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PARALLEL SUBGRADIENT METHOD

FOR NONSMOOTH CONVEX OPTIMIZATION

WITH A SIMPLE CONSTRAINT

KAZUHIRO HISHINUMA AND HIDEAKI IIDUKA

Abstract. In this paper, we consider the problem of minimizing the sum of
nondifferentiable, convex functions over a closed convex set in a real Hilbert space,
which is simple in the sense that the projection onto it can be easily calculated.
We present a parallel subgradient method for solving it and the two convergence
analyses of the method. One analysis shows that the parallel method with a small
constant step size approximates a solution to the problem. The other analysis
indicates that the parallel method with a diminishing step size converges to a
solution to the problem in the sense of the weak topology of the Hilbert space.
Finally, we numerically compare our method with the existing method and state
future work on parallel subgradient methods.

1. Introduction

This paper considers the following standard nonsmooth convex minimization
problem.

Problem 1.1. Let fi (i = 1, 2, . . . ,K) be convex, continuous functionals on a real
Hilbert space H and let C be a nonempty, closed convex subset of H. Then,

minimize

K∑
i=1

fi(x) subject to x ∈ C.

A useful algorithm for solving Problem 1.1 is the incremental subgradient method
[8, 12], and it is defined as follows: for defining PC as the projection onto C and
∂fi(x) as the subdifferential of fi at x ∈ H (i = 1, 2, . . . ,K), an iteration (n+1) of
the algorithm is

ψ0,n := xn,

ψi,n := PC (ψi−1,n − λngi,n) , gi,n ∈ ∂fi (ψi−1,n) (i = 1, 2, . . . ,K) ,

xn+1 := ψK,n.

(1.1)
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Algorithm (1.1) requires us to use PC each iteration. Hence, we assume that C
is simple in the sense that PC can be easily calculated within a finite number of
arithmetic operations [1, p.406], [2, Subchapter 28.3]. Some incremental methods
that can be applied when C is not always simple were presented in [4, 5, 6].

Meanwhile, parallel proximal algorithms [2, Proposition 27.8], [3, Algorithm 10.27],
[10] are also useful for solving Problem 1.1. They use the proximity operator of a
nondifferentiable, convex fi which maps every x ∈ H to the unique minimizer of
fi + (1/2)∥x − ·∥2, where ∥ · ∥ stands for the norm of H. The parallel gradient
algorithms presented in [5, 6] work only when fi is differentiable and convex, and
C is not always simple.

This paper presents a parallel subgradient method for solving Problem 1.1. The
proposed method does not use any proximity operators, in contrast to the algorithms
in [2, Proposition 27.8], [3, Algorithm 10.27], [10]. Next, we present convergence
analyses for the two step-size rules: a constant step-size rule and a diminishing
step-size rule. We show that the proposed method with a small constant step size
approximates a solution to Problem 1.1. We also show that the algorithm with a
diminishing step size weakly converges to a solution to Problem 1.1.

This paper is organized as follows. Section 2 gives the mathematical prelimi-
naries. Section 3 presents the parallel algorithm for minimizing the sum of convex
functionals over a simple, convex closed constraint set and studies its convergence
properties for a constant step size and a diminishing step size. Section 4 provides
numerical examples of the algorithm. Section 5 concludes the paper and mentions
future work on parallel subgradient methods.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩, and its induced norm ∥ ·∥.
Let N denote the set of all positive integers including zero.

2.1. Subdifferentiability and projection. The subdifferential [2, Definition 16.1],
[11, Section 23], [13, p.132] of f : H → R is the set-valued operator,

∂f : H → 2H : x 7→ {u ∈ H : f(y) ≥ f(x) + ⟨y − x, u⟩ (y ∈ H)} .

Suppose that f : H → R is continuous and convex with dom(f) := {x ∈ H : f(x) <
∞} = H. Then, ∂f(x) ̸= ∅ (x ∈ H) [2, Proposition 16.14(ii)].

Proposition 2.1. [2, Proposition 16.14(iii)] Let f : H → R be continuous and
convex with dom(f) = H. Then, for all x ∈ H, there exists δ > 0 such that
∂f(B(x; δ)) is bounded, where B(x; δ) stands for a closed ball with center x and
radius δ.

The metric projection [2, Subchapter 4.2, Chapter 28] onto a nonempty, closed
convex set C (⊂ H) is denoted by PC . It is defined by PC(x) ∈ C and ∥x −
PC(x)∥ = infy∈C ∥x − y∥ (x ∈ H). PC is (firmly) nonexpansive with Fix(PC) :=
{x ∈ H : PC(x) = x} = C [2, Proposition 4.8, (4.8)].
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2.2. Main problem. This paper deals with a networked system with K users.
Throughout this paper, we assume the following.

Assumption 2.2.

(A1) C (⊂ H) is a nonempty, closed convex set, and PC can be easily calculated;
(A2) fi : H → R (i = 1, 2, . . . ,K) is continuous and convex with dom(fi) =

dom(∂fi) = H;
(A3) User i (i = 1, 2, . . . ,K) can use PC and ∂fi;
(A4) User i (i = 1, 2, . . . ,K) can communicate with all users.

The main objective of this paper is to solve the following problem.

Problem 2.3. Under Assumption 2.2, find a minimizer of
∑K

i=1 fi over C.

We will use the following propositions to prove one of our main theorems.

Proposition 2.4. [14, Lemma 1] Suppose that {an} and {bn} are two sequences of
nonnegative members such that an+1 ≤ an+ bn for all n∈ N. If

∑∞
n=0 bn <∞, then

limn→∞ an exists.

Proposition 2.5. [9, Lemma 1] Suppose that {xn} ⊂ H converges weakly to x ∈ H
and y ̸= x. Then, lim infn→∞ ∥xn − x∥ < lim infn→∞ ∥xn − y∥.

3. Parallel algorithm

We present a parallel algorithm for solving Problem 2.3.

Algorithm 3.1.
Step 0. All users set x0 ∈ H arbitrarily and {λn} ⊂ (0,∞).
Step 1. User i (i = 1, 2, . . . ,K) computes yi,n ∈ H as follows:{

gi,n ∈ ∂fi (xn) ,

yi,n := PC (xn − λngi,n) .

Step 2. User i (i = 1, 2, . . . ,K) shares yi,n in Step 1 with all users and calculates
xn+1 ∈ H as follows:

xn+1 :=
1

K

K∑
i=1

yi,n.

Step 3. Put n := n+ 1, and go to Step 1.

Assumption (A2) ensures that ∂fi(xn) ̸= ∅ (i = 1, 2, . . . ,K, n ∈ N) [2, Proposition
16.14(ii)]. Assumption (A3) implies that user i (i = 1, 2, . . . ,K) can compute yi,n.
Moreover, (A4) guarantees that all users can calculate xn in Step 2.

The convergence analyses of Algorithm 3.1 depend on the following assumption.

Assumption 3.2. For i = 1, 2, . . . ,K, there exists Mi ∈ R such that

sup {∥g∥ : g ∈ ∂fi (xn) , n ∈ N} < Mi.
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Suppose that C is bounded (e.g., C is a closed ball). From {yi,n} ⊂ C (i =
1, 2, . . . ,K), {yi,n} (i = 1, 2, . . . ,K) is bounded. Accordingly, {xn} is bounded.
Hence, (A2) and Proposition 2.1 ensure that Assumption 3.2 holds. Moreover,
since (A1) and (A2) imply that C ∩ dom(f) = C ̸= ∅ and C is bounded, (A2)
(the continuity and convexity of f) guarantees that Problem 2.3 has a solution [2,
Proposition 11.14].

This paper uses the notation,

M := max {Mi : i = 1, 2, . . . ,K} ,

f :=

K∑
i=1

fi, X :=

{
x ∈ C : f(x) = inf

y∈C
f (y)

}
.

We give the following lemma to analyze the convergence of Algorithm 3.1.

Lemma 3.3. Suppose that Assumption 3.2 holds and {xn} ⊂ H is the sequence
generated by Algorithm 3.1. Then, for any y ∈ C and for any n ∈ N, we have

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2λn
K

(f(xn)− f(y)) + λ2nM
2.

Proof. Choose n ∈ N arbitrarily. The convexity of ∥ · ∥2 and the nonexpansivity of
PC with Fix(PC) = C imply that, for all y ∈ C,

∥xn+1 − y∥2 =

∥∥∥∥∥ 1

K

K∑
i=1

PC(xn − λngi,n)− PC(y)

∥∥∥∥∥
2

≤ 1

K

K∑
i=1

∥PC(xn − λngi,n)− PC(y)∥2

≤ 1

K

K∑
i=1

∥(xn − y)− λngi,n∥2 ,

which, together with ∥x− y∥2 = ∥x∥2 − 2⟨x, y⟩+ ∥y∥2 (x, y ∈ H), means that

∥xn+1 − y∥2 ≤ 1

K

K∑
i=1

(
∥xn − y∥2 − 2⟨xn − y, λngi,n⟩+ ∥λngi,n∥2

)
= ∥xn − y∥2 − 2λn

K

K∑
i=1

⟨xn − y, gi,n⟩+
λ2n
K

K∑
i=1

∥gi,n∥2.

From the definition of ∂fi(x) (x ∈ H), Assumption 3.2, and f :=
∑K

i=1 fi, we find
that, for all y ∈ C,

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2λn
K

K∑
i=1

(fi(xn)− fi(y)) + λ2nM
2

= ∥xn − y∥2 − 2λn
K

(f(xn)− f(y)) + λ2nM
2.

This completes the proof. □
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3.1. Constant step-size rule. In this subsection, we study the convergence of
Algorithm 3.1 when the step size is some constant.

Theorem 3.4. Suppose that Assumption 3.2 holds. Let λ be a positive real number
and let {xn} ⊂ H be the sequence generated by Algorithm 3.1. When λn := λ for
all n ∈ N, the following holds.

lim inf
n→∞

f(xn) ≤ inf
x∈C

f(x) +
1

2
λKM2.

Proof. Assume that the assertion does not hold. There exists a positive real number
ϵ1 which satisfies the following inequality:

inf
x∈C

f(x) +
1

2
λKM2 + ϵ1 ≤ lim inf

n→∞
f(xn).

Choose a positive real number ϵ2 such that ϵ2 < ϵ1. From the property of the lower
bound of f over C, there exists y ∈ C such that

f(y) < inf
x∈C

f(x) + (ϵ1 − ϵ2).

Hence, we have

f(y) +
1

2
λKM2 + ϵ2 < lim inf

n→∞
f(xn).

Let ϵ3 be a positive real number which satisfies ϵ3 < ϵ2. The property of the limit
inferior of f guarantees that k0 ∈ N exists such that, for all k ≥ k0,

lim inf
n→∞

f(xn)− (ϵ2 − ϵ3) ≤ f(xk).

Therefore, using the two preceding inequalities, we have that, for all k ≥ k0,

1

2
λKM2 + ϵ3 < f(xk)− f(y).

Therefore, Lemma 3.3 ensures that, for all k ≥ k0,

∥xk+1 − y∥2 ≤ ∥xk − y∥2 − 2λ

K
(f(xk)− f(y)) + λ2M2

< ∥xk − y∥2 − 2λ

K

(
1

2
λKM2 + ϵ3

)
+ λ2M2

= ∥xk − y∥2 − 2λϵ3
K

,

which implies that, for all k > k0,

0 ≤ ∥xk − y∥2 < ∥xk0 − y∥2 − 2λϵ3
K

(k − k0).

However, since there exists a natural number k1 > k0 such that

∥xk0 − y∥2 < 2λϵ3
K

(k1 − k0),

we arrive at a contradiction. Therefore, lim infn→∞ f(xn) ≤ infx∈C f(x)+(λKM2)/2
holds. This completes the proof. □



6 K. HISHINUMA AND H. IIDUKA

3.2. Diminishing step-size rule. The main objective of this subsection is to prove
the sequence generated by Algorithm 3.1 converges weakly to some point of the
solution set X of Problem 2.3. We first show the following.

Lemma 3.5. Suppose that Assumption 3.2 holds and {xn} ⊂ H is the sequence
generated by Algorithm 3.1, with {λn} satisfying

lim
n→∞

λn = 0 and

∞∑
n=0

λn = ∞.

If X is nonempty, we have

lim inf
n→∞

f(xn) = min
x∈C

f(x).

Proof. Assume that the assertion does not hold; i.e., minx∈C f(x) < lim infn→∞ f(xn).
Then, there exists a positive real number ϵ1 such that

min
x∈C

f(x) + ϵ1 ≤ lim inf
n→∞

f(xn).

The nonempty condition of X guarantees the existence of ŷ ∈ X satisfying

f(ŷ) = min
x∈C

f(x) ≤ lim inf
n→∞

f(xn)− ϵ1.

Take a positive real number ϵ2 with ϵ2 < ϵ1. The property of the limit inferior
guarantees that k1 ∈ N exists such that, for all k ≥ k1,

lim inf
n→∞

f(xn)− (ϵ1 − ϵ2) ≤ f(xk).

Using the two preceding inequalities, we find that, for all k ≥ k1, f(ŷ) ≤ f(xk) +
(ϵ1 − ϵ2)− ϵ1; i.e., for all k ≥ k1,

ϵ2 ≤ f(xk)− f(ŷ).

Lemma 3.3 ensures that, for all k ≥ k1,

∥xk+1 − ŷ∥2 ≤ ∥xk − ŷ∥2 − 2λk
K

(f(xk)− f(ŷ)) + λ2kM
2

≤ ∥xk − ŷ∥2 − 2λk
K

ϵ2 + λ2kM
2

= ∥xk − ŷ∥2 − λk

(
2

K
ϵ2 − λkM

2

)
.

Choose a positive real number ϵ3 such that ϵ3 < (2/K)ϵ2. The convergence of {λn}
to 0 implies the existence of k2 ∈ N such that, for all k ≥ k2,

λk <
1

M2

(
2

K
ϵ2 − ϵ3

)
.

Therefore, putting k3 := max{k1, k2}, we have that, for all k ≥ k3,

∥xk+1 − ŷ∥2 < ∥xk − ŷ∥2 − λkϵ3,

which implies that, for all k > k3,

∥xk − ŷ∥2 < ∥xk3 − ŷ∥2 − ϵ3

k−1∑
n=k3

λn.(3.1)
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The condition
∑∞

n=0 λn = ∞ and (3.1) lead us to a contradiction. Therefore,
lim infn→∞ f(xn) = minx∈C f(x) holds. This completes the proof. □

Now, we are in the position to perform the convergence analysis on Algorithm
3.1.

Theorem 3.6. Suppose that the assumptions in Lemma 3.5 hold and {xn} ⊂ H is
the sequence generated by Algorithm 3.1, with {λn} satisfying

∞∑
n=0

λn = ∞ and

∞∑
n=0

λ2n <∞.

Then, {xn} converges weakly to some point in X.

Proof. Lemma 3.5 guarantees that

lim inf
n→∞

f(xn) = min
x∈C

f(x),

which implies that there exists a subsequence {xni} of {xn} such that

lim
i→∞

f(xni) = min
x∈C

f(x).

From the convexity of C and the fact that yi,n ∈ C for any i ∈ {1, 2, . . . ,K} and for
any n ∈ N, Step 2 of Algorithm 3.1 guarantees that xk ∈ C for all natural numbers
k ≥ 1. Hence, f(x⋆) ≤ f(xk) for any x

⋆ ∈ X and for all k ≥ 1. Therefore, Lemma
3.3 ensures that, for any x⋆ ∈ X and for all k ≥ 1,

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2λn
K

(f(xk)− f(x⋆)) + λ2kM
2

≤ ∥xk − x⋆∥2 + λ2kM
2

≤ ∥x1 − x⋆∥2 +M2
k∑

n=1

λ2n.

(3.2)

Inequality (3.2) and
∑∞

n=0 λ
2
n < ∞ mean that {xn} is bounded. The boundedness

of {xn} and the closedness of C guarantee the existence of a subsequence {xnij
}

of {xni} that converges weakly to some point z ∈ C. Since (A2) implies that f
is continuous and convex, f is weakly lower semicontinuous [2, Theorem 9.1]; i.e.,
f(z) ≤ lim infj→∞ f(xnij

). Therefore,

min
x∈C

f(x) ≤ f(z) ≤ lim inf
j→∞

f
(
xnij

)
= lim

j→∞
f
(
xnij

)
= min

x∈C
f(x),

which implies that z ∈ X. Moreover, (3.2) and Proposition 2.4 lead us to the
existence of limn→∞ ∥xn − x⋆∥ for all x⋆ ∈ X. Let us take another subsequence
{xnik

} of {xni} such that {xnik
} weakly converges to w ∈ H. A similar discussion

to the one for obtaining z ∈ X guarantees that w ∈ X. Here, we shall prove that
z = w. Let us assume that z ̸= w. Then, the existence of limn→∞ ∥xn − x⋆∥ for all
x⋆ ∈ X and Opial’s condition (Proposition 2.5) imply that

lim
n→∞

∥xn − z∥ = lim
j→∞

∥∥∥xnij
− z

∥∥∥ < lim
j→∞

∥∥∥xnij
− w

∥∥∥ = lim
n→∞

∥xn − w∥

= lim
k→∞

∥∥∥xnik
− w

∥∥∥ < lim
k→∞

∥∥∥xnik
− z

∥∥∥ = lim
n→∞

∥xn − z∥,
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which is a contradiction. Accordingly, any subsequence of {xni} weakly converges to
z ∈ X; i.e., {xni} weakly converges to z ∈ X. This implies that z is a weak cluster
point of {xn} and belongs to X. Moreover, since the existence of limn→∞ ∥xn−x⋆∥
for all x⋆ ∈ X guarantees that there is only one weak cluster point of {xn}, the
whole sequence {xn} weakly converges to z ∈ X. This completes the proof. □

4. Numerical examples

We applied the incremental subgradient method (1.1) and Algorithm 3.1 to
the following N -dimensional constrained nonsmooth convex optimization problem
(Problem 1.1 when H = RN and K = N).

Problem 4.1. Let fi : RN → R (i = 1, 2, . . . , N) be convex and let C be a
nonempty, closed convex subset of RN . Then,

minimize

N∑
i=1

fi(x) subject to x ∈ C.

In the experiment, we used the PC-Cluster composed of 48 Fujitsu PRIMERGY
RX350 S7 computers at the Ikuta campus of Meiji University. One of those com-
puters has two Xeon E5-2690 (2.9GHz, 8 cores) CPUs and 32GB memory. We used
64 CPU cores of this cluster; i.e., there were 64 users in the experiment environment
that satisfied (A3) and (A4) of the Assumption 2.2. In the implementation of Step
2 in Algorithm 3.1, we used the MPI Allreduce function, which is categorized as an
All-To-All collective operation in [7, Chapter 5], to compute and share the sum
of yi,n with all users. This means that all users contributed to computing xn+1 in
Algorithm 3.1. This operation does not violate Assumption 2.2. The experimental
programs were written in C and compiled by gcc version 4.4.7 with Intel(R) MPI
Library 4.1. We used GNU Scientific Library 1.16 to express and compute vectors.

We set N := 64 and C := {x ∈ RN : ∥x∥ ≤ 1} in Problem 4.1. For all i =
1, 2, . . . , N , we prepared random numbers ai ∈ (0, 1) and bi ∈ (−1, 1) and gave ai
and bi to user i in advance. The objective function of user i was defined for all
x ∈ RN by fi(x) := |ai⟨x, ei⟩+ bi|, where ei (i = 1, 2, . . . , N) stands for the natural
base of RN .

In the experiment, we set λn := 1 for the constant step-size rule and λn :=
1/(n + 1) for the diminishing step-size rule. We performed 100 samplings, each
starting from the different random initial points in [0, 1)N .

Figure 1 shows the behaviors of f(x) :=
∑N

i=1 fi(x) for the incremental subgra-
dient method (1.1) and Algorithm 3.1 with a constant step size. The y-axes in
Figures 1(a) and 1(b) represent the value of f(x). The x-axis in Figure 1(a) repre-
sents the number of iterations and the x-axis in Figure 1(b) represents the elapsed
time. The results show that Algorithm 3.1 minimizes the value of f(x) more than
the incremental subgradient method does (1.1).

Figure 2 shows the behaviors of f(x) for the incremental subgradient method
(1.1) and Algorithm 3.1 with the diminishing step size. The y-axes in Figures
2(a) and 2(b) represent the value of f(x). The x-axis in Figure 2(a) represents the
number of iterations, and the x-axis in Figure 2(b) represents the elapsed time. The
results show that Algorithm 3.1 converges slower than the incremental subgradient
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Figure 1. Behavior of f(x) for the incremental subgradient method
and Algorithm 3.1 with constant step size
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Figure 2. Behavior of f(x) with diminishing step size

method. However, it shows that Algorithm 3.1 with a constant step size behaves
roughly to the same as the incremental subgradient method with the diminishing
step size. This implies that, if it is difficult to share the diminishing step size with
all users, Algorithm 3.1 can be used as an effective approximation algorithm of the
incremental subgradient method.

5. Conclusion and future work

This paper discussed the problem of minimizing the sum of nondifferentiable,
convex functions over a simple convex closed constraint set of a real Hilbert space. It
presented a parallel algorithm for solving the problem. We studied its convergence
properties for a constant step size and a diminishing step size. We showed that
the algorithm with a constant step size approximates a solution to the problem,
while the algorithm with a diminishing step size weakly converges to a solution
to the problem. Finally, we numerically compared the algorithm with the existing
algorithm and showed that, when the step size is constant, the algorithm performs
better than the existing algorithm.
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The numerical comparisons also indicated that, when the step size is diminishing,
the existing algorithm converges to a solution faster than our algorithm. Therefore,
in the future, we should consider developing parallel optimization algorithms which
perform better than the existing algorithm even when the step sizes are diminishing.
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