and H. Iiduka. Parallel subgradient method for nonsmooth convex
optimization with a simple constraint. Linear and Nonlinear Analysis, 1(1):67–
77, 2015.

[25] K. Hishinuma and H. Iiduka. Convergence property, computational performance,
and usability of fixed point quasiconvex subgradient method. the 6th Asian
Conference on Nonlinear Analysis and Optimization (Oral), 2017.

[26] K. Hishinuma and H. Iiduka. Flexible stepsize selection of subgradient meth-
ods for constrained convex optimization. the 10th Anniversary Conference on
Nonlinear Analysis and Convex Analysis (Oral), 2017.

[27] K. Hishinuma and H. Iiduka. Iterative method for solving constrained quasicon-
vex optimization problems based on the Krasnosel’skĭı-Mann fixed point approx-
imation method. RIMS Workshop on Nonlinear Analysis and Convex Analysis
(Oral), 2017.

[28] K. Hishinuma and H. Iiduka. Convergence analysis of incremental and parallel
line search subgradient methods in Hilbert space. Journal of Nonlinear and
Convex Analysis, 20(9):1937–1947, 2019.

[29] K. Hishinuma and H. Iiduka. Convergence rate analyses of fixed point quasicon-
vex subgradient method. Joint Conference NACA-ICOTA2019: International
Conference on Nonlinear Analysis and Convex Analysis, International Confer-
ence on Optimization: Techniques and Applications (Oral), 2019.

[30] K. Hishinuma and H. Iiduka. Incremental and parallel machine learning algo-
rithms with automated learning rate adjustments. Frontiers in Robotics and AI,
6:77, 2019.

117

[31] K. Hishinuma and H. Iiduka. Fixed point quasiconvex subgradient method. Eu-
ropean Journal of Operational Research, 282(2):428–437, 2020.

[32] K. Hishinuma and H. Iiduka. Supplementary data S1 for the article entitled
“fixed point quasiconvex subgradient method”. https://doi.org/10.1016/j.

ejor.2019.09.037, 2020.
[33] Y. Hu, X. Yang, and C.-K. Sim. Inexact subgradient methods for quasi-convex

optimization problems. European Journal of Operational Research, 240(2):315–
327, 2015.

[34] Y. Hu, C. K. W. Yu, and C. Li. Stochastic subgradient method for quasi-convex
optimization problems. Journal of Nonlinear and Convex Analysis, 17(4):711–
724, 2016.

[35] Y. Hu, C. K. W. Yu, C. Li, and X. Yang. Conditional subgradient methods
for constrained quasi-convex optimization problems. Journal of Nonlinear and
Convex Analysis, 17(10):2143–2158, 2016.

[36] H. Iiduka. Iterative algorithm for solving triple-hierarchical constrained optimiza-
tion problem. Journal of Optimization Theory and Applications, 148(3):580–592,
2011.

[37] H. Iiduka. Fixed point optimization algorithm and its application to power con-
trol in CDMA data networks. Mathematical Programming, 133(1):227–242, 2012.

[38] H. Iiduka. Iterative algorithm for triple-hierarchical constrained nonconvex op-
timization problem and its application to network bandwidth allocation. SIAM
Journal on Optimization, 22(3):862–878, 2012.

[39] H. Iiduka. Fixed point optimization algorithms for distributed optimization in
networked systems. SIAM Journal on Optimization, 23(1):1–26, 2013.

[40] H. Iiduka. Acceleration method for convex optimization over the fixed point set
of a nonexpansive mapping. Mathematical Programming, 149(1):131–165, 2015.

[41] H. Iiduka. Parallel computing subgradient method for nonsmooth convex op-
timization over the intersection of fixed point sets of nonexpansive mappings.
Fixed Point Theory and Applications, 2015:72, 2015.

[42] H. Iiduka. Convergence analysis of iterative methods for nonsmooth convex op-
timization over fixed point sets of quasi-nonexpansive mappings. Mathematical
Programming, 159(1):509–538, 2016.

[43] H. Iiduka. Incremental subgradient method for nonsmooth convex optimization
with fixed point constraints. Optimization Methods and Software, 31(5):931–951,
2016.

[44] H. Iiduka. Line search fixed point algorithms based on nonlinear conjugate gra-
dient directions: Application to constrained smooth convex optimization. Fixed
Point Theory and Applications, 2016:77, 2016.

[45] H. Iiduka. Proximal point algorithms for nonsmooth convex optimization with
fixed point constraints. European Journal of Operational Research, 253(2):503–
513, 2016.

[46] H. Iiduka. Almost sure convergence of random projected proximal and subgra-
dient algorithms for distributed nonsmooth convex optimization. Optimization,
66(1):35–59, 2017.

https://doi.org/10.1016/j.ejor.2019.09.037
https://doi.org/10.1016/j.ejor.2019.09.037

118

[47] H. Iiduka. Distributed optimization for network resource allocation with non-
smooth utility functions. IEEE Transactions on Control of Network Systems,
6(4):1354–1365, 2018.

[48] H. Iiduka. Stochastic fixed point optimization algorithm for classifier ensemble.
IEEE Transactions on Cybernetics, pages 1–11, 2019.

[49] H. Iiduka and K. Hishinuma. Acceleration method combining broadcast and
incremental distributed optimization algorithms. SIAM Journal on Optimization,
24(4):1840–1863, 2014.

[50] H. Iiduka and M. Uchida. Fixed point optimization algorithms for network band-
width allocation problems with compoundable constraints. IEEE Communica-
tions Letters, 15(6):596–598, 2011.

[51] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–. [Online; accessed Aug. 16, 2018].

[52] F. Kelly. Charging and rate control for elastic traffic. European transactions on
Telecommunications, 8(1):33–37, 1997.

[53] K. C. Kiwiel. Convergence and efficiency of subgradient methods for quasiconvex
minimization. Mathematical Programming, 90(1):1–25, 2001.

[54] I. V. Konnov. On convergence properties of a subgradient method. Optimization
Methods and Software, 18(1):53–62, 2003.

[55] M. A. Krasnosel’skĭı. Two remarks on the method of successive approximations.
Uspekhi Matematicheskikh Nauk, 10(1(63)):123–127, 1955.

[56] T. Larsson, M. Patriksson, and A.-B. Strömberg. Conditional subgradient
optimization—theory and applications. European Journal of Operational Re-
search, 88(2):382–403, 1996.

[57] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[58] Y. LeCun, C. Cortes, and C. J. C. Burges. The mnist database of handwritten
digits, 1998.

[59] C.-Y. Lee, A. L. Johnson, E. Moreno-Centeno, and T. Kuosmanen. A more
efficient algorithm for convex nonparametric least squares. European Journal of
Operational Research, 227(2):391–400, 2013.

[60] E. Leopold and J. Kindermann. Text categorization with support vector ma-
chines. how to represent texts in input space? Machine Learning, 46(1):423–444,
2002.

[61] C.-J. Lin. LIBSVM data: Classification, regression, and multi-label, 2017.
[62] Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in

nonstandard situations. Machine Learning, 46(1):191–202, 2002.
[63] W. R. Mann. Mean value methods in iteration. Proceedings of the American

Mathematical Society, 4:506–510, 1953.
[64] M. Meiss, F. Menczer, S. Fortunato, A. Flammini, and A. Vespignani. Ranking

web sites with real user traffic. In Proc. First ACM International Conference on
Web Search and Data Mining (WSDM), pages 65–75, 2008.

[65] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Version 3.1. High-Performance Computing Center Stuttgart, 2015.

119

[66] A. Nedić and D. Bertsekas. Convergence Rate of Incremental Subgradient Algo-
rithms, pages 223–264. Springer US, Boston, MA, 2001.

[67] A. Nedić and D. P. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM Journal on Optimization, 12(1):109–138, 2001.

[68] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag New York,
second edition, 2006.

[69] T. Oliphant. A guide to NumPy. Trelgol Publishing, USA, 2006.
[70] Z. Opial. Weak convergence of the sequence of successive approximations for non-

expansive mappings. Bulletin of the American Mathematical Society, 73(4):591–
597, 1967.

[71] P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1996.
[72] C. Pan, C. Yin, N. C. Beaulieu, and J. Yu. Distributed resource allocation in

sdcn-based heterogeneous networks utilizing licensed and unlicensed bands. IEEE
Transactions on Wireless Communications, 17(2):711–721, 2018.

[73] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[74] J.-P. Penot. Are generalized derivatives useful for generalized convex functions?
In J.-P. Crouzeix, J.-E. Martinez-Legaz, and M. Volle, editors, Generalized Con-
vexity, Generalized Monotonicity: Recent Results, Nonconvex Optimization and
Its Applications, volume 27, pages 3–59. Kluwer Academic Publishers, 1998.

[75] F. Plastria. Lower subdifferentiable functions and their minimization by cutting
planes. Journal of Optimization Theory and Applications, 46(1):37–53, 1985.

[76] J. Platt. Sequential minimal optimization: A fast algorithm for training support
vector machines. Technical report, 1998.

[77] B. T. Polyak. Introduction to optimization. translation series in mathematics
and engineering. Optimization Software, 1987.

[78] S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. H. Martin, and D. Jurafsky.
Support vector learning for semantic argument classification. Machine Learning,
60(1):11–39, 2005.

[79] S. Raschka. Python machine learning. Packt Publishing Ltd, 2015.
[80] R. T. Rockafellar. Monotone operators associated with saddle-functions and

minimax problems. Nonlinear functional analysis, 18(I):397–407, 1970.
[81] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317. Springer

Science & Business Media, 2009.
[82] K. Sakurai and H. Iiduka. Acceleration of the Halpern algorithm to search for

a fixed point of a nonexpansive mapping. Fixed Point Theory and Applications,
2014(202), 2014.

[83] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal esti-
mated sub-gradient solver for SVM. Mathematical Programming, 127(1):3–30,
2011.

[84] K. Shimizu, K. Hishinuma, and H. Iiduka. Parallel computing proximal
method for nonsmooth convex optimization with fixed point constraints of quasi-

120

nonexpansive mappings. Applied Set-Valued Analysis and Optimization (ac-
cepted).

[85] K. Slavakis and I. Yamada. Robust wideband beamforming by the hybrid steepest
descent method. IEEE Transactions on Signal Processing, 55(9):4511–4522, 2007.

[86] I. M. Stancu-Minasian. Fractional Programming: Theory, Methods and Applica-
tions. Kluwer Academic Publishers, 1997.

[87] W. Takahashi. Introduction to Nonlinear and Convex Analysis. Yokohama Pub-
lishers, Inc., Yokohama, 2009.

[88] T. X. Tran and D. Pompili. Joint task offloading and resource allocation for
multi-server mobile-edge computing networks. IEEE Transactions on Vehicular
Technology, 68(1):856–868, 2019.

[89] W. F. Trench. Introduction to Real Analysis. Pearson Education, 2003.
[90] O. Tutsoy and M. Brown. An analysis of value function learning with piece-

wise linear control. Journal of Experimental & Theoretical Artificial Intelligence,
28(3):529–545, 2016.

[91] O. Tutsoy and M. Brown. Reinforcement learning analysis for a minimum time
balance problem. Transactions of the Institute of Measurement and Control,
38(10):1186–1200, 2016.

[92] P. Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–
235, 1969.

[93] I. Yamada. The hybrid steepest descent method for the variational inequality
problem over the intersection of fixed point sets of nonexpansive mappings. In
D. Butnariu, Y. Censor, and S. Reich, editors, Inherently Parallel Algorithms
in Feasibility and Optimization and their Applications, volume 8 of Studies in
Computational Mathematics, pages 473–504. Elsevier, 2001.

[94] I. Yamada and N. Ogura. Hybrid steepest descent method for variational in-
equality problem over the fixed point set of certain quasi-nonexpansive mappings.
Numerical Functional Analysis and Optimization, 25(7-8):619–655, 2005.

[95] G. Yuan, Z. Meng, and Y. Li. A modified Hestenes and Stiefel conjugate gradi-
ent algorithm for large-scale nonsmooth minimizations and nonlinear equations.
Journal of Optimization Theory and Applications, 168(1):129–152, 2016.

[96] T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization.
Journal of Machine Learning Research, 11:1081–1107, 2010.

Manuscript received November 15th, 2019
revised February 7th, 2020

	Introduction
	Main problem and motivations behind it
	Review of the existing studies
	Proposals of this thesis and their contributions
	Content after this chapter

	Incremental and Parallel Line Search Subgradient Algorithms
	Introduction
	Mathematical preliminaries
	Proposed algorithms and their convergence analyses
	Experiments
	Conclusion

	Fixed Point Quasiconvex Subgradient Method
	Introduction
	Mathematical preliminaries
	Quasiconvex subgradient method over a fixed point set
	Numerical experiments
	Conclusion

	Convergence Rate Analysis of Fixed Point Quasiconvex Subgradient Method
	Introduction
	Mathematical preliminaries
	Proposed method and its efficiency
	Conclusion

	Acknowledgments

