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The graduated optimization approach is used to find global optimal solutions
for nonconvex functions by using a function smoothing operation with stochas-
tic noise. We found that stochastic noise in stochastic gradient descent (SGD)
has the effect of smoothing the objective function, the degree of which is deter-
mined by the learning rate, batch size, and variance of the stochastic gradient.
On the basis of this finding, we propose and analyze a graduated optimization
algorithm that varies the degree of smoothing by varying the learning rate and
batch size and provide experimental results on image classification tasks with
ResNets that support our theoretical findings. We further demonstrate an
intriguing relationship between the degree of smoothing by SGD’s stochastic
noise, the well-studied “sharpness” indicator, and the model’s generalization
performance.
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Section 1. Introduction

1.1 Background

1.1.1 Machine Learning and Optimization
Machine learning is a technique used to classify and predict unknown data by

learning rules and patterns from given data. When training a deep learning model,
which is a specific machine learning method, the objective function is defined as the
average error between the model’s predictions and the correct values. The goal is to
minimize this error by adjusting the parameters of the deep learning model. Therefore,
solving the optimization problem defined below is referred to as training the model.

Minimize f(x) =
1

n

n∑
i=1

fi(x) subject to x ∈ Rd, (1)

where x ∈ Rd is parameter of the model and fi(x) : Rd → R is the loss function for
the i-th training data point (d is the dimension of the model, and n is the number
of training data points). The objective function f in (1) is called an empirical loss
function because it is computed from a limited set of training data, and Problem
(1) is called an empirical risk minimization problem. In general, an empirical loss
function is a differentiable nonconvex function. The optimal solution to Problem (1),
x⋆ ∈ Rd, represents the most suitable parameter for the deep learning model derived
from the training data. Therefore, to successfully train the model, it is essential to
solve Problem (1) in order to approximate this optimal solution, x⋆ ∈ Rd.

1.1.2 Optimization Methods for Empirical Risk Minimization
An optimization method called the gradient method, which uses the gradient (the

differential information of a function) is often used to solve Problem (1). The gradient
method is used for updating the current point xt ∈ Rd to the next point xt+1 ∈ Rd

by stepping along vector dt ∈ Rd with step size ηt > 0:

xt+1 := xt − ηtdt (2)

That is, a point sequence (xt)t∈N ∈ Rd defined as in Equation (2) is generated so that
xt approximates the optimal solution of Problem 1 when the time or the number of
iterations t is sufficiently large. Here, ηt > 0 is referred to as the learning rate or
step size, and vector dt is referred to as the search direction at time t. The simplest
gradient method is gradient descent (GD) using the full gradient ∇f(xt) of objective
function f as the search direction:

xt+1 := xt − ηt∇f(xt).

However, since the total number of model parameters d ranges from hundreds of
thousands to trillions, and the total number of training data points n ranges from
tens of thousands to tens of millions, GD training, which requires the calculation of the
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full gradient ∇f(xt) at each time step, is not practical. Stochastic gradient descent
(SGD) [1] (defined below) uses mini-batch stochastic gradients ∇fSt computed on b
(≤ n) randomly selected training data points as the search direction instead of using
all n training data points at each time step. It can be performed by setting batch size
b appropriately:

xt+1 := xt − ηt∇fSt
(xt).

SGD is the simplest of the optimization methods used to train deep learning models.
The amazing success of deep neural networks (DNNs) in recent years has been based
on optimization by SGD and its variants, such as Adam [2]. These methods have
been widely studied for their convergence [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and
stability [15, 16, 17, 18] in nonconvex optimization.

1.1.3 Empirical Loss Function and Model Generalizability
The most important aspect of machine learning is the generalization performance of

the model. Generalization performance refers to the ability to accurately predict and
classify data beyond the training data, i.e., the test data. By applying an optimization
algorithm such as SGD to Problem (1), we can obtain an approximate solution that
minimizes the empirical loss function value f(x). In this scenario, the training accu-
racy, which is the prediction accuracy for the training data, approaches 100% while
the test accuracy, which is the prediction accuracy for the test data, typically ranges
between 60% and 90%, depending on the training dataset and model type. Although
achieving 100% test accuracy is the ultimate goal of machine learning, only the em-
pirical loss function can be theoretically analyzed. Numerous studies have explored
the relationship between the empirical loss function and generalization performance.
Most of these studies focused on the shape of the neighborhood around the optimal
solution of the empirical loss function, with the prevailing hypothesis being that an
optimal solution with a flat neighborhood offers better generalizability than one with
a steep neighborhood.”
As shown in Figure 1, there is generally a difference between the empirical loss

function calculated from training data only and the expected loss function calculated
from an infinite amount of data, including the test data. While we can optimize only
the empirical loss function, we must also consider the expected loss function, since if
we can minimize the expected loss function value, the test accuracy should be 100%.
Analysis of the discrepancy between the two loss functions suggests that the optimal
solution for the empirical loss function in a flatter neighborhood is likely to achieve a
lower expected loss function value, as illustrated in Figure 1. This hypothesis origi-
nates from the work of Hochreiter and Schmidhuber [19]. There have been numerous
studies on this hypothesis. For example, several studies have proposed using “sharp-
ness” as a measure of the smoothness of the function in the neighborhood of the
approximate solution [20, 21, 22, 23, 24], and experimental results have shown that
there is a correlation between sharpness and a model’s generalization performance.
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Fig. 1 Conceptual diagram of empirical and expected loss functions. Minimizing
the expected loss function is essential for achieving high generalization perfor-
mance, but we can only deal with the empirical loss function. Therefore, near the
optimal solution of the empirical loss function, where the optimization methods
converge, a flat optimal solution with a smaller error between the two functions
(dotted line) is considered to offer high generalization performance.

1.1.4 Smoothing by Stochastic Noise in SGD
Unlike GD, which processes all training data points simultaneously, SGD processes

only b data points simultaneously, so stochastic noise is introduced depending on the
data selected at each iteration. It is reasonable to represent this stochastic noise in
terms of the error ∇fSt

(xt)−∇f(xt) =: ωt in each search direction at each iteration.
Some studies claim that it is crucial in nonconvex optimization. For example, it has
been proven that noise helps the algorithm to escape local minima [25, 26, 27, 28],
achieve better generalization [15, 17], and find a local minimum with a small loss value
in polynomial time under some assumptions [29]. Several studies have also shown that
performance can be improved by adding artificial noise to GD [25, 30, 31, 32].
[33] also suggests that noise smoothes the objective function. Here, at time t, let

yt be the parameter updated by GD and xt+1 be the parameter updated by SGD,
i.e.,

yt := xt − η∇f(xt), xt+1 := xt − η∇fSt
(xt).

Then, the update rule for the sequence {yt} is as follows:

Eωt
[yt+1] = Eωt

[yt]− η∇Eωt
[f(yt − ηωt)] , (3)

where f is Lipschitz continuous and differentiable (The derivation of Equation (3)

is in Section A). Therefore, if we define a new function f̂(yt) := Eωt [f(yt − ηωt)],

f̂ can be smoothed by convolving f with noise (see Definition 2.1, also [34]), and
its parameters yt can approximately be viewed as being updated by using the GD

to minimize f̂ . In other words, simply using SGD with a mini-batch smoothes the
function to some extent and may enable escapes from local minima (see also Figure
2).
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Fig. 2 Conceptual diagram of how stochastic noise in SGD prevents finding of
local optimal solution. The center of the blue region represents a local optimal
solution with a sharp neighborhood and poor generalization performance. The
steepest descent direction −∇f(xt) (red arrow) is straight towards the local
optimal solution. In contrast, the SGD direction −∇fSt(xt) (green arrow) is
away from the local optimal solution due to the presence of stochastic noise ωt

(yellow arrow).

1.1.5 Graduated Optimization
Graduated optimization is one of the global optimization methods that search

for the global optimal solution of difficult multimodal optimization problems. The
method generates a sequence of simplified optimization problems that gradually ap-
proach the original problem through different levels of local smoothing operations.
It solves the easiest simplified problem first, as the easiest simplification should have
nice properties such as convexity or strong convexity; after that, it uses that solution
as the initial point for solving the second-simplest problem, then the second solution
as the initial point for solving the third-simplest problem and so on, as it attempts to
escape from local optimal solutions of the original problem and reach a global optimal
solution (see Figure 3 for conceptual diagram of graduated optimization).
This idea first appeared in the form of graduated non-convexity by [35] and has

since been studied in the field of computer vision for many years. Similar early
approaches can be found in [36] and [37]. Moreover, the same concept has appeared
in the fields of numerical analysis [38] and optimization [39, 34]. Over the past 35
years, graduated optimization has been successfully applied to many tasks in computer
vision, such as early vision [40], image denoising [41], optical flow [42, 43], dense
correspondence of images [44], and robust estimation [45, 46, 47]. In addition, it has
been applied to certain tasks in machine learning, such as semi-supervised learning [48,
49, 50], unsupervised learning [51], and ranking [52]. Moreover, score-based generative
models [53, 54] and diffusion models [55, 56, 57, 58], which are currently state-of-the-
art generative models, implicitly use the techniques of graduated optimization. A
comprehensive survey on the graduated optimization approach can be found in [59].
Several previous studies have theoretically analyzed the graduated optimization

algorithm. [60] performed the first theoretical analysis, but they did not provide a
practical algorithm. [61] defined a family of nonconvex functions satisfying certain
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conditions, called σ-nice, and proposed a first-order algorithm based on graduated
optimization. In addition, they studied the convergence and convergence rate of their
algorithm to a global optimal solution for σ-nice functions. [62] analyzed graduated
optimization based on a special smoothing operation. Note that [63] pioneered the
theoretical analysis of optimizers using Gaussian smoothing operations for nonsmooth
convex optimization problems.

1.2 Motivation

Equation (3) indicates that SGD smoothes the objective function [33], but it is
not clear to what extent the function is smoothed or what factors are involved in
the smoothing. Therefore, we decided to clarify these aspects and identify what
parameters contribute to the smoothing. Also, once it is known what parameters of
SGD contribute to smoothing, an implicit graduated optimization can be achieved
by varying the parameters so that the noise level is reduced gradually. Our goal was
thus to construct an implicit graduated optimization framework using the smoothing
properties of SGD to achieve global optimization of DNNs.

1.3 Contributions

1. SGD’s Smoothing Property (Section 3). We show that the degree of

smoothing δ provided by SGD’s stochastic noise depends on the quantity δ = ηC√
b
,

where η is the learning rate, b is the batch size, and C2 is the variance of the stochastic
gradient (see Assumption 2.1). Accordingly, the smaller the batch size b is and the
larger the learning rate η is, the smoother the function becomes (see Figure 3). This
finding provides a theoretical explanation for several experimental observations. For
example, as is well known, training with a large batch size leads to poor generalization
performance, as evidenced by the fact that several prior studies [64, 65, 66] provided
techniques that do not impair generalization performance even with large batch sizes.
This is because, if we use a large batch size, the degree of smoothing δ = ηC√

b
becomes

smaller and the original nonconvex function is not smoothed enough, so the sharp
local minima do not disappear and the optimizer is more likely to fall into one. [20]
showed this experimentally, and our results provide theoretical support for it.
2. New theoretical findings on σ-nice function (Section 4.1). It has been

unclear to what extent the σ-nice function is a special function and whether the
empirical loss function used in practical applications satisfies the σ-nice property. We
propose a σm-nice function which slightly extends the definition of the σ-nice function
to make it more practical. We also show that the cross entropy loss and mean squared
error, which are often used in machine learning, are σm-nice functions under a certain
assumption (Proposition 4.1). This allows all previous theoretical and experimental
findings on graduated optimization to be incorporated in machine learning through
the σm-nice function.
3. Implicit Graduated Optimization (Sections 4.2 and 4.3). Since the de-
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gree of smoothing of the objective function by stochastic noise in SGD is determined
by δ = ηC√

b
, it should be possible to construct an implicit graduated optimization

algorithm by decreasing the learning rate and/or increasing the batch size during
training. Building on this theoretical intuition, we propose a new implicit graduated
optimization algorithm. We also show that the algorithm for the σm-nice function
converges to an ϵ-neighborhood of the global optimal solution in O

(
1/ϵ2

)
rounds. In

Section 4.3, we show experimentally that our implicit graduated algorithm outper-
forms SGD using a constant learning rate and constant batch size. We also find that
methods which increase the batch size outperform those which decrease the learning
rate when the decay rate of the degree of smoothing is set at 1/

√
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Fig. 4 (A) Sharpness versus degree of smoothing calculated from learning rate,
batch size, and the estimated variance of the stochastic gradient. (B) Test
accuracy after 200 epochs ResNet18 training on the CIFAR100 dataset versus
sharpness. (C) Test accuracy versus degree of smoothing. The color shading in
the scatter plots represents the batch size: the larger the batch size, the darker
the color of the plotted points. “lr” means learning rate.
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4. Relationship between degree of smoothing, sharpness, and generaliz-
ability (Section 5). To support our theory that simply using SGD for optimization
smoothes the objective function and that the degree of smoothing is determined by
δ = ηC/

√
b, we experimentally confirmed the relationship between the sharpness

of the function around the approximate solution to which the optimizer converges
and the degree of smoothing. We showed that the degree of smoothing is clearly
able to express the smoothness/sharpness of the function as well as the well-studied
“sharpness” indicator (Figure 4 (A)), and that there is a clear relationship between
generalization performance and the degree of smoothing; generalization performance
is clearly a concave function with respect to the degree of smoothing (Figure 4 (C)).
Our results follow up on a previous study [67] that found, through extensive experi-
ments, correlations between generalization performance and hyperparameters such as
the learning rate, but no correlation between it and sharpness.

Section 2. Preliminaries

2.1 Notations and Definitions

Let N be the set of nonnegative integers. For m ∈ N \ {0}, define [m] :=
{1, 2, . . . ,m}. Let Rd be a d-dimensional Euclidean space with inner product ⟨·, ·⟩,
which induces the norm ∥ · ∥. Id denotes a d × d identity matrix. B(y; r) is the Eu-
clidean closed ball of radius r centered at y, i.e., B(y; r) :=

{
x ∈ Rd : ∥x− y∥ ≤ r

}
.

Let N (µ; Σ) be a d-dimensional Gaussian distribution with mean µ ∈ Rd and vari-
ance Σ ∈ Rd×d. The DNN is parameterized by a vector x ∈ Rd, which is optimized
by minimizing the empirical loss function f(x) := 1

n

∑
i∈[n] fi(x), where fi(x) is the

loss function for x ∈ Rd and the i-th training data zi (i ∈ [n]). Let ξ be a random
variable that does not depend on x ∈ Rd, and let Eξ[X] denote the expectation with
respect to ξ of a random variable X. ξt,i is a random variable generated from the
i-th sampling at time t, and ξt := (ξt,1, ξt,2, . . . , ξt,b) is independent of (xk)

t
k=0 ⊂ R,

where b (≤ n) is the batch size. The independence of ξ0, ξ1, . . . allows us to define the
total expectation E as E = Eξ0Eξ1 · · ·Eξt . Let Gξt(x) be the stochastic gradient of
f(·) at x ∈ Rd. The mini-batch St consists of b samples at time t, and the mini-batch
stochastic gradient of f(xt) for St is defined as ∇fSt

(xt) :=
1
b

∑
i∈[b] Gξt,i(xt).

2.2 Assumptions and Lemma

We make the following assumptions:

Assumption 2.1
(A1) f : Rd → R is continuously differentiable and Lg-smooth, i.e., for all x,y ∈ Rd,

∥∇f(x)−∇f(y)∥ ≤ Lg∥x− y∥.
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(A2) f : Rd → R is an Lf -Lipschitz function, i.e., for all x,y ∈ Rd,

|f(x)− f(y)| ≤ Lf∥x− y∥.

(A3) Let (xt)t∈N ⊂ Rd be the sequence generated by SGD.
(i) For each iteration t,

Eξt [Gξt(xt)] = ∇f(xt).

(ii) There exists a nonnegative constant C2 such that

Eξt

[
∥Gξt(xt)−∇f(xt)∥2

]
≤ C2.

(A4) For each iteration t, SGD samples a mini-batch St ⊂ S and estimates the full
gradient ∇f as

∇fSt
(xt) :=

1

b

∑
i∈[b]

Gξt,i(xt) =
1

b

∑
{i : zi∈St}

∇fi(xt).

The following lemma is very important to our theory. The proof of Lemma 2.1 can
be found in Appendix C.

Lemma 2.1 Suppose that (A3)(ii) and (A4) hold for all t ∈ N; then,

Eξt

[
∥∇fSt(xt)−∇f(xt)∥2

]
≤ C2

b
.

2.3 Function Smoothing

Definition 2.1 (Smoothed function) Given a function f : Rd → R, define f̂δ : Rd →
R to be the function obtained by smoothing f as

f̂δ(x) := Eu∼L [f(x− δu)] ,

where δ > 0 represents the degree of smoothing and u is a random variable from a
any light-tailed distribution L with Eu∼L [∥u∥] ≤ 1. Also,

x⋆ := argmin
x∈Rd

f(x) and x⋆
δ := argmin

x∈Rd

f̂δ(x).

Note that, in the definition of the smoothed function f̂δ, [61] defined that the random
variable u follows a uniform distribution from the unit Euclidean ball. In contrast,
from experimental results in Section H, we define the random variable u to follow any
light-tailed distribution. Since the uniform distribution is a light-tailed distribution
(see Section I.3), our Definition 2.1 contains Definition 4.1 of [61] and does not conflict
with it. The graduated optimization algorithm uses several smoothed functions with
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different noise levels. There are a total of M noise levels (δm)m∈[M ] and smoothed

functions (f̂δm)m∈[M ] in this paper. The largest noise level is δ1 and the smallest

is δM (see also Figure 3). For all m ∈ [M ], (x̂
(m)
t )t∈N is the sequence generated by

an optimizer to minimize f̂δm . Here, this paper refers to the graduated optimization
approach with explicit smoothing operations (Definition 2.1) as “explicit graduated
optimization” and to the graduated optimization approach with implicit smoothing
operations as “implicit graduated optimization”. All previous studies (see Section 1.1)
have considered explicit graduated optimization, and we consider implicit graduated
optimization for the first time.
Finally, we present an example of function smoothing. Figure 5 plots the single-

variable Rastrigin function [68, 69] defined as in Equation (4) and its smoothed ver-
sion, computed according to definition 2.1 with Gaussian noise u ∼ N (0; 1)

(Rastrigin’s function) f(x) := x2 − 10 cos(2πx) + 10 (4)

3 2 1 0 1 2 3
x

0

5

10

15

20

25
f(x)
f (x) with = 0.2
f (x) with = 0.4
f (x) with = 0.7
f (x) with = 1.0
f (x) with = 3.0

Fig. 5 Original objective function f and smoothed function f̂δ computed using
degree of smoothing δ ∈ {0.2, 0.4, 0.7, 1.0, 3.0}.

Figure 5 shows that as δ increases, the function becomes smoother and the valleys

of the function gradually become less and less smooth. At δ = 1.0, function f̂δ is
completely convex.
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Section 3. SGD’s smoothing property

This section discusses the smoothing effect of using stochastic gradients. From
Lemma 2.1, we have

Eξt [∥ωt∥] ≤
C√
b
,

due to ωt := ∇fSt
(xt) − ∇f(xt). The ωt for which this equation is satisfied can

be expressed as ωt = C√
b
ut, where Eξt [∥ut∥] ≤ 1. Here, we assume that ωt in

image classification tasks with CNN-based models follows a light-tailed distribution
in accordance with experimental observations in several previous studies [70, 71] and

our experimental results (see Section I.4). Therefore, ωt ∼ L̂ and thereby ut ∼ L,
where L̂ and L are light-tailed distributions and L is a scaled version of L̂. Then,
using Definition 2.1, we further transform Equation (3) as follows:

Eωt [yt+1] = Eωt [yt]− η∇Eωt [f(yt − ηωt)]

= Eωt
[yt]− η∇Eut∼L

[
f

(
yt −

ηC√
b
ut

)]
= Eωt [yt]− η∇f̂ ηC√

b

(yt). (5)

This shows that Eωt
[f(yt − ηωt)] is a smoothed version of f with a noise level ηC/

√
b

and its parameter yt can be approximately updated by using the GD to minimize f̂ ηC√
b

.

Therefore, we can say that the degree of smoothing δ by the stochastic noise ωt in
SGD is determined by the learning rate η, the batch size b, and the variance of the
stochastic gradient C2 and that optimizing the function f with SGD and optimizing

the smoothed function f̂ ηC√
b

with GD are equivalent in the sense of expectation.

There are still more discoveries that can be made from the finding that simply by
using SGD for optimization, the objective function is smoothed and the degree of
smoothing is determined by δ = ηC/

√
b.

Why the Use of Large Batch Sizes Leads to Solutions Falling into Sharp
Local Minima. It is known that training with large batch sizes leads to a persistent
degradation of model generalization performance. In particular, [20] showed experi-
mentally that learning with large batch sizes leads to sharp local minima and worsens
generalization performance. According to Equation (5), using a large learning rate
and/or a small batch size will make the function smoother. Thus, in using a small
batch size, the sharp local minima will disappear through extensive smoothing, and
SGD can reach a flat local minimum. Conversely, when using a large batch size, the
smoothing is weak and the function is close to the original multimodal function, so
it is easy for the solution to fall into a sharp local minimum. Thus, we have theoret-
ical support for what [20] showed experimentally, and our experiments have yielded
similar results (see Figure 7 (a)).
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Why Decaying Learning Rates and Increasing Batch Sizes are Superior
to Fixed Learning Rates and Batch Sizes. From Equation (5), the use of a de-
caying learning rate or increasing batch size during training is equivalent to decreasing
the noise level of the smoothed function, so using a decaying learning rate or increas-
ing the batch size is an implicit graduated optimization. Thus, we can say that using
a decaying learning rate [72, 73, 74, 75] or increasing batch size [76, 77, 78, 79, 6, 80]
makes sense in terms of avoiding local minima and provides theoretical support for
their experimental superiority.

Section 4. Implicit Graduated Optimization

In this section, we construct an implicit graduated optimization algorithm that
varies the learning rate η and batch size b so that the degree of smoothing δ = ηC/

√
b

by stochastic noise in SGD gradually decreases and then analyze its convergence.

4.1 New theoretical findings on σ-nice function

In order to analyze the graduated optimization algorithm, Hazan et al. defined σ-
nice functions (see Definition I.1), a family of nonconvex functions that has favorable
conditions for a graduated optimization algorithm to converge to a global optimal
solution [61]. We define the following function, which is a slight extension of the
σ-nice function. See Appendix I for details on its extension.

Definition 4.1 (σm-nice function) Let M ∈ N, m ∈ [M ], and γ ∈ [0.5, 1). A func-
tion f : Rd → R is said to be σm-nice if the following two conditions hold:
(i) For all δm > 0 and all x⋆

δm
, there exists x⋆

δm+1
such that:∥∥∥x⋆

δm − x⋆
δm+1

∥∥∥ ≤ δm+1 := γδm.

(ii) For all δm > 0, the function f̂δm(x) over N(x⋆
δm

; 3δm) is σm-strongly convex.

The σ-nice property implies that optimizing the smoothed function f̂δm is a good

start for optimizing the next smoothed function f̂δm+1
, which has been shown to

be sufficient for graduated optimization [61]. We will take this route and consider
an implicit graduated optimization algorithm for σm-nice functions. One might still
think that the definition of the σm-nice function is not practical and that there is a
gap between theory and application. However, we can show that the commonly used
empirical loss function is a σm-nice function under certain assumptions (The proof of
Proposition 4.1 is in Appendix I.2).

Proposition 4.1 In the definition of the smoothed function (Definition 2.1), suppose
that u follows a standard Gaussian distribution. Then, the cross entropy loss is a
1-nice function and the mean squared error is a 2-nice function.

The cross entropy loss and mean squared error are the most common empirical loss
functions in classification and regression tasks, respectively, and Proposition 4.1 im-
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plies that they are σm-nice functions. This discovery opens up an unlimited range of
applications of graduated optimization in machine learning, and not only the theoret-
ical results that we will present, but all previous theoretical and experimental findings
on graduated optimization can be incorporated into machine learning through σm-nice
functions.

4.2 Analysis of Implicit Graduated Optimization

Algorithm 4.1 embodies the framework of implicit graduated optimization with
SGD for σm-nice functions, while Algorithm 4.2 is used to optimize each smoothed
function; it should be GD (see (5)). Note that our implicit graduated optimization
(Algorithm 4.1) is achieved by SGD with decaying learning rate and/or increasing
batch size.

Algorithm 4.1 Implicit Graduated Optimization

Require: ϵ,x1 ∈ B(x⋆
δ1
; 3δ1), η1 > 0, b1 ∈ [n], γ ≥ 0.5

δ1 = η1C√
b1
, α0 = min

{
1

16Lfδ1
, 1√

2σδ1

}
,M = logγ α0ϵ

for m = 1 to M + 1 do
if m ̸= M + 1 then

ϵm := σmδ2m/2, Tm := Hm/ϵm
κm/

√
λm = γ (κm ∈ (0, 1], λm ≥ 1)

end if
xm+1 := GD(Tm,xm, f̂δm , ηm)
ηm+1 := κmηm, bm+1 := λmbm
δm+1 := ηm+1C√

bm+1

end for
return xM+2

Algorithm 4.2 Gradient Descent

Require: Tm, x̂
(m)
1 , f̂δm , η > 0

for t = 1 to Tm do

x̂
(m)
t+1 := x̂

(m)
t − η∇f̂δm(xt)

end for
return x̂

(m)
Tm+1

From the definition of σm-nice function, the smoothed function f̂δm is σm-strongly
convex in B(x⋆

δm
; 3δm). Also, the learning rate used by Algorithm 4.2 to optimize

f̂δm should always be constant. Therefore, let us now consider the convergence of GD

with a constant learning rate for a σm-strongly convex function f̂δm . The proof of
Theorem 4.1 is in Appendix F.1.
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Theorem 4.1 (Convergence analysis of Algorithm 4.2) Suppose that f̂δm : Rd → R
is a σm-strongly convex and Lg-smooth and η < min

{
1

σm
, 2
Lg

}
. Then, the sequence

(x̂
(m)
t )t∈N generated by Algorithm 4.2 satisfies

min
t∈[T ]

f̂δm

(
x̂
(m)
t

)
− f̂δm(x⋆

δm) ≤ Hm

T
= O

(
1

T

)
, (6)

where Hm :=
9(1−σmη)δ2m

2η +
3Lfδm

η(2−Lgη)
is a nonnegative constant.

Theorem 4.1 shows that Algorithm 4.2 can reach an ϵm-neighborhood of the optimal

solution x⋆
δm

of f̂δm in approximately Tm := Hm/ϵm iterations. The next proposition
is crucial to the success of Algorithm 4.1 and guarantees the soundness of the σm-nice
function (The proof is in Appendix F.2).

Proposition 4.2 Let f be a σm-nice function and δm+1 := γδm. Suppose that γ ∈
[0.5, 1) and x1 ∈ B(x⋆

δ1
; 3δ1). Then for all m ∈ [M ], ∥xm − x⋆

δm
∥ < 3δm.

xm is the approximate solution obtained by optimization of the smoothed function

f̂δm−1
with Algorithm 4.2 and is the initial point of optimization of the next smoothed

function f̂δm . Therefore, Proposition 4.2 implies that γ ∈ [0.5, 1) must hold for the

initial point of optimization of f̂δm to be contained in the strongly convex region of

f̂δm . Therefore, from Theorem 4.1 and Proposition 4.2, if f is a σm-nice function and
x1 ∈ B(x⋆

δ1
; 3δ1) holds, the sequence (xm)m∈[M ] generated by Algorithm 4.1 never

goes outside of the σm-strongly convex region B(x⋆
δm

; 3δm) of each smoothed function

f̂δm (m ∈ [M ]) .
The next theorem guarantees the convergence of Algorithm 4.1 with the σm-nice

function (The proof of Theorem 4.2 is in Appendix F.3). Note that Theorem 4.2 pro-
vides a total complexity including those of Algorithm 4.1 and Algorithm 4.2, because
Algorithm 4.1 uses Algorithm 4.2 at each m ∈ [M ].

Theorem 4.2 (Convergence analysis of Algorithm 4.1) Let ϵ ∈ (0, 1) and f : Rd →
R be an Lf -Lipschitz σm-nice function. Suppose that we run Algorithm 4.1; then
after O

(
1/ϵ2

)
rounds, the algorithm reaches an ϵ-neighborhood of the global optimal

solution x⋆.

4.3 Numerical Results

Full experimental results and our code are in Appendix G. We compared four
types of SGD for image classification: 1. constant learning rate and constant batch
size, 2. decaying learning rate and constant batch size, 3. constant learning rate
and increasing batch size, 4. decaying learning rate and increasing batch size, in
training ResNet34 [81] on the ImageNet dataset [82] (Figure 6), ResNet18 on the
CIFAR100 dataset (Figure 8 in Appendix G), and WideResNet-28-10 [83] on the
CIFAR100 dataset (Figure 9 in Appendix G). Therefore, methods 2, 3, and 4 are our
Algorithm 4.1. All experiments were run for 200 epochs. In methods 2, 3, and 4,
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the noise decreased every 40 epochs, with a common decay rate of 1/
√
2. That is,

every 40 epochs, the learning rate of method 2 was multiplied by 1/
√
2, the batch

size of method 3 was doubled, and the learning rate and batch size of method 4 were
respectively multiplied by

√
3/2 and 1.5. Note that this 1/

√
2 decay rate is γ in

Algorithm 4.1 and it satisfies the condition in Proposition 4.2. The initial learning
rate was 0.1 for all methods, which was determined by performing a grid search
among [0.01, 0.1, 1.0, 10]. The noise reduction interval was every 40 epochs, which
was determined by performing a grid search among [10, 20, 25, 40, 50, 100]. A history
of the learning rate or batch size for each method is provided in the caption of each
figure.
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Fig. 6 Accuracy score for the testing and loss function value for training versus
the number of epochs in training ResNet34 on the ImageNet dataset. The solid
line represents the mean value, and the shaded area represents the maximum
and minimum over three runs. In method 1, the learning rate and batch size
were fixed at 0.1 and 256, respectively. In method 2, the learning rate was

decreased every 40 epochs as
[
0.1, 1

10
√

2
, 0.05, 1

20
√
2
, 0.025

]
and the batch size was

fixed at 256. In method 3, the learning rate was fixed at 0.1, and the batch
size was increased as [32, 64, 128, 256, 512]. In method 4, the learning rate was

decreased as
[
0.1,

√
3

20
, 0.075, 3

√
3

80
, 0.05625

]
and the batch size was increased as

[32, 48, 72, 108, 162].

For methods 2, 3, and 4, the decay rates are all 1/
√
2, and the decay intervals are

all 40 epochs, so throughout the training, the three methods should theoretically be
optimizing the exact same five smoothed functions in sequence. Nevertheless, the
local solutions reached by each of the three methods are not exactly the same. All
results indicate that method 3 is superior to method 2 and that method 4 is superior
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to method 3 in both test accuracy and training loss function values. This difference
can be attributed to the different learning rates used to optimize each smoothing
function. Among methods 2, 3, and 4, method 3, which does not decay the learning
rate, maintains the highest learning rate 0.1, followed by method 4 and method 2. In
all graphs, the loss function values are always small in that order; i.e., the larger the
learning rate is, the lower loss function values become. Therefore, we can say that the
noise level δ, expressed as ηC√

b
, needs to be reduced, while the learning rate η needs to

remain as large as possible. Alternatively, if the learning rate is small, then a large
number of iterations are required. Thus, for the same rate of change and the same
number of epochs, an increasing batch size is superior to a decreasing learning rate
because it can maintain a large learning rate and can be made to iterate a lot when
the batch size is small.
Theoretically, the noise level δm should gradually decrease and become zero at the

end, so in our Algorithm 4.1, the learning rate ηm should be zero at the end or the
batch size bm should match the number of data sets at the end. However, if the
learning rate is 0, training cannot proceed, and if the batch size is close to a full
batch, it is not feasible from a computational point of view. For this reason, the
experiments described in this paper are not fully graduated optimizations; i.e., full
global optimization is not achieved. In fact, the last batch size used by method 2 is
around 128 to 512, which is far from a full batch. Therefore, the solution reached in
this experiment is the optimal one for a function that has been smoothed to some
extent, and to achieve a global optimization of the DNN, it is necessary to increase
only the batch size to eventually reach a full batch, or increase the number of iterations
accordingly while increasing the batch size and decaying the learning rate.

Section 5. Relationship between degree of smoothing,

sharpness, and generalizability

The graduated optimization algorithm is a method in which the degree of smoothing
δ is gradually decreased. Let us consider the case where the degree of smoothing δ
is constant throughout the training. The following lemma shows the relationship
between the error of the original function value and that of the smoothed function
value.

Lemma 5.1 Let f̂δ be the smoothed version of f ; then, for all x ∈ Rd,∣∣∣f̂δ(x)− f(x)
∣∣∣ ≤ δLf .

Here, a larger degree of smoothing should be necessary to make many local optimal
solutions of the objective function f disappear and lead the optimizer to the global
optimal solution. On the other hand, Lemma 5.1 implies that the larger the degree
of smoothing is, the further away the smoothed function will be from the original
function. Therefore, there should be an optimal value for the degree of smoothing
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that balances the tradeoffs, because if the degree of smoothing is too large, the original
function is too damaged and thus cannot be optimized properly, and if it is too small,
the function is not smoothed enough and the optimizer falls into a local optimal
solution. This knowledge is useful because the degree of smoothing due to stochastic
noise in SGD is determined by the learning rate and batch size (see Section 3), so when
a constant learning rate and constant batch size are used, the degree of smoothing is
constant throughout the training.
The smoothness of the function, and in particular the sharpness of the function

around the approximate solution to which the optimizer converged, has been well
studied because it has been thought to be related to the generalizability of the model.
In this section, we reinforce our theory by experimentally observing the relationship
between the degree of smoothing and the sharpness of the function.
Several previous studies [19, 20, 84, 85, 67] have addressed the relationship between

the sharpness of the function around the approximate solution to which the optimizer
converges and the generalization performance of the model. In particular, the hypoth-
esis that flat local solutions have better generalizability than sharp local solutions is
at the core of a series of discussions, and several previous studies [20, 21, 22, 23, 24]
have developed measures of sharpness to confirm this. In this paper, we use “adaptive
sharpness” [24, 67] as a measure of the sharpness of the function that is invariant to
network reparametrization, highly correlated with generalization, and generalizes sev-
eral existing sharpness definitions. In accordance with [67], let S be a set of training
data; for arbitrary model weights w ∈ Rd, the worst-case adaptive sharpness with
radius ρ ∈ R and with respect to a vector c ∈ Rd is defined as

Sρ
max(w, c) := ES

[
max

∥δ⊙c−1∥p≤ρ
f(w + δ)− f(w)

]
,

where ⊙/−1 denotes elementwise multiplication/inversion. Thus, the larger the sharp-
ness value is, the sharper the function around the model weight w becomes, with a
smaller sharpness leading to higher generalizability.
We trained ResNet18 [81] with the learning rate η ∈ {0.01, 0.05, 0.1, 0.1} and batch

size b ∈ {21, . . . , 213} for 200 epochs on the CIFAR100 dataset [86] and then measured
the worst-case l∞ adaptive sharpness of the obtained approximate solution with radius
ρ = 0.0002 and c = (1, 1, . . . , 1)⊤ ∈ Rd. Our implementation was based on [67] and
the code used is available on our anonymous GitHub. Figure 7 plots the relationship
between measured sharpness and the batch size b and the learning rate η used for
training as well as the degree of smoothing δ calculated from them. Figure 7 also plots
the relationship between test accuracy, sharpness, and degree of smoothing. Three
experiments were conducted per combination of learning rate and batch size, with a
total of 156 data plots. The variance of the stochastic gradient C2 included in the
degree of smoothing δ = ηC/

√
b used values estimated from theory and experiment

(see Appendix B for details).
Figure 7 (a) shows that the larger the batch size is, the larger the sharpness value

becomes, whereas (b) shows that the larger the learning rate is, the smaller the
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Fig. 7 (a) Sharpness around the approximate solution after 200 epochs of
ResNet18 training on the CIFAR100 dataset versus batch size used. (b) Sharp-
ness versus learning rate used. (c) Sharpness versus degree of smoothing cal-
culated from learning rate, batch size, and estimated variance of the stochastic
gradient. (d) Test accuracy after 200 epochs training versus sharpness. (e) Test
accuracy versus degree of smoothing. The solid line represents the mean value,
and the shaded area represents the maximum and minimum over three runs. The
color shade in the scatter plots represents the batch size; the larger the batch
size, the darker the color of the plotted points. “lr” means learning rate. The
experimental results that make up the all graphs are all identical.

sharpness becomes, and (c) shows a greater the degree of smoothing for a smaller
sharpness. These experimental results guarantee the our theoretical result that the
degree of smoothing δ is proportional to the learning rate η and inversely proportional
to the batch size b, and they reinforce our theory that the quantity ηC/

√
b is the degree

of smoothing of the function. Figure 7 (d) also shows that there is no clear correlation
between the generalization performance of the model and the sharpness around the
approximate solution. This result is also consistent with previous study [67]. On
the other hand, Figure 7 (e) shows an excellent correlation between generalization
performance and the degree of smoothing; generalization performance is clearly a
concave function with respect to the degree of smoothing. Thus, a degree of smoothing
that is neither too large nor too small leads to high generalization performance. This
experimental observation can be supported theoretically (see Lemma 5.1). That is, if
the degree of smoothing is a constant throughout the training, then there should be an
optimal value for the loss function value or test accuracy; for the training of ResNet18
on the CIFAR100 dataset, for example, 0.1 to 1 was the desired value (see Figure 7
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(e)). For degrees of smoothing smaller than 0.1, the generalization performance is
not good because the function is not sufficiently smoothed so that locally optimal
solutions with sharp neighborhoods do not disappear, and the optimizer falls into
this trap. On the other hand, a degree of smoothing greater than 1 leads to excessive
smoothing and smoothed function becomes too far away from the original function to
be properly optimized; the generalization performance is not considered excellent. In
addition, the optimal combination of learning rate and batch size that practitioners
search for by using grid searches or other methods when training models can be said
to be a search for the optimal degree of smoothing. If the optimal degree of smoothing
can be better understood, the huge computational cost of the search could be reduced.
[67] observed the relationship between sharpness and generalization performance in

extensive experiments and found that they were largely uncorrelated, suggesting that
the sharpnesss may not be a good indicator of generalization performance and that
one should avoid blanket statements like “flatter minima generalize better”. Figure
7 (d) and (e) show that there is no correlation between sharpness and generaliza-
tion performance, as in previous study, while there is a correlation between degree
of smoothing and generalization performance. Therefore, we can say that degree of
smoothing may be a good indicator to theoretically evaluate generalization perfor-
mance, and it may be too early to say that “flatter minima generalize better” is
invalid.

Section 6. Conclusion

We proved that SGD with a mini-batch stochastic gradient has the effect of smooth-
ing the function, and the degree of smoothing is greater with larger learning rates and
smaller batch sizes. This shows theoretically that smoothing with large batch sizes
is makes it easy to fall into sharp local minima and that using a decaying learning
rate and/or increasing batch size is implicitly graduated optimization, which makes
sense in the sense that it avoids local optimal solutions. Building on these findings,
we proposed a new graduated optimization algorithm for a σm-nice function that uses
a decaying learning rate and increasing batch size and analyzed it. Our finding that
the commonly used empirical loss functions, i.e., the cross entropy loss and mean
squared error, are σm-nice functions will dramatically stimulate the application of
graduated optimization in machine learning. We also conducted experiments whose
results showed the superiority of our recommended framework for image classifica-
tion tasks on CIFAR100 and ImageNet. In addition, we observed that the degree of
smoothing of the function due to stochastic noise in SGD can express the degree of
smoothness of the function as well as sharpness does, and that the degree of smoothing
is a good indicator of the generalization performance of the model.
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[47] L. Peng, C. Kümmerle, and R. Vidal, “On the convergence of IRLS and its
variants in outlier-robust estimation,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 17 808–17 818.

[48] O. Chapelle, M. Chi, and A. Zien, “A continuation method for semi-supervised
SVMs,” in Proceedings of the 23rd International Conference on Machine Learn-
ing, vol. 148, 2006, pp. 185–192.

[49] V. Sindhwani, S. S. Keerthi, and O. Chapelle, “Deterministic annealing for semi-
supervised kernel machines,” in Proceedings of the 23rd International Conference
on Machine Learning, vol. 148, 2006, pp. 841–848.

[50] O. Chapelle, V. Sindhwani, and S. S. Keerthi, “Optimization techniques for semi-
supervised support vector machines,” Journal of Machine Learning Research,
vol. 9, pp. 203–233, 2008.

[51] N. A. Smith and J. Eisner, “Annealing techniques for unsupervised statistical
language learning,” in Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics, 2004, pp. 486–493.

[52] O. Chapelle and M. Wu, “Gradient descent optimization of smoothed information
retrieval metrics,” Information retrieval, vol. 13, no. 3, pp. 216–235, 2010.

[53] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the
data distribution,” in Proceedings of the 33rd International Conference on Neural
Information Processing Systems, 2019, pp. 11 895–11 907.

[54] Y. Song, J. Sohl-Dickstein, D. P. kingma, A. Kumar, S. Ermon, and B. Poole,
“Score-based generative modeling through stochastic differential equations,” in
Proceedings of the 9th International Conference on Learning Represantations,
2021.

[55] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep
unsupervised learning using nonequilibrium thermodynamics,” in Proceedings of
the 32nd International Conference on Machine Learning, vol. 37, 2015, pp. 2256–



25

2265.
[56] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in

Proceedings of the 34th Conference on Neural Information Processing Systems,
2020.

[57] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in Pro-
ceedings of the 9th International Conference on Learning Represantations, 2021.

[58] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2022.

[59] H. Mobahi and J. W. Fisher III, “On the link between gaussian homotopy contin-
uation and convex envelopes,” in Proceedings of the 10th International Confer-
ence on Energy Minimization Methods in Computer Vision and Pattern Recog-
nition, vol. 8932, 2015, pp. 43–56.

[60] ——, “A theoretical analysis of optimization by gaussian continuation,” in Pro-
ceedings of the 39th AAAI Conference on Artificial Intelligence, 2015, pp. 1205–
1211.

[61] E. Hazan, K. Yehuda, and S. Shalev-Shwartz, “On graduated optimization for
stochastic non-convex problems,” in Proceedings of The 33rd International Con-
ference on Machine Learning, vol. 48, 2016, pp. 1833–1841.

[62] D. Li, J. Wu, and Q. Zhang, “Stochastic gradient descent in the viewpoint of
graduated optimization,” vol. https://arxiv.org/abs/2308.06775, 2023.

[63] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright, “Randomized smoothing
for stochastic optimization,” SIAM Journal on Optimization, vol. 22, no. 2, pp.
674–701, 2012.

[64] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better: closing
the generalization gap in large batch training of neural networks,” in Proceedings
of the 31st International Conference on Neural Information Processing Systems,
2017, pp. 1731–1741.

[65] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: training ima-
genet in 1 hour,” vol. https://arxiv.org/abs/1706.02677, 2017.

[66] Y. You, J. Li, S. J. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Dem-
mel, K. Keutzer, and C. Hsieh, “Large batch optimization for deep learning:
Training BERT in 76 minutes,” in Proceedings of the 8th International Confer-
ence on Learning Representations, 2020.

[67] M. Andriushchenko, F. Croce, M. Müller, M. Hein, and N. Flammarion, “A mod-
ern look at the relationship between sharpness and generalization,” in Proceedings
of the 40th International Conference on Machine Learning, vol. 202, 2023, pp.
840–902.

[68] A. A. Törn and A. Zilinskas, Global Optimization, ser. Lecture Notes in Computer
Science. Springer, 1989, vol. 350.

[69] G. Rudolph, “Globale optimierung mit parallelen evolutionsstrategien,” Ph.D.
dissertation, Universität Dortmund Fachbereich Informatik, 7 1990.

[70] J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. Kumar, and S. Sra, “Why are

https://arxiv.org/abs/2308.06775
https://arxiv.org/abs/1706.02677


26

adaptive methods good for attention models?” in Proceedings of the 33rd Annual
Conference on Neural Information Processing Systems, 2020.

[71] F. Kunstner, J. Chen, J. W. Lavington, and M. Schmidt, “Noise is not the
main factor behind the gap between SGD and adam on transformers, but sign
descent might be,” in Proceedings of the 8th International Conference on Learning
Representations, 2023.

[72] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent with warm
restarts,” in Proceedings of the 5th International Conference on Learning Repre-
sentations, 2017.

[73] A. Hundt, V. Jain, and G. D. Hager, “sharpDARTS: faster and more accurate
differentiable architecture search,” vol. https://arxiv.org/abs/1903.09900, 2019.

[74] K. You, M. Long, J. Wang, and M. I. Jordam, “How does learning rate decay
help modern neural networks?” vol. https://arxiv.org/abs/1908.01878, 2019.

[75] A. Lewkowycz, “How to decay your learning rate,” vol. https://arxiv.org/abs/
2103.12682, 2021.

[76] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, “Sample size selection in
optimization methods for machine learning,” Mathematical Programming, vol.
134, no. 1, pp. 127–155, 2012.

[77] M. P. Friedlander and M. Schmidt, “Hybrid deterministic-stochastic methods for
data fitting,” SIAM Journal on Scientific Computing, vol. 34, no. 3, 2012.

[78] L. Balles, J. Romero, and P. Hennig, “Coupling adaptive batch sizes with learn-
ing rates,” in Proceedings of the 33rd Conference on Uncertainty in Artificial
Intelligence, 2017.

[79] S. De, A. K. Yadav, D. W. Jacobs, and T. Goldstein, “Automated inference
with adaptive batches,” in Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, vol. 54, 2017, pp. 1504–1513.

[80] S. L. Smith, P. Kindermans, C. Ying, and Q. V. Le, “Don’t decay the learning
rate, increase the batch size,” in Proceedings of the 6th International Conference
on Learning Representations, 2018.

[81] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 770–778.

[82] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-
scale hierarchical image database.” in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[83] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceedings of
the British Machine Vision Conference, 2016.

[84] P. Izmailov, D. Podoprikhin, T. Garipov, D. P. Vetrov, and A. G. Wilson, “Aver-
aging weights leads to wider optima and better generalization,” in Proceedings of
the 34th Conference on Uncertainly in Artificial Intelligence, 2018, pp. 876–885.

[85] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss
landscape of neural nets,” in Proceedings of the 31st Annual Conference on Neural
Information Processing Systems, 2018, pp. 6391–6401.

[86] A. Krizhevsky, “Learning multiple layers of features from tiny images,” vol. https:

https://arxiv.org/abs/1903.09900
https://arxiv.org/abs/1908.01878
https://arxiv.org/abs/2103.12682
https://arxiv.org/abs/2103.12682
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


27

//www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf, 2009.
[87] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic Program-

ming - Modeling and Theory, ser. MOS-SIAM Series on Optimization. SIAM,
2009.

[88] K. Imaizumi and H. Iiduka, “Iteration and stochastic first-order oracle complex-
ities of stochastic gradient descent using constant and decaying learning rates,”
Optimization, vol. 0, no. 0, pp. 1–24, 2024.

[89] N. Sato and H. Iiduka, “Role of momentum in smoothing objective function and
generalizability of deep neural networks,” vol. https://arxiv.org/abs/2402.02325,
2024.

[90] H. Iwakiri, Y. Wang, S. Ito, and A. Takeda, “Single loop gaussian homotopy
method for non-convex optimization,” in Proceedings of the 36th Conference on
Neural Information Processing Systems, 2022.

[91] C. S. Marcin Molga, “Test functions for optimization needs,” https://
robertmarks.org/Classes/ENGR5358/Papers/functions.pdf, 4 2005.

[92] P. L.A., K. Jagannathan, and R. Kolla, “Concentration bounds for CVaR esti-
mation: The cases of light-tailed and heavy-tailed distributions,” in Proceedings
of the 37th International Conference on Machine Learning, vol. 119, 2020, pp.
5577–5586.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/2402.02325
https://robertmarks.org/Classes/ENGR5358/Papers/functions.pdf
https://robertmarks.org/Classes/ENGR5358/Papers/functions.pdf


28

A Derivation of Equation (3)

Let yt be the parameter updated by gradient descent (GD) and xt+1 be the pa-
rameter updated by SGD at time t, i.e.,

yt := xt − η∇f(xt),

xt+1 := xt − η∇fSt
(xt)

= xt − η(∇f(xt) + ωt).

Then, we have

xt+1 := xt − η∇fSt
(xt)

= (yt + η∇f(xt))− η∇fSt(xt)

= yt − ηωt, (7)

from ωt := ∇fSt
(xt)−∇f(xt). Hence,

yt+1 = xt+1 − η∇f(xt+1)

= yt − ηωt − η∇f(yt − ηωt).

By taking the expectation with respect to ωt on both sides, we have, from Eωt
[ωt] =

0,

Eωt
[yt+1] = Eωt

[yt]− η∇Eωt
[f(yt − ηωt)] ,

where we have used Eωt [∇f(yt − ηωt)] = ∇Eωt [f(yt − ηωt)], which holds for a Lip-
schitz continuous and differentiable f [87, Theorem 7.49]. In addition, from (7) and
Eωt

[ωt] = 0, we obtain

Eωt
[xt+1] = yt.

Therefore, on average, the parameter xt+1 of the function f arrived at by SGD

coincides with the parameter yt of the smoothed function f̂(yt) := Eωt [f(yt − ηωt)]
arrived at by GD.

B Estimation of variance of stochastic gradient

In Section 5, we need to estimate the variance C2 of the stochastic gradient in order
to plot the degree of smoothing δ = ηC/

√
b. In general, this is difficult to measure,

but several previous studies [88, 89] have provided the following estimating formula.

For some ϵ > 0, when training until 1
T

∑T
k=1 E

[
∥∇f(xk)∥2

]
≤ ϵ2, the variance of the

stochastic gradient can be estimated as

C2 <
b⋆ϵ2

η
,
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where b⋆ is the batch size that minimizes the amount of computation required for
training and η is learning rate used in training. We determined the stopping condition
ϵ for each learning rate, measured the batch size that minimized the computational
complexity required for the gradient norm of the preceding t steps at time t to average
less than ϵ in training ResNet18 on the CIFAR100 dataset, and estimated the variance
of the stochastic gradient by using an estimation formula (see Table 1). Table 2 shows
the results of a similar experiment for the training WideResNet(WRN)-28-10 on the
CIFAR100 dataset.

Table 1 Learning rate η and threshold
ϵ used for training, measured optimal
batch size b⋆ and estimated variance of
the stochastic gradient C2 in training
ResNet18 on the CIFAR100 dataset.

η ϵ b⋆ C2

0.01 1.0 27 12800
0.05 0.5 29 1280
0.1 0.5 210 1280
0.5 0.5 210 256

Table 2 Learning rate η and threshold
ϵ used for training, measured optimal
batch size b⋆ and estimated variance of
the stochastic gradient C2 in training
WRN-28-10 on the CIFAR100 dataset.

η ϵ b⋆ C2

0.01 1.0 22 400
0.05 0.5 22 20
0.1 0.5 22 10
0.5 0.5 22 2
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C Proofs of the Lemmas

C.1 Proof of Lemma 2.1

(Proof) (A3)(ii) and (A4) guarantee that

Eξt

[
∥∇fSt

(xt)−∇f(xt)∥2
]
= Eξt

∥∥∥∥∥1b
b∑

i=1

Gξt,i(xt)−∇f(xt)

∥∥∥∥∥
2


= Eξt

∥∥∥∥∥1b
b∑

i=1

Gξt,i(xt)−
1

b

b∑
i=1

∇f(xt)

∥∥∥∥∥
2


= Eξt

∥∥∥∥∥1b
b∑

i=1

(
Gξt,i(xt)−∇f(xt)

)∥∥∥∥∥
2


=
1

b2
Eξt

∥∥∥∥∥
b∑

i=1

(
Gξt,i(xt)−∇f(xt)

)∥∥∥∥∥
2


=
1

b2
Eξt

[
b∑

i=1

∥∥Gξt,i(xt)−∇f(xt)
∥∥2]

≤ C2

b
.

This completes the proof. (Q.E.D.)

C.2 Proof of Lemma 5.1

(Proof) From Definition 2.1 and (A2), we have, for all x,y ∈ Rd,∣∣∣f̂δ(x)− f(x)
∣∣∣ = |Eu [f(x− δu)]− f(x)|

= |Eu [f(x− δu)− f(x)]|
≤ Eu [|f(x− δu)− f(x)|]
≤ Eu [Lf∥(x− δu)− x∥]
= δLfEu [∥u∥]
≤ δLf .

This completes the proof. (Q.E.D.)

D Lemmas on smoothed function

The following Lemmas concern the properties of smoothed functions f̂δ.
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Lemma D.1 Suppose that (A1) holds; then, f̂δ defined by Definition 2.1 is also Lg-
smooth; i.e., for all x,y ∈ Rd,∥∥∥∇f̂δ(x)−∇f̂δ(y)

∥∥∥ ≤ Lg∥x− y∥.

(Proof) From Definition 2.1 and (A1), we have, for all x,y ∈ Rd,∥∥∥∇f̂δ(x)−∇f̂δ(y)
∥∥∥ = ∥∇Eu [f(x− δu)]−∇Eu [f(y − δu)]∥

= ∥Eu [∇f(x− δu)]− Eu [∇f(y − δu)]∥
= ∥Eu [∇f(x− δu)−∇f(y − δu)]∥
≤ Eu [∥∇f(x− δu)−∇f(y − δu)∥]
≤ Eu [Lg ∥(x− δu)− (y − δu)∥]
= Eu [Lg ∥x− y∥]
= Lg∥x− y∥.

This completes the proof. (Q.E.D.)

Lemma D.2 Suppose that (A2) holds; then f̂δ is also an Lf -Lipschitz function; i.e.,
for all x,y ∈ Rd, ∣∣∣f̂δ(x)− f̂δ(y)

∣∣∣ ≤ Lf∥x− y∥.

(Proof) From Definition 2.1 and (A2), we have, for all x,y ∈ Rd,∣∣∣f̂δ(x)− f̂δ(y)
∣∣∣ = |Eu [f(x− δu)]− Eu [f(y − δu)]|

= |Eu [f(x− δu)− f(y − δu)]|
≤ Eu [|f(x− δu)− f(y − δu)|]
≤ Eu [Lf∥(x− δu)− (y − δu)∥]
= Eu [Lf ∥x− y∥]
= Lf∥x− y∥.

This completes the proof. (Q.E.D.)
Lemmas D.1 and D.2 imply that the Lipschitz constants Lf of the original function

f and Lg of ∇f are taken over by the smoothed function f̂δ and its gradient ∇f̂δ for
all δ ∈ R.
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E Lemmas used in the proofs of the theorems

Lemma E.1 Suppose that f̂δm : Rd → R is σm-strongly convex and x̂
(m)
t+1 := x̂

(m)
t −

ηtgt. Then, for all t ∈ N,

f̂δm(x̂
(m)
t )− f̂δm(x⋆) ≤ 1− σmηt

2ηt
Xt −

1

2ηt
Xt+1 +

ηt
2
∥gt∥2,

where gt := ∇f̂δm(x̂
(m)
t ), Xt := ∥x̂(m)

t − x⋆
δm

∥2, and x⋆
δm

is the global minimizer of

f̂δm . (Proof) Let t ∈ N. The definition of x̂
(m)
t+1 guarantees that

∥x̂(m)
t+1 − x⋆∥2 = ∥(x̂(m)

t − ηtgt)− x⋆∥2

= ∥x̂(m)
t − x⋆∥2 − 2ηt⟨x̂(m)

t − x⋆
δm , gt⟩+ η2t ∥gt∥2.

From the σm-strong convexity of f̂δm ,

∥x̂(m)
t+1 − x⋆

δm∥2 ≤ ∥x̂(m)
t − x⋆

δm∥2 + 2ηt

(
f̂δm(x⋆

δm)− f̂δm(x̂
(m)
t )− σm

2
∥x̂(m)

t − x⋆
δm∥2

)
+ η2t ∥gt∥2.

Hence,

f̂δm(x̂
(m)
t )− f̂δm(x⋆

δm) ≤ 1− σmηt
2ηt

∥x̂(m)
t − x⋆

δm∥2 − 1

2ηt
∥x̂(m)

t+1 − x⋆
δm∥2 + ηt

2
∥gt∥2.

This completes the proof. (Q.E.D.)

Lemma E.2 Suppose that f̂δm : Rd → R is Lg-smooth and x̂
(m)
t+1 := x̂

(m)
t −ηtgt. Then,

for all t ∈ N,

ηt

(
1− Lgηt

2

)
∥∇f̂δm(x̂

(m)
t )∥2 ≤ f̂δm(x̂

(m)
t )− f̂δm(x̂

(m)
t+1).

where gt := ∇f̂δm(x̂
(m)
t ) and x⋆

δm
is the global minimizer of f̂δm . (Proof) From the

Lg-smoothness of the f̂δm and the definition of x̂
(m)
t+1, we have, for all t ∈ N,

f̂δm(x̂
(m)
t+1) ≤ f̂δm(x̂

(m)
t ) + ⟨∇f̂δm(x̂

(m)
t ), x̂

(m)
t+1 − x̂

(m)
t ⟩+ Lg

2
∥x̂(m)

t+1 − x̂
(m)
t ∥2

= f̂δm(x̂
(m)
t )− ηt⟨∇f̂δm(x̂

(m)
t ), gt⟩+

Lgη
2
t

2
∥gt∥2

≤ f̂δm(x̂
(m)
t )− ηt

(
1− Lgηt

2

)
∥∇f̂δm(x̂

(m)
t )∥2.

Therefore, we have

ηt

(
1− Lgηt

2

)
∥∇f̂δm(x̂

(m)
t )∥2 ≤ f̂δm(x̂

(m)
t )− f̂δm(x̂

(m)
t+1).

This completes the proof. (Q.E.D.)
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Lemma E.3 Suppose that f̂δm : Rd → R is Lg-smooth, x̂
(m)
t+1 := x̂

(m)
t − ηtgt, and

ηt := η < 2
Lg

. Then, for all t ∈ N,

1

T

T∑
t=1

∥gt∥2 ≤ 6Lfδm
η (2− Lgη)T

,

where gt := ∇f̂δm(x̂
(m)
t ) and x⋆

δm
is the global minimizer of f̂δm . (Proof) According

to Lemma E.2, we have

η

(
1− Lgη

2

)
∥∇F (x

(m)
t )∥2 ≤ f̂δm(x̂

(m)
t )− f̂δm(x̂

(m)
t+1).

Summing over t, we find that

η

(
1− Lgη

2

)
1

T

T∑
t=1

∥∇f̂δm(x̂
(m)
t )∥2 ≤

f̂δm(x̂
(m)
1 )− f̂δm(x̂

(m)
T+1)

T
.

Hence, from η < 2
Lg

,

1

T

T∑
t=1

∥gt∥2 =
2
(
f̂δm(x̂

(m)
1 )− f̂δm(x⋆

δm
)
)

η (2− Lgη)T
.

Here, from the Lf -Lipschitz continuity of f̂δm ,

f̂δm(x̂
(m)
1 )− f̂δm(x⋆

δm) ≤ Lf∥x̂(m)
1 − x⋆

δm∥
≤ 3Lfδm,

where we have used x
(m)
1 ∈ B(x⋆

δm
; 3δm). Therefore, we have

1

T

T∑
t=1

∥gt∥2 =
6Lfδm

η (2− Lgη)T
.

This completes the proof. (Q.E.D.)

F Proof of the Theorems and Propositions

F.1 Proof of Theorem 4.1

(Proof) Lemma E.1 guarantees that

f̂δm(x̂
(m)
t )− f̂δm(x⋆

δm) ≤ 1− σmηt
2ηt

Xt −
1

2ηt
Xt+1 +

ηt
2
∥gt∥2

=
1− σmη

2η
(Xt −Xt+1)−

σm

2
Xt+1 +

η

2
∥gt∥2.
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From η < min
{

1
σm

, 2
Lg

}
and Lemma E.3, by summing over t we find that

1

T

T∑
t=1

(
f̂δm(x̂

(m)
t )− f̂δm(x⋆

δm)
)
≤ 1− σmη

2ηT
(X1 −XT+1)−

σm

2T

T∑
t=1

Xt+1

+
η

2T

T∑
t=1

∥gt∥2

≤ 1− σmη

2ηT
X1 +

η

2T

T∑
t=1

∥gt∥2

≤ 9 (1− σmη) δ2m
2η︸ ︷︷ ︸

=:H1

1

T
+

3Lfδm
η (2− Lgη)︸ ︷︷ ︸

=:H2

1

T

= (H1 +H2)︸ ︷︷ ︸
=:Hm

1

T

=
Hm

T
,

where we have used X1 := ∥x̂(m)
1 − x⋆

δm
∥2 ≤ 9δ2m and Hm > 0 is a nonnegative

constant. From the convexity of F ,

f̂δm

(
1

T

T∑
t=1

x̂
(m)
t

)
≤ 1

T

T∑
t=1

f̂δm(x̂
(m)
t ).

Hence,

f̂δm

(
1

T

T∑
t=1

x̂
(m)
t

)
− f̂δm(x⋆

δm) ≤ Hm

T
= O

(
1

T

)
.

In addition, since the minimum value is smaller than the mean, we have

min
t∈[T ]

(
f̂δm

(
x̂
(m)
t

)
− f̂δm(x⋆

δm)
)
≤ Hm

T
= O

(
1

T

)
.

This completes the proof. (Q.E.D.)

F.2 Proof of Proposition 4.2

(Proof) This proposition can be proved by induction. Since we assume x1 ∈
N(x⋆

δ1
; 3δ1), we have

∥x1 − x⋆
δ1∥ < 3δ1,
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which establishes the case of m = 1. Now let us assume that the proposition holds
for any m > 1. Accordingly, the initial point xm for the optimization of the m-th

smoothed function f̂δm and its global optimal solution x⋆
δm

are both contained in the
its σm-strongly convex region N(x⋆

δm
; 3δm). Thus, after Tm := Hm/ϵm iterations, Al-

gorithm 4.2 (GD) returns an approximate solution x̂
(m)
Tm+1 =: xm+1, and the following

holds from Theorem 4.1:

f̂δm(xm+1)− f̂δm(x⋆
δm) ≤ Hm

Tm
= ϵm :=

σmδ2m
2

=
σmδ2m+1

2γ2
.

Hence, from the σm-strongly convexity of f̂δm ,

σm

2
∥xm+1 − x⋆

δm∥2 ≤
σmδ2m+1

2γ2
, i.e., ∥xm+1 − x⋆

δm∥ ≤ δm+1

γ

Therefore, from the σm-niceness of f and γ ∈ [0.5, 1),

∥xm+1 − x⋆
δm+1

∥ ≤ ∥xm+1 − x⋆
δm∥+ ∥x⋆

δm − x⋆
δm+1∥

≤ δm+1

γ
+ (|δm| − δm+1)

=
δm+1

γ
+

(
δm+1

γ
− δm+1

)
=

(
2

γ
− 1

)
δm+1

≤ 3δm+1.

This completes the proof. (Q.E.D.)

F.3 Proof of Theorem 4.2

The following proof uses the technique presented in [61]. (Proof) According to

δm+1 := ηm+1C√
bm+1

and κm√
λm

= γ, we have

δm+1 :=
ηm+1C√
bm+1

=
κmηmC√
λm

√
bm

=
κm√
λm

δm

= γδm.
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Therefore, from M := logγ(α0ϵ) + 1 and δ1 := η1C√
b1

δM = δ1γ
M−1

= δ1α0ϵ

=
η1Cα0ϵ√

b1
.

According to Theorem 4.1,

E
[
f̂δM (xM+1)− f̂δM (x⋆

δM )
]
≤ ϵM

= σMδ2M

=

(√
σMη1Cα0ϵ√

b1

)2

From Lemmas D.2 and 5.1,

f(xM+2)− f(x⋆) =
{
f(xM+2)− f̂δM (xM+2)

}
+
{
f̂δM (x⋆)− f(x⋆)

}
+
{
f̂δM (xM+2)− f̂δM (x⋆)

}
≤
{
f(xM+2)− f̂δM (xM+2)

}
+
{
f̂δM (x⋆)− f(x⋆)

}
+
{
f̂δM (xM+2)− f̂δM (x⋆

δM )
}

≤ δMLf + δMLf +
{
f̂δM (xM+2)− f̂δM (x⋆

δM )
}

= 2δMLf +
{
f̂δM (xM+2)− f̂δM (xM+1)

}
+
{
f̂δM (xM+1)− f̂δM (x⋆

δM )
}

≤ 2δMLf + Lf ∥xM+2 − xM+1∥+
{
f̂δM (xM+1)− f̂δM (x⋆

δM )
}
.

Then, we have

f(xM+2)− f(x⋆) ≤ 2δMLf + 6LfδM + ϵM

= 8LfδM + ϵM ,

where we have used ∥xM+2 − xM+1∥ ≤ 6δM since xM+2,xM+1 ∈ N(x⋆; 3δM ).
Therefore,

f(xM+2)− f(x⋆) ≤ 8Lfη1Cα0ϵ√
b1

+

(√
σMη1Cα0ϵ√

b1

)2

≤ 8Lfη1Cα0ϵ√
b1

+

(√
ση1Cα0ϵ√

b1

)2

≤ ϵ,
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where we have used α0 := min
{ √

b1
16Lfη1C

,
√
b1√

2ση1C

}
.

Let Ttotal be the total number of queries made by Algorithm 4.1; then,

Ttotal =

M+1∑
m=1

Hm

ϵm
=

M+1∑
m=1

Hm

σδ2m
.

Here, from the proof of Theorem 4.1 (see Section F.1), we define H4 > 0 as follows:

Hm :=
9(1− σmη)δ2m

2η
+

3Lfδm
η(2− Lgη)

≤ 9(1− σ1η)δ
2
1

2η
+

3Lfδ1
η(2− Lgη)

=: H4

Thus, from δM = δ1α0ϵ,

Ttotal =

M+1∑
m=1

Hm

σmδ2m
≤ H4

M+1∑
m=1

1

σmδ2m
≤ H4

M+1∑
m=1

1

σ1δ2M
=

H4(M + 1)

σ1δ2M

=
H4(M + 1)

σ1δ21α
2
0ϵ

2
= O

(
1

ϵ2

)
.

This completes the proof. (Q.E.D.)

G Full Experimental Results

The experimental environment was as follows: NVIDIA GeForce RTX 4090×2GPU
and Intel Core i9 13900KF CPU. The software environment was Python 3.10.12,
PyTorch 2.1.0 and CUDA 12.2. The code is available at https://anonymous.4open.
science/r/new-sigma-nice.

https://anonymous.4open.science/r/new-sigma-nice
https://anonymous.4open.science/r/new-sigma-nice
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Fig. 8 Accuracy score for testing and loss function value for training versus
the number of epochs (left) and the number of parameter updates (right)
in training ResNet18 on the CIFAR100 dataset. The solid line represents the
mean value, and the shaded area represents the maximum and minimum over
three runs. In method 1, the learning rate and the batch size were fixed
at 0.1 and 128, respectively. In method 2, the learning rate decreased ev-

ery 40 epochs as
[
0.1, 1

10
√
2
, 0.05, 1

20
√

2
, 0.025

]
and the batch size was fixed at

128. In method 3, the learning rate was fixed at 0.1, and the batch size
was increased as [16, 32, 64, 128, 256]. In method 4, the learning rate was de-

creased as
[
0.1,

√
3

20
, 0.075, 3

√
3

80
, 0.05625

]
and the batch size was increased as

[32, 48, 72, 108, 162].
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Fig. 9 Accuracy score for testing and loss function value for training versus
the number of epochs (left) and the number of parameter updates (right) in
training WideResNet-28-10 on the CIFAR100 dataset. The solid line represents
the mean value, and the shaded area represents the maximum and minimum
over three runs. In method 1, the learning rate and batch size were fixed at
0.1 and 128, respectively. In method 2, the learning rate was decreased ev-

ery 40 epochs as
[
0.1, 1

10
√
2
, 0.05, 1

20
√

2
, 0.025

]
and the batch size was fixed at

128. In method 3, the learning rate was fixed at 0.1, and the batch size was
increased as [8, 16, 32, 64, 128]. In method 4, the learning rate was decreased as[
0.1,

√
3

20
, 0.075, 3

√
3

80
, 0.05625

]
and the batch size was increased as [8, 12, 18, 27, 40].
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H Discussion on the definition of the smoothed function

Recall the general definition of the smoothing of the function.

Definition H.1 Given a function f : Rd → R, define f̂δ : Rd → R to be the function
obtained by smoothing f as

f̂δ(x) := E
u∼N

(
0; 1√

d
Id

) [f(x− δu)] ,

where δ > 0 represents the degree of smoothing and u is a random variable from a
Gaussian distribution.

What probability distribution the random variable u ∈ Rd follows in the definition
of smoothed function varies in the literature. [34, 59, 90] assumes a Gaussian distribu-
tion, while [61] assumes a uniform distribution for the sake of theoretical analysis. So
what probability distribution the random variable u should follow in order to smooth
the function? This has never been discussed.
It is difficult to confirm from a strictly theoretical point of view whether the func-

tion f̂δ obtained by using a random variable u that follows a certain probability
distribution is smoother than the original function f (more precisely, it is possible
with a Gaussian distribution). Therefore, we smoothed a very simple nonconvex
function with random variables following several major probability distributions and
compared it with the original function. We deal with one-dimensional Rastrigin’s
function [68, 69] and Drop-Wave function [91] defined as follows:

(Rastrigin’s function) f(x) := x2 − 10 cos(2πx) + 10, (8)

(Drop-Wave function) f(x) := −1 + cos(12πx)

0.5x2 + 2
. (9)

We smooth the above functions in accordance with Definition 2.1 using random
variables following light-tailed distributions: Gaussian, uniform, exponential, and
Rayleigh, and heavy-tailed distributions: Pareto, Cauchy, and Levy. We have added
the code for this smoothing experiment to our anonymous GitHub. For more informa-
tion on the parameters of each probability distribution, please see there. First, Figure
10 plots the Rastrigin’s function and its smoothed version with a degree of smoothing
of δ = 0.5, using a random variable that follows several probability distributions.
Figures 10 shows that smoothing using random variable from light-tailed distribu-

tions works, while smoothing using random variable from heavy-tailed distributions
does not. The reason for this is thought to be that extremely large values tend to
appear in heavy-tailed distributions, and the function values are not stable.
Next, Figure 11 plots the Drop-Wave function and its smoothed version with a de-

gree of smoothing of δ = 0.5, using a random variable that follows several probability
distributions.
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Fig. 10 Rastrigin’s function (8) and its smoothed version using random variables
following a light-tailed distribution (left) and heavy-tailed distribution (right).
The degree of smoothing is set to 0.5. Note that right graph has the logarithmic
vertical axis with a base of 10.
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Fig. 11 Drop-Wave function (9) and its smoothed version using random vari-
ables following a light-tailed distribution (left) and heavy-tailed distribution
(right). The degree of smoothing is set to 0.5.

Figure 11 shows that, in contrast to Figure 10, the heavy-tailed distribution suc-
cessfully smooths the function as well as the light-tailed distribution. The reason
for this lies in the definition of the Drop-Wave function. The Drop-Wave function
has an x2 term in its denominator, which prevents the function value from exploding
even when the heavy-tailed distribution provides extremely large values, and thus the
smoothing works.
In smoothing of the function, random variables have been defined to follow pri-

marily a Gaussian distribution (see Definition H.1), but these experimental results
motivate us to extend it from a Gaussian distribution to a light-tailed distribution
(see Definition 2.1). Note that we also provide the interesting finding that, depend-
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ing on the definition of the original function, random variables from heavy-tailed
distributions can also be useful for smoothing.

I Discussion on σm-nice function

I.1 Extension from σ-nice function to σm-nice function

Hazan et al., proposed σ-nice function to analyze graduated optimization algorithm.

Definition I.1 (σ-nice function [61]) Let M ∈ N and m ∈ [M ]. A function f : Rd →
R is said to be σ-nice if the following two conditions hold:
(i) For all δm > 0 and all x⋆

δm
, there exists x⋆

δm+1
such that:

∥∥∥x⋆
δm − x⋆

δm+1

∥∥∥ ≤ δm+1 :=
δm
2
.

(ii) For all δm > 0, the function f̂δm(x) over N(x⋆
δm

; 3δm) is σ-strongly convex.

Recall our σm-nice function (Definition 4.1).

Definition I.2 (σm-nice function) Let M ∈ N, m ∈ [M ], and γ ∈ [0.5, 1). A function
f : Rd → R is said to be σm-nice if the following two conditions hold:
(i) For all δm > 0 and all x⋆

δm
, there exists x⋆

δm+1
such that:∥∥∥x⋆

δm − x⋆
δm+1

∥∥∥ ≤ δm+1 := γδm.

(ii) For all δm > 0, the function f̂δm(x) over N(x⋆
δm

; 3δm) is σm-strongly convex.

In condition (i), we extended the decay rate of the degree of smoothing from a
constant 0.5 to a constant γ ∈ [0.5, 1). See Proposition 4.2 for the soundness of this

extension. In condition (ii), f̂δm was always defined to be σ-strongly convex in the
definition of σ-nice function, which is a rather strong assumption. In fact, the greater

the degree of smoothing δm is, the smoother the smoothed function f̂δm becomes and
the smaller the strong convexity parameter may be. Here, let σsmall be a strongly
convexity parameter of f and 0 < σsmall < σbig, then the function f is not σbig-
strongly convex function. Therefore, the strongly convexity parameter should depend
on the degree of smoothing δm and we extend the strongly convexity parameter to
σm from σ.

I.2 Proof of Proposition 4.1

(Proof) First, we consider the cross entropy loss. Let xi ∈ Rd (i ∈ [n]) be the i-th
training data, yi ∈ Rc be the i-th label (one-hot vector), and f(xi) be the i-th output
of the model, where d is the number of model parameters, c is the number of classes,
and n is the number of training data. Assume that the output elements f(xi)

(j) ∈ R
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(j ∈ [c]) are normalized to (0, 1] by using a softmax function. In this case, the cross
entropy loss can be expressed as

LCEL :=
1

n

∑
i∈[n]

LCEL
i , where LCEL

i := − log f(xi)
(yhot

i ),

where yhoti is an index with element 1 of label yi, and f(xi)
(yhot

i ) ∈ R is an element
of f(xi) corresponding to that index yhoti . Therefore, we can consider the following
function:

g(x) := − log x (0 < x ≤ 1).

Recall the definition of the smoothed function with a Gaussian u,

ĝδ(x) := Eu∼N(0;1)[g(x− δu)].

From the Taylor expansion, we have

− log(x− δu) ≈ − log x+
δu

x
+

δ2u2

2x2
.

Hence,

ĝδ(x) := E [− log(x− δu)] = − log x+
δ2

2x2
,

where we use E[u] = 0,E[u2] = 1.
First, both g and ĝδ are functions have a global minimum at x = 1, i.e., x⋆ = 1

and x⋆
δ = 1 for all δ. Thus, the first σm-nice condition is satisfied. Next, since

g′′(x) = 1
x2 ≥ 1 and ĝ′′δ (x) =

1
x2 + 3δ2

x4 ≥ 1 hold, both g and ĝδ are 1-strongly convex.

Thus, the σm-nice second condition is also satisfied. Therefore, g i.e., LCEL
i is a 1-nice

function. Since cross entropy loss LCEL is the average of n functions LCEL
i , LCEL is

also a 1-nice function. This completes the proof for the cross entropy loss.
Next, we consider the mean squared error. Let ŷi be the i-th output of the model,

yi be the i-th true value, and n be the number of training data. Then, the mean
squared error can be expressed as

LMSE :=
1

n

∑
i∈[n]

LMSE
i , where LMSE

i := (ŷi − yi)
2.

Therefore, we can consider the following function:

h(x) := x2.
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From the definition of the smoothed function with Gaussian u, we have

ĥδ(x) := Eu∼N (0;1)[h(x− δu)]

= Eu∼N (0;1)[(x− δu)2]

= x2 − 2δEu[u] + δ2Eu[u
2]

= x2 + δ2,

where we use E[u] = 0,E[u2] = 1.

First, both h and ĥδ are functions that have a global minimum at x = 0, i.e.,
x⋆ = 0 and x⋆

δ = 0 for all δ. Thus, the first σm-nice condition is satisfied. Next,

since h′′(x) = 2 and ĥ′′
δ (x) = 2 hold, both h and ĥδ are 2-strongly convex. Thus,

the second σm-nice condition is also satisfied. Therefore, the function h i.e., LMSE
i is

a 1-nice function. Since the mean squared error LMSE is the average of n functions
LMSE
i , LMSE is also a 2-nice function. This completes the proof for the mean squared

error. (Q.E.D.)

I.3 Discussion on the light-tailed distribution

According to [92, Definition 3.1], the light-tailed distribution is defined as follows:

Definition I.3 (light-tailed distribution) A random variable X is said to be light-
tailed if there exists a c0 > 0 such that E [exp(λX)] < ∞ for all |λ| < c0.

This definition implies that the probability density function of the light-tailed distri-
bution decreases exponentially at the tail. The definition of function smoothing in
the previous study [61, Definition 4.1] used a random variable that follows a uniform
distribution. We can show that the uniform distribution is light-tailed distribution.

Proposition I.1 The uniform distribution is light-tailed distribution.

(Proof) Let X be a random variable which follows uniform distribution over the
interval [a, b], where a, b ∈ R (a ≤ b). Then, the probability density function fX(x) is
defined as follows:

fX(x) =

{
1

b−a , if x ∈ [a, b],

0, otherwise.

For all λ ∈ R \ {0}, we have

E
[
eλX

]
=

∫ b

a

eλxfX(x)dx =
1

b− a

∫ b

a

eλxdx =
1

b− a
· 1
λ

[
eλx
]b
a
=

1

λ(b− a)

(
eλb − eλa

)
.

When λ = 0, we have

E
[
eλX

]
= E

[
e0
]
= 1.

Therefore, for all λ ∈ R, we obtain E
[
eλX

]
< ∞. (Q.E.D.)
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I.4 Distribution of SGD’s stochastic noise

We collected 1000 each of stochastic noise ωt := ∇fSt
(xt) − ∇f(xt) and tested

whether each element follows a light-tailed distribution. They were collected at the
point where ResNet18 had been trained on the CIFAR100 dataset (10,000 steps). The
code used in this experiment is available on our anonymous GitHub. ResNet18 has
about 11M parameters, so ωt form an 11M-dimentional vector. Figure 12 plots the
results for the ωt elements from dimension 0 to dimension 100,000. Figure 13 present
the results for all elements. These results demonstrate that the SGD’s stochastic noise
ωt follows a light-tailed distribution.

Fig. 12 Distribution of 1000 ωt elements from 0 to 100,000 dimensions.
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Fig. 13 Complete results for distribution of 1000 ωt elements. The distribution
is plotted separately for each 100,000 dimensions.
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