
1

ϵ-Approximation of Adaptive Leaning Rate
Optimization Algorithms for Constrained

Nonconvex Stochastic Optimization
Hideaki Iiduka

Abstract—This paper considers constrained nonconvex
stochastic finite-sum and online optimization in deep neural
networks. Adaptive-learning-rate optimization algorithms, such
as Adam, AMSGrad, and their variants, have widely been used
for these optimizations because they are powerful and useful
in theory and practice. Here, it is shown that the adaptive-
learning-rate optimization algorithms are ϵ-approximations for
these optimizations. We provide the learning rates, mini-batch
sizes, number of iterations, and stochastic gradient complexity
with which to achieve ϵ-approximations of the algorithms.

Index Terms—Adaptive-learning-rate optimization algorithm,
deep neural network, ϵ-approximation, nonconvex stochastic
optimization, stochastic gradient complexity.

I. INTRODUCTION

ADAPTIVE-learning-rate optimization algorithms (AL-
ROAs) have been used to train deep neural networks

[1], [2], [3], [4], [5], [6], [7], [8]. These algorithms can find
suitable parameters for deep neural network models by using
nonconvex optimization since they can adapt the learning rates
of all model parameters. They are based on the stochastic
gradient descent (SGD) algorithm [9], [10], [11], which is
the simplest algorithm for solving nonconvex optimization
problems in deep neural networks.

The adaptive gradient (AdaGrad) algorithm [12] is based
on SGD, and the root mean square propagation (RMSProp)
algorithm [13, Chapter 8] is a modification of AdaGrad. The
adaptive moment estimation (Adam) algorithm [14] is widely
used to train deep neural networks. Adam is based on momen-
tum [15] and RMSProp. The adaptive mean square gradient
(AMSGrad) algorithm [16], [17] that is based on Adam is
another useful algorithm for training deep neural networks.
Variants of Adam and AMSGrad have been presented that
adapt the step sizes; they include belief in observed gradients
(AdaBelief) [18] and AMSGrad with weighted gradient and
dynamic bound (AMSGWDC) [19]. The above algorithms are
called first-order stochastic optimization algorithms and use
the stochastic gradient of an observed differentiable function.

In this paper, we focus on nonconvex stochastic optimiza-
tion in deep neural networks and consider algorithms for
nonconvex stochastic optimization. Nonconvex stochastic op-
timization is divided into two classes: finite-sum optimization
and online optimization. The objective function in finite-sum
optimization is defined as the sum of all loss functions, while

H. Iiduka is with the Department of Computer Science, Meiji University,
Kanagawa 214-8571, Japan (e-mail: iiduka@cs.meiji.ac.jp). This work was
supported by JSPS KAKENHI Grant Number 21K11773.

the objective function in online optimization is defined as an
expectation of loss functions (see also Assumption II.1(A2)
for the definitions of objective functions).

A. Existing results

The convergence rate analyses for SGD [10], Mini-batch
SGD (MSGD) [11], AMSGrad [17], and AdaBelief [18] are
summarized in Table I. The table shows that these algorithms
with diminishing learning rates can only be applied to uncon-
strained finite-sum optimization.

Meanwhile, the stochastic path-integrated differential esti-
mator (SPIDER) [20] can be applied to unconstrained online
optimization as well as finite-sum optimization. SPIDER,
which is a first-order stochastic optimization algorithm, is
useful for nonconvex optimization and it can achieve an ϵ-
approximation such that the mean of the expectation of the
gradient norm is less than or equal to ϵ (see also Table I for
the detailed definition of ϵ-approximation). Showing that an
ϵ-approximation exists is important because it lets us know in
advance the number of iterations and the stochastic gradient
complexity (SGC), which is the stochastic gradient compu-
tation cost, to evaluate the performance of the optimization
algorithms.

Recently, an algorithm [21] was presented to unify the
existing ALROAs, including SGD, AMSGrad, AMSGWDC,
and AdaBelief. The unified algorithm can be applied to not
only unconstrained but also constrained finite-sum and online
optimization, as indicated in the two “ALROAs [21]” rows
in Table I. It was shown in [21] that the unified algorithm
with diminishing learning rates has an O(1/

√
k) convergence,

where k is the number of iterations. This implies that the
convergence rate of the existing ALROAs, such as AMSGrad
and AdaBelief, is O(1/

√
k), which is an improvement on the

previous results [17], [18] in Table I.

B. Motivation

Subsection I-A indicated that the existing first-order
stochastic optimization algorithms are useful for solving non-
convex optimization problems in deep neural networks. The
previous results in [21] only gave convergence analyses of AL-
ROAs for finite-sum and online optimization. It is important to
clarify the mini-batch sizes and learning rates for ALROAs in
order to achieve ϵ-approximations in both theory and practice.

Here, we have two motivations related to the previous
results in [20], [21]. The first is to determine the mini-batch

2

TABLE I: Comparison of convergence rates, numbers of iterations, and stochastic gradient complexities (SGC) needed for
ϵ-approximation of first-order stochastic optimization algorithms for unconstrained and constrained nonconvex optimization

Unconstrained nonconvex optimization Constrained nonconvex optimization
Convergence ϵ-approximation Convergence ϵ-approximation

rate (i) Iteration (ii) SGC rate (i) Iteration (ii) SGC

Finite SGD [10] O
(

1√
k

)
——— ——— ——— ——— ———

-sum MSGD [11] O
(
1
k

)
+ C(m) ——— ——— ——— ——— ———

AMSGrad [17] O
(

ln k√
k

)
——— ——— ——— ——— ———

AdaBelief [18] O
(

ln k√
k

)
——— ——— ——— ——— ———

SPIDER [20] ———
⌊
4L∆n0

ϵ2

⌋
+ 1 O

(
n+

√
n

ϵ2

)
——— ——— ———

ALROAs [21] O
(

1√
k

)
——— ——— O

(
1√
k

)
——— ———

this work O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
Online SPIDER [20] ———

⌊
4L∆n0

ϵ2

⌋
+ 1 O

(
1
ϵ3

)
——— ——— ———

ALROAs [21] O
(

1√
k

)
——— ——— O

(
1√
k

)
——— ———

this work O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
Let n be the total number of samples, k the number of iterations, and C(m) a positive constant dependent on the mini-batch size m. (See Section III-A for
the definitions of the parameters L, ∆, and n0.) For the constrained case, the convergence rate of an algorithm when the learning rate αk is O(1/

√
k) or

O(1/k) is measured by the upper bound of minj∈[k] E[⟨xj − x,∇f(xj)⟩] (x ∈ X), which is a generalization of minj∈[k] E[∥∇f(xj)∥2], which is in
turn a measure of the convergence rate for the unconstrained case, where [k] = {1, 2, . . . , k}. For the constrained case, the number of iterations K needed
for an ϵ-approximation of an algorithm is measured by (1/K)

∑K
k=1 E[⟨xk −x,∇f(xk)⟩] ≤ ϵ2 (x ∈ X), while for the unconstrained case, it is measured

by (1/K)
∑K

k=1 E[∥∇f(xk)∥] ≤ ϵ.

size, learning rates, and number of iterations to achieve an ϵ-
approximation of ALROAs. Motivated by the results in [20],
we would like to devise an ϵ-approximation of ALROAs for
constrained finite-sum optimization as well as for constrained
online optimization. Additionally, we would like to know the
SGC of such an ϵ-approximation.

Our second motivation is to determine whether AL-
ROAs based on different learning rate rules can achieve ϵ-
approximations. Here, there are two learning rate rules in
the convergence analyses of first-order stochastic optimization
algorithms. The constant learning rate rule is used for SGD
[10], SPIDER [20], and ALROAs [21], while the diminishing
learning rate rule is used for SGD [10], MSGD [11], AMSGrad
[17], AdaBelief [18], and ALROAs [21].

C. Contribution

This paper shows that ALROAs with not only constant but
also diminishing learning rates can be ϵ-approximations for
constrained finite-sum and online optimization. The results
of the finite-sum and online optimization for ALROAs with
diminishing learning rates are summarized in the two “this
work” rows in Table I (see Table III for the results of finite-sum
and online optimization for ALROAs with constant learning
rates).

First, we show that ALROAs with constant learning rates
can achieve ϵ-approximations for both constrained finite-sum
and online optimization (Section IV-A). Here, the number of
iterations needed for an ϵ-approximation is O(⌊1/ϵ4⌋)+1. The
SGCs are O(min{n+n/ϵ4, 1/ϵ4}) for constrained finite-sum
optimization and O(1/ϵ4) for online optimization (Theorem
IV.1 ii) and Table III). Moreover, we show that, for ALROAs
with constant learning rates, an upper bound of the expectation
of the variational inequality is O(1/k) + ϵ2 (Theorem IV.1
i) and Table III). While SPIDER [20] with constant learning

rates can be applied to unconstrained finite-sum and online
optimization, we should emphasize that our results apply to
constrained finite-sum and online optimization. Obviously, our
results also allow us to perform unconstrained optimization
because constrained optimization reduces to unconstrained
optimization.

The previous studies [10], [11], [17], [18], [21] showed that
SGD, AMSGrad, and the variants of Adam and AMSGrad
can perform nonconvex optimization in deep neural networks
(see Table I). However, they only presented convergence rate
analyses of ALROAs and did not show any ϵ-approximation
of ALROAs with diminishing learning rates. The second
contribution of this paper is to show that ALROAs with di-
minishing learning rates can achieve ϵ-approximations for both
constrained finite-sum and online optimization (Section IV-B).
Here, the number of iterations needed for an ϵ-approximation
is ⌊1/ϵ4⌋+1. The SGCs of constrained finite-sum and online
optimization are, respectively, O(min{n + n/ϵ4, 1/ϵ4}) and
O(1/ϵ4) (Theorem IV.2 ii) and Tables I and III). Moreover, we
show that the convergence rate of ALROAs with a diminishing
learning rate αk = 1/

√
k is O(1/

√
k), which is the same

result as in [21] (Theorem IV.2 i)).

D. Comparisons of our results with recent studies

This paper is related to recent papers [7], [8], [21]. In [8], it
was studied how increasing the batch size affects the perfor-
mance of SGD, SGD with momentum [15], [22], and Nesterov
momentum [23], [24]. Adam and K-FAC (Kronecker-factored
approximate curvature [25]) were studied in [7]. It was numeri-
cally shown that increasing the batch size tends to decrease the
number of iterations K needed to achieve an ϵ-approximation.
However, it was also shown that there are diminishing returns
to increasing the batch size to yield a decrease in K [7, Figure
8], [8, Figure 4]. Moreover, for a fixed batch size, the smaller

3

ϵ is, the larger K becomes [8, Figure 2]. The numerical results
in [7], [8] support our results showing that K is proportional
to 1/ϵ4 (see also Theorems IV.1 and IV.2 and Tables I and
III).

In [21], it was shown that ALROAs with a diminishing
learning rate αk = 1/kη , where η ∈ (1/2, 1], converge to
stationary points of general constrained nonconvex stochastic
optimization problems. However, it is not guaranteed that this
result implies the existence of ϵ-approximations. This is be-
cause the previous study [21] did not consider how setting the
mini-batch size affects the performance of ALROAs. Hence,
further analyses are needed to guarantee that ALROAs can be
ϵ-approximations. Thus, the novelty of this paper compared
with [21] is to show that ALROAs using an appropriate mini-
batch size are ϵ-approximations for constrained nonconvex
stochastic optimization problems (see also the two “this work”
rows in Table I and Section I-C). Section IV-C provides
detailed comparisons with the previous results in [21].

This paper is organized as follows: Section II presents
mathematical preliminaries, including the assumptions of a
constrained set and on the objective function. Section III
reviews the existing algorithms for deep neural networks.
Section IV shows that ALROAs can achieve ϵ-approximations
for constant learning rate and diminishing learning rate rules. It
also compares the results of our method with those of previous
methods. Section V concludes the paper with a brief summary.

II. MATHEMATICAL PRELIMINARIES

A. Notation and definitions

|S| denotes the number of elements of a set S. N denotes the
set of all positive integers and zero. Let n ∈ N\{0}. We define
[n] := {1, 2, . . . , n}. Rd denotes a d-dimensional Euclidean
space with inner product ⟨·, ·⟩, which induces the norm ∥ · ∥.
Sd denotes the set of d × d symmetric matrices, i.e., Sd =
{M ∈ Rd×d : M = M⊤}, where we use M⊤ to indicate its
transpose. Let Sd++ be the set of d × d symmetric positive-
definite matrices, i.e., Sd++ = {M ∈ Sd : M ≻ O}, and let Dd

be the set of d× d diagonal matrices denoted by Dd = {M ∈
Rd×d : M = diag(xi), xi ∈ R (i ∈ [d])}.

We define x ⊙ x for x := (xi)
d
i=1 ∈ Rd by x ⊙ x :=

(x2
i)

d
i=1 ∈ Rd. Suppose that H ∈ Sd++. The H-inner product

of Rd is defined for all x,y ∈ Rd by ⟨x,y⟩H := ⟨x,Hy⟩ and
the H-norm is defined by ∥x∥H :=

√
⟨x,Hx⟩. The metric

projection onto a nonempty, closed convex set X (⊂ Rd) is
denoted by PX : Rd → X . It is defined for all x ∈ Rd by
PX(x) ∈ X and ∥PX(x) − x∥ = infy∈X ∥y − x∥. We use
PX,H for the metric projection onto X under the H-norm. For
a random variable Z, we use E[Z] to indicate its expectation.

B. Assumptions of constrained set, objective function, and
gradient estimation

This paper considers optimization problems under the fol-
lowing assumptions.

Assumption II.1
(A1) [Constrained set] X ⊂ Rd is a nonempty, closed convex

set onto which the projection can be easily computed.

(A2) [Objective function] fi : Rd → R (i ∈ [n]) is differen-
tiable and f : Rd → R is defined for all x ∈ Rd by

f(x) :=

{
1
n

∑n
i=1 fi(x) (finite-sum),

E[fξ(x)] (online).

The gradient vector of f at x ∈ Rd, denoted by ∇f(x),
coincides with E[∇fi(x)].

(A3) [Gradient estimation] For each iteration k, the opti-
mization algorithms sample a mini-batch Sk ⊂ [n], of
size s := |Sk| independently of k and estimate the full
gradient ∇f as

∇fSk
:=

1

s

∑
i∈Sk

∇fi.

(A4) [Gradient boundedness] There exists a positive number
M such that, for all x ∈ X , E[∥∇fSk

(x)∥2] ≤M2.

Examples of X satisfying (A1) are the whole space Rd, a
closed ball, an affine subspace, a halfspace, and a hyperslab
[26, Chapter 28]. Assumption (A2) is a standard one for
nonconvex optimization in deep neural networks (see, e.g.,
[17, (2)] and [20, (1.1), (1.2), (B.5)]). Assumption (A3) is
needed for the optimization algorithms to work (see, e.g., [17,
Section 2] and [20, Notation section]), and Assumption (A4)
is used to analyze the optimization algorithms (see, e.g., [17,
A2]).

III. NONCONVEX OPTIMIZATION PROBLEM IN DEEP
NEURAL NETWORKS

This paper deals with the following stationary point problem
for nonconvex optimization to minimize an objective function
f in (A2) over a constrained set X in (A1).

Problem III.1 Under Assumption II.1, we would like to find
a stationary point x⋆ of a nonconvex optimization problem to
minimize f over X , i.e.,

x⋆ ∈ X⋆ := {x⋆ ∈ X : ⟨x⋆ − x,∇f(x⋆)⟩ ≤ 0 (x ∈ X)} .

Suppose that X = Rd. Let x⋆ ∈ X⋆. Setting x :=
x⋆ − ∇f(x⋆) ∈ Rd ensures that 0 ≥ ⟨∇f(x⋆),∇f(x⋆)⟩ =
∥∇f(x⋆)∥2, which implies that ∇f(x⋆) = 0. If x⋆ satisfies
∇f(x⋆) = 0, then x⋆ ∈ X⋆. Hence, Problem III.1 with
X = Rd can be expressed as the problem [17], [18] of finding
a local minimizer of f over Rd, i.e.,

X⋆ =
{
x⋆ ∈ Rd : ∇f(x⋆) = 0

}
. (1)

Accordingly, Problem III.1 is a generalization of problem (1).
Let ϵ > 0. Then, the inequality ⟨x⋆ − x,∇f(x⋆)⟩ ≤ ϵ2 (x ∈
X = Rd) implies that ∥∇f(x⋆)∥ ≤ ϵ (see also Table I for the
detailed definition of ϵ-approximation). If f is convex [14],
[16], the solution to Problem III.1 is a global minimizer of f
over X .

While problem (1) requires us to solve a nonlinear equation
∇f(x) = 0, Problem III.1 requires us to solve a variational
inequality [27], [28], [29] ⟨x− y,∇f(x)⟩ ≤ 0 (y ∈ X). For
general constrained optimization, it is not guaranteed that a

4

solution of the variational inequality satisfies ∇f(x) = 0.1

Hence, in constrained optimization, we must consider more
difficult cases, i.e., ∇f(x) ̸= 0 and ⟨x − y,∇f(x)⟩ ≤ 0 for
all y ∈ X than ∇f(x) = 0.

A. Related work

This section reviews the first-order stochastic optimization
algorithms for nonconvex optimization that are listed in Table
I and mentioned in Section I-A.

1) Algorithms for unconstrained finite-sum optimization:
First, we consider an unconstrained finite-sum optimization,
i.e., problem (1) when f = (1/n)

∑n
i=1 fi. The simplest way

of solving it is to use SGD as follows:

xk+1 = xk − αkgk, (2)

where (αk)k∈N ⊂ (0,+∞) and gk denotes the stochastic
gradient. When the learning rate αk is constant, i.e., αk = 1/β,
where β > 0 is the Lipschitz constant of ∇f , Theorem 12 in
[10] shows that SGD (2) satisfies the condition that there exist
positive real numbers M1 and M2 such that, for all k ≥ 1,
almost surely

1

k

k∑
j=1

∥∇f(xj)∥2 ≤
M1

k
+M2. (3)

When the learning rate αk is diminishing, i.e., αk =
min{O(1/

√
k), 1/β}, Theorem 11 in [10] shows that SGD

(2) satisfies the condition that there exist positive real numbers
M3 and M4 such that, for all k ≥ 1,

1

k

k∑
j=1

E
[
∥∇f(xj)∥2

]
≤ M3

k
+

M4√
k

(4)

(See also Table I for the convergence rate of SGD [10]).
Convergence rate analyses of SGD (2) depending on the

mini-batch size were presented in [11]. In particular, Theorem
3.2 in [11] indicated that, under certain assumptions, MSGD
with αk = O(1/k) satisfies the condition that there exists a
positive real number M5 such that, with probability at least
1− CKe−cm2ϵ

,

∥∇f(xK)∥2 ≤ C

(
M5

K + 1
+m− 1

2+ϵ

)
, (5)

where c, C > 0, m (> C) is the mini-batch size, and ϵ ∈
(0, (C ln lnm)/ lnm) (See also Table I).

The following generalized adaptive moment estimation
(GAdam) was presented in [17]:

mk = βkmk−1 + (1− βk)gk,

v̂k = hk(g1, g2, . . . , gk),

xk+1 = xk − αk
mk√
vk

,

(6)

where (αk)k∈N, (βk)k∈N ⊂ (0,+∞), and mk/
√
vk denotes

element-wise division. GAdam is a generalization [17, Table

1For example, a global minimizer of f(x) = x2 over X = {x ∈ R : x ≥
1} is x⋆ = 1, which satisfies f ′(x⋆) = 2 ̸= 0 and ⟨x⋆ − y, f ′(x⋆)⟩ ≤ 0
(y ∈ X).

1] of popular algorithms such as SGD, AdaGrad [12], AMS-
Grad [16], and RMSProp [13, Algorithm 8.5]. For example,
AMSGrad is GAdam when

vk := βvk−1 + (1− β)gk ⊙ gk and

v̂k := (max{v̂k−1,i, vk,i})di=1,
(7)

where β ∈ (0, 1). Corollaries 3.1 and 3.2 in [17] showed that,
if the learning rate αk = O(1/

√
k) is chosen, then AMSGrad

and AdaGrad with first-order momentum (AdaFom), which
is an example of GAdam, achieve the following convergence
rate:

min
j∈[k]

E
[
∥∇f(xj)∥2

]
≤ 1√

k
(Q1 +Q2 ln k), (8)

where Q1 and Q2 are two positive constants independent of
k (See also Table I).

AdaBelief was presented in [18]; it is defined as

mk = β1mk−1 + (1− β1)gk,

m̂k =
mk

1− βk
1

,

sk = β2sk−1 + (1− β2)(gk −mk)⊙ (gk −mk),

ŝk =
sk

1− βk
2

,

xk+1 = xk − αk
m̂k√
ŝk

,

(9)

where β1, β2 ∈ (0, 1). Theorem 2.2 in [18] shows that, if
sk,i ≤ sk+1,i holds for all k and all i, then AdaBelief (9)
with αk = O(1/

√
k) achieves a (8) convergence rate (See

also Table I).
SPIDER was presented in [20]: Let q, ϵ > 0 and S1,S2 ⊂

[n]. For k = 0, 1, . . . ,K,

vk =

{
∇fS1

(xk) (mod(k, q) = 0),

∇fS2(xk)−∇fS2(xk−1) + vk−1 (mod(k, q) ̸= 0),

xk+1 = xk − η
vk

∥vk∥
, (10)

where ∇fSi (i = 1, 2) is defined by (A3). We define

S1 := [n], |S2| :=
√
n

n0
, η :=

ϵ

Ln0
, q := n0

√
n, and

K :=

⌊
4L∆n0

ϵ2

⌋
+ 1,

(11)

where n0 ∈ [1,
√
n], ∆ := f(x0)− infx∈Rd f(x), and L > 0

denotes the Lipschitz constant in the sense that E[∥∇fi(x)−
fi(y)∥2] ≤ L2∥x − y∥2 (x,y ∈ Rd) [20, Assumption 1(ii)].
Accordingly, SPIDER (10) satisfies

E [∥∇f(x̃)∥] := 1

K

K−1∑
k=0

E [∥∇f(xk)∥] ≤ 5ϵ, (12)

which implies that SPIDER (10) finds an ϵ-approximation first-
order stationary point in the sense of the mean of the expected
gradient norms [20, Theorem 2]. Moreover, the gradient cost
of SPIDER (10) is bounded by n + 8L∆

√
n/ϵ2 + 2

√
n/n0

and the SGC is O(n+
√
n/ϵ2) (See also Table I).

5

2) Algorithms for unconstrained online optimization: SPI-
DER (10) can be also applied to the unconstrained online
optimization, i.e., problem (1) when f = E[fξ]. Here, we
define

|S1| :=
2σ2

ϵ2
, |S2| :=

2σ

ϵn0
, η :=

ϵ

Ln0
, q :=

σn0

ϵ
,

and K :=

⌊
4L∆n0

ϵ2

⌋
+ 1,

(13)

and assume that the stochastic gradient has a finite variance
bounded by σ2 in the sense that E[∥∇fi(x)−∇f(x)∥2] ≤ σ2

(x ∈ Rd) [20, Assumption 1(iii)]. SPIDER (10) satisfies (12),
and its SGC is O(1/ϵ3) [20, Theorem 1] (See also Table I).

3) Algorithms for constrained finite-sum and online opti-
mization: The following algorithm (Algorithm 1) was pre-
sented in [21] to unify the various ALROAs for solving
Problem III.1.

Algorithm 1 Unified algorithm of ALROAs for solving Prob-
lem III.1
Require: (αk)k∈N ⊂ (0, 1), (βk)k∈N ⊂ [0, b] ⊂ [0, 1), γ ∈

[0, 1)
1: k ← 0, x0,m−1 ∈ Rd, H0 ∈ Sd++ ∩ Dd, S0 ⊂ [n]
2: loop
3: mk := βkmk−1 + (1− βk)∇fSk

(xk)

4: m̂k :=
mn

1− γk+1

5: Hk ∈ Sd++ ∩ Dd (see Table II for examples of Hk)
6: Find dk ∈ Rd that solves Hkd = −m̂k

7: xk+1 := PX,Hk
(xk + αkdk)

8: k ← k + 1
9: end loop

Table II lists examples of Hk and shows that Algorithm 1
with X = Rd includes the existing ALROAs, such as Nesterov
momentum [23], [24], AMSGrad [16], [17], and AMSGWDC
[19],2 AdaBelief [18], and modified Adam (MAdam) [21], for
unconstrained nonconvex finite-sum optimization (see also (7)
and (9) for the definitions of AMSGrad and AdaBelief).

Here, we would like to emphasize that Algorithm 1 can
be applied to not only finite-sum but also online constrained
optimization. When the learning rates αk and βk are constant,
i.e., αk = α and βk = β, Algorithm 1 satisfies the following
condition [21, Theorem 1]: there exist positive real numbers
Q3 and Q4 such that, for all x ∈ X and all K ≥ 1,

lim inf
k→+∞

E [⟨xk − x,∇f(xk)⟩] ≤ Q3α+Q4β, (14)

1

K

K∑
k=1

E [⟨xk − x,∇f(xk)⟩] ≤ O
(

1

K

)
+Q3α+Q4β.

(15)

2AMSGWDC uses the following settings: (lk)k∈N ⊂ R is monotone
increasing, (uk)k∈N ⊂ R is monotone decreasing with 0 < lk ≤ uk for
all k ∈ N, and Clip(·, l, u) : R → R (l, u ∈ R with l ≤ u are given) is
defined for all x ∈ R by

Clip(x, l, u) :=

l if x < l,

x if l ≤ x ≤ u,

u if x > u.

TABLE II: Examples of Hk ∈ Sd++∩Dd (step 5) in Algorithm
1 (δ, ζ ∈ [0, 1))

Hk

SGD Hk is the identity matrix.
(βk = γ = 0)

Momentum [23] Hk is the identity matrix.
(γ = 0)

AMSGrad [17] vk = δvk−1 + (1− δ)∇fSk
(xk)⊙∇fSk

(xk)

(γ = 0) v̂k = (max{v̂k−1,i, vk,i})di=1

Hk = diag(
√

v̂k,i)

AMSGWDC [19] vk = δvk−1 + (1− δ)∇fSk
(xk)⊙∇fSk

(xk)

(γ = 0) v̂k = (max{v̂k−1,i, vk,i})di=1

ṽk =

(
Clip

(
1√
v̂k,i

, lk, uk

)−1
)d

i=1

Hk = diag(
√

ṽk,i)

AdaBelief [18] s̃k = (∇fSk
(xk)−mk)⊙ (∇fSk

(xk)−mk)

(sk,i ≤ sk+1,i sk = δvk−1 + (1− δ)s̃k

is needed) ŝk = sk
1−ζk

Hk = diag(
√

ŝk,i)

MAdam [21] vk = δvk−1 + (1− δ)∇fSk
(xk)⊙∇fSk

(xk)

v̄k = vk

1−δk+1

v̂k = (max{v̂k−1,i, v̄k,i})di=1

Hk = diag(
√

v̂k,i)

When αk and βk are diminishing, i.e., αk = O(1/kη) and
βk = λk, where η ∈ [1/2, 1] and λ ∈ (0, 1), Algorithm 1
satisfies the following condition [21, Theorem 2]: for all x ∈
X and all K ≥ 1,

lim inf
k→+∞

E [⟨xk − x,∇f(xk)⟩] ≤ 0, (16)

1

K

K∑
k=1

E [⟨xk − x,∇f(xk)⟩] ≤ O
(

1

K1−η

)
, (17)

where (16) holds for η ∈ (1/2, 1] and (17) holds for η ∈
[1/2, 1). Inequality (16) ensures that there exists a subsequence
(xki

)i∈N of (xk)k∈N such that (xki
)i∈N converges to a solu-

tion of Problem III.1. Moreover, from (17) under η = 1/2,
Algorithm 1 satisfies that, for all x ∈ X and all K ≥ 1,

min
k∈[K]

E [⟨xk − x,∇f(xk)⟩] ≤ O
(

1√
K

)
, (18)

which, together with X = Rd, implies that

min
k∈[K]

E
[
∥∇f(xk)∥2

]
= O

(
1√
K

)
(19)

(See also Table I for the convergence rate of ALROAs [21]).

IV. ϵ-APPROXIMATION OF ALGORITHM 1
To analyze Algorithm 1, we assume the following condi-

tions [21].

Assumption IV.1 The sequence (Hk)k∈N ⊂ Sd++ ∩ Dd, de-
noted by Hk := diag(hk,i), in Algorithm 1 satisfies the
following conditions:
(A5) hk+1,i ≥ hk,i almost surely for all k ∈ N and all i ∈ [d];
(A6) For all i ∈ [d], a positive number Bi exists such that

sup{E[hk,i] : k ∈ N} ≤ Bi.

6

Moreover,
(A7) D := maxi∈[d] sup{(xk,i−xi)

2 : k ∈ N} < +∞, where
x := (xi) ∈ X and (xk)k∈N := ((xk,i))k∈N is the
sequence generated by Algorithm 1.

Assumption (A7) holds under the boundedness of X , which
is assumed in [18, Theorem 2.1], [14, Theorem 4.1], [16, p.2],
and [30, p.1574].

Obviously, (Hk)k∈N in Table II satisfies (A5). To justify that
(A5) is needed to analyze Algorithm 1, we consider Adam [14]
defined by

vk = δvk−1 + (1− δ)∇fSk
(xk)⊙∇fSk

(xk),

v̄k =
vk

1− δk+1
,

Hk = diag(
√
v̄k,i),

xk+1 = xk − αkH
−1
k m̂k,

(20)

where m̂k is defined as in steps 3 and 4 of Algorithm 1. Adam
(20) is one example of Algorithm 1 that does not satisfy (A5).
Theorem 3 in [16] shows that there is a stochastic optimization
problem for which Adam (20) does not converge to the optimal
solution since Adam (20) does not satisfy

hk+1,i

αk+1
:=

√
v̄k+1,i

αk+1
≥
√
v̄k,i
αk

=:
hk,i

αk
. (21)

Assumption (A5) under αk+1 ≤ αk (k ∈ N), which is
satisfied for constant and diminishing learning rates, implies
(21). Therefore, (A5) is needed to guarantee convergence of
Algorithm 1. In particular, Adam is modified with MAdam
(Table II), which satisfies (21) and (A5), to ensure its conver-
gence.

The previous results in [17, p.29], [18, p.18], and [21]
show that (Hk)k∈N in Table II satisfies (A6). There is a
relationship between Assumptions (A4) and (A6) in this
paper and Assumption A.2 in [17]. Reference [17] assumes
that (∇f(xk))k∈N and (αkmk/hk,i)k∈N are bounded [17,
Assumption A.2, Theorem 3.1]. Meanwhile, the proof of [21,
Lemma 2] ensures that, if (A4) holds, then (mk)k∈N in
Algorithm 1 is bounded (see also Lemma IV.1). Accordingly,
(A4) implies that (αkmk/hk,i)k∈N in Algorithm 1 is bounded.
This paper does not assume the boundedness of (∇f(xk))k∈N,
in contrast to [17]. Meanwhile, this paper assumes (A6) in
place of the boundedness of (∇f(xk))k∈N [17, Assumption
A.2].

Algorithm 1 satisfies the following conditions.

Lemma IV.1 [21, Lemma A.2] Under (A4), we have that, for
all k ∈ N,

E
[
∥mk∥2

]
≤ M̃2 := max

{
∥m−1∥2,M2

}
.

In addition, under (A5), we have that, for all k ∈ N,

E
[
∥dk∥2Hk

]
≤ B̃2M̃2

(1− γ)2
,

where

B̃ := sup

{
max
i∈[d]

1√
hk,i

: k ∈ N

}
≤ max

i∈[d]

1√
h0,i

< +∞.

A. Constant learning rate rule

We set

Γ := (1− b)2(1− γ)2 and L̃ := cdBD,

where Bi is defined as in (A6), B := maxi∈[d] Bi < +∞, D
is defined as in (A7), d is the number of dimensions, c > 0 is
chosen arbitrarily, and γ, b ∈ [0, 1) are used in Algorithm 1.
Let ϵ > 0. We define

s = |Sk| :=

min
{
n, c

B̃2M̃2
, c√

dDM̃
, 4Γ
3L̃

}
(finite-sum),

min
{

c
B̃2M̃2

, c√
dDM̃

, 4Γ
3L̃

}
(online),

αk :=
2(1− b)(1− γ)2

3c
ϵ2,

βk := min

{
1− b

3c
ϵ2, b

}
, (22)

where n is the number of samples and B̃, M̃ > 0 are defined
in Lemma IV.1.

The following is an ϵ-approximation analysis of Algorithm
1 with constant learning rates for constrained finite-sum and
online optimization. The proof of Theorem IV.1 is given in
the Supplementary Material.

Theorem IV.1 Suppose that (A1)–(A7) hold and consider the
sequence (xk)k∈N generated by Algorithm 1 with (22) for
Problem III.1. Then, the following hold:

i) For all x ∈ X and all K ≥ 1,

1

K

K∑
k=1

E [⟨xk − x,∇f(xk)⟩] ≤
1

ϵ2K
+

2

3
ϵ2.

ii) To ensure that Algorithm 1 is an ϵ-approximation, i.e.,
for all x ∈ X ,

1

K

K∑
k=1

E [⟨xk − x,∇f(xk)⟩] ≤ ϵ2,

Algorithm 1 terminates in at most K iterations, defined
by

K :=

⌊
3

ϵ4

⌋
+ 1.

The SGC of Algorithm 1 for constrained finite-sum
optimization is

O
(
min

{
n+

n

ϵ4
,
1

ϵ4

})
,

and the SGC of Algorithm 1 for constrained online
optimization is

O
(

1

ϵ4

)
.

7

B. Diminishing learning rate rule

Let ϵ > 0, λ ∈ (0, 1), and η ∈ (0, 1). We define

s = |Sk| :=

min
{
n, c

B̃2M̃2
, c√

dDM̃
, 4(1−η)Γ

9L̃

}
(finite-sum),

min
{

c
B̃2M̃2

, c√
dDM̃

, 4(1−η)Γ

9L̃

}
(online),

αk :=
2(1− b)(1− γ)2(1− η)

3ckη
,

βk := min

{
(1− b)(1− λ)λk−1

3c
, b

}
, (23)

where the parameters are as in Subsection IV-A.
The following is the ϵ-approximation analysis of Algorithm

1 with diminishing learning rates for constrained finite-sum
and online optimization. The proof of Theorem IV.2 is given
in the Supplementary Material.

Theorem IV.2 Suppose that (A1)–(A7) hold and consider the
sequence (xk)k∈N generated by Algorithm 1 with (23) for
Problem III.1. Then, the following hold:

i) For all x ∈ X and all K ≥ 1,

1

K

K∑
k=1

E [⟨xk − x,∇f(xk)⟩] ≤
1

Kθ
,

where θ := min{η, 1− η}.
ii) To ensure that Algorithm 1 is an ϵ-approximation, i.e.,

for all x ∈ X ,

1

K

K∑
k=1

E [⟨xk − x,∇f(xk)⟩] ≤ ϵ2,

Algorithm 1 terminates in at most K iterations, defined
by

K :=

⌊
1

ϵ
2
θ

⌋
+ 1.

The SGC of Algorithm 1 for constrained finite-sum
optimization is

O
(
min

{
n+

n

ϵ
2
θ

,
1

ϵ
2
θ

})
,

and the SGC of Algorithm 1 for constrained online
optimization is

O
(

1

ϵ
2
θ

)
.

C. Comparison of our results with previous studies

Theorems IV.1 and IV.2 lead to Table III showing the con-
vergence rate and ϵ-approximation of Algorithm 1 (SGD, Mo-
mentum, AMSGrad, AMSGWDC, AdaBelief, and MAdam)
for constrained finite-sum and online optimization.

Now let us check the performance of Algorithm 1 with a
constant learning rate rule in detail. Theorem IV.1 i) shows
that Algorithm 1 including SGD, Momentum, AMSGrad,
AMSGWDC, AdaBelief, and MAdam satisfy that, for all
x ∈ X and all K ≥ 1,

min
k∈[K]

E [⟨xk − x,∇f(xk)⟩] ≤ O
(

1

K

)
+ ϵ2. (24)

Accordingly, there is a possibility that using a small parameter
ϵ speeds up convergence of Algorithm 1. However, Theorem
IV.1 ii) indicates that the smaller ϵ is, the larger the required
iterations K and SGC become. A similar trend was observed
in SPIDER (10) with a constant learning rate η = ϵ/Ln0

for unconstrained finite-sum and online optimization (see also
Table I, (11), and (13)). The previous study [21] reported
convergence analyses (14) and (15) for Algorithm 1 with
constant learning rates, i.e.,

lim inf
k→+∞

E [⟨xk − x,∇f(xk)⟩] ≤ Q3α+Q4β,

min
k∈[K]

E [⟨xk − x,∇f(xk)⟩] ≤ O
(

1

K

)
+Q3α+Q4β,

where Q3 and Q4 are positive constants. If α = β = O(ϵ2)
(see (22)), then the previous result (15) coincides with (24).
However, the previous study [21] did not consider how setting
the mini-batch size affects the performance of Algorithm 1.
In contrast to the previous study [21], Theorem IV.1 shows
that Algorithm 1 with the constant learning rates and a mini-
batch size defined by (22) can achieve ϵ-approximations.
This implies that using an appropriate mini-batch size allows
Algorithm 1 to be an ϵ-approximation.

Next, let us consider Algorithm 1 with diminishing learning
rates. Theorem IV.2 i) guarantees that, for all x ∈ X and all
K ≥ 1,

min
k∈[K]

E [⟨xk − x,∇f(xk)⟩] ≤
1

Kθ
, (25)

which, together with X = Rd, implies that

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ 1

Kθ
, (26)

where θ = min{η, 1 − η}. The previous study [21] reported
convergence analyses (16), (17), (18), and (19) for Algorithm
1 with diminishing learning rates. In particular, Algorithm 1
using αk = O(1/

√
k) (i.e., η = 1/2) and βk = λk satisfies

that, for all x ∈ X and all K ≥ 1,

min
k∈[K]

E [⟨xk − x,∇f(xk)⟩] ≤ O
(

1√
K

)
,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
= O

(
1√
K

)
.

Accordingly, the previous results in [21] are the same as (25)
and (26). As mentioned in the above paragraph, the previous
study [21] did not consider how the mini-batch size affects the
performance of Algorithm 1. As a result, the results in [21]
could not show that Algorithm 1 is an ϵ-approximation. We
would like to emphasize that Theorem IV.2 shows that Algo-
rithm 1 with the diminishing learning rates and the mini-batch
size defined by (23) can achieve ϵ-approximations, which
never be shown by the previous study [21]. Here, our (25)
result shows that the larger θ is, the quicker the convergence
O(1/Kθ) becomes. Moreover, Theorem IV.2 ii) indicates that,
the larger θ is, the smaller the required iterations K and SGC
become. Since θ = min{η, 1−η} attains the maximum value,
1/2, when η = 1/2, η = 1/2 is the best choice from the
viewpoints of convergence speed, number of iterations, and

8

TABLE III: Our results for Algorithm 1 (SGD, Momentum, AMSGrad, AMSGWDC, AdaBelief, and MAdam) for constrained
finite-sum and online optimization (Note that we give ϵ-approximations for the previous studies shown in Table I.)

Constant learning rate rule Diminishing learning rate rule
Upper bound ϵ-approximation Convergence ϵ-approximation

(i) Iteration (ii) SGC rate (i) Iteration (ii) SGC

Finite SGD O
(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
-sum Momentum O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
AMSGrad O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
AMSGWDC O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
AdaBelief O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
MAdam O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
min

{
n+ n

ϵ4
, 1
ϵ4

})
Online SGD O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
Momentum O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
AMSGrad O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
AMSGWDC O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
AdaBelief O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
MAdam O

(
1
k

)
+ ϵ2

⌊
3
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
O
(

1√
k

) ⌊
1
ϵ4

⌋
+ 1 O

(
1
ϵ4

)
Let n be the total number of samples and ϵ > 0. The upper bound and convergence rate are measured by minj∈[k] E[⟨xj −x,∇f(xj)⟩] (x ∈ X), and the
ϵ-approximation is measured by (1/K)

∑K
k=1 E[⟨xk − x,∇f(xk)⟩] ≤ ϵ2 (x ∈ X).

SGC to achieve an ϵ-approximation of Algorithm 1. See Table
III for the results of Algorithm 1 with η = 1/2.

Numerical evaluations [7], [8] have precisely clarified the
relationship between the batch size and the number of itera-
tions needed for ϵ-approximations of ALROAs (Algorithm 1)
and the relationship between ϵ and the number of iterations
needed for ϵ-approximations of ALROAs. Table III shows that
Algorithm 1 has the property that the smaller ϵ is, the larger K
becomes. The useful numerical results in [8, Figure 2] support
this theoretical result. Moreover, the numerical results in [7],
[8] show that increasing the batch size tends to decrease the
number of iterations K needed to achieve an ϵ-approximation,
but there are diminishing returns whereby increasing the batch
size beyond a certain point does not change K [7, Figure 8],
[8, Figure 4]. As can be seen from Theorems IV.1 and IV.2
(see also Table III), the number of iterations needed for ϵ-
approximation for finite-sum optimization is

K =

[Constant learning rate rule]⌊

3
ϵ4

⌋
+ 1

[Diminishing learning rate rule]⌊
1
ϵ4

⌋
+ 1

and the mini-batch size is

s =

[Constant learning rate rule]

min
{
n, c

B̃2M̃2
, c√

dDM̃
, 4(1−b)2(1−γ)2

3cdBD

}
[Diminishing learning rate rule]

min
{
n, c

B̃2M̃2
, c√

dDM̃
, 4(1−η)(1−b)2(1−γ)2

9cdBD

}
.

For both the constant and diminishing learning rate rules, K
does not depend on any parameters of the mini-batch size.
Hence, we cannot conclude that increasing the batch size
decreases K, as shown in [7, Figure 8], [8, Figure 4].

V. CONCLUSION

We studied ϵ-approximation of ALROAs (Algorithm 1)
for constrained finite-sum and online optimization in deep
neural networks. Using both constant and diminishing learning
rates enables Algorithm 1 to achieve ϵ-approximations. In
particular, Algorithm 1 with constant learning rates has an
upper bound O(1/k)+ ϵ2 of the expectation of the variational
inequality, while Algorithm 1 with diminishing learning rates
has an O(1/

√
k) convergence rate for the expectation of the

variational inequality. The number of iterations needed for an
ϵ-approximation of Algorithm 1 with constant learning rates
was O(⌊1/ϵ4⌋)+1, while the number of iterations needed for
an ϵ-approximation of Algorithm 1 with diminishing learning
rates was ⌊1/ϵ4⌋+1. The SGC of Algorithm 1 for finite-sum
optimization was O(min{n + n/ϵ4, 1/ϵ4}). Meanwhile, the
SGC of Algorithm 1 for online optimization was O(1/ϵ4).
The numerical results in [7], [8] are helpful to support our
ϵ-approximation analyses for ALROAs.

VI. ACKNOWLEDGMENT

I am sincerely grateful to Editor-in-Chief Yongduan Song,
the Associate Editor, and the three anonymous reviewers for
helping me improve the original manuscript.

REFERENCES

[1] L. Jiao, R. Zhang, F. Liu, S. Yang, B. Hou, L. Li, and X. Tang, “New
generation deep learning for video object detection: A survey,” IEEE
Transactions on Neural Netwroks and Leaning Systems, 2021.

[2] Y. Yin, D. Xu, X. Wang, and L. Zhang, “Directional deep embedding
and appearance learning for fast video object segmentation,” IEEE
Transactions on Neural Netwroks and Leaning Systems, 2021.

[3] K. Muhammad, S. Khan, J. Del Ser, and V. Hugo C. de Albuquerque,
“Deep learning for multigrade brain tumor classification in smart health-
care systems: A prospective survey,” IEEE Transactions on Neural
Netwroks and Leaning Systems, 2021.

9

[4] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in Proceedings of Machine Learning Research,
vol. 37, pp. 2048–2057, 2015.

[5] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” preprint,
arXiv:1701.07875 (2017).

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in
Neural Information Processing Systems, vol. 30, pp. 5998–6008, 2017.

[7] G. Zhang, L. Li, Z. Nado, J. Martens, S. Sachdeva, G. E. Dahl, C. J.
Shallue, and R. Grosse, “Which algorithmic choices matter at which
batch sizes? Insights from a noisy quadratic model,” in Proceedings
of The International Conference on Neural Information Processing
Systems, pp. 1–12, 2019.

[8] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and
G. E. Dahl, “Measuring the effects of data parallelism on neural network
training,” Journal of Machine Learning Research, vol. 20, pp. 1–49,
2019.

[9] H. Robbins and S. Monro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951.

[10] K. Scaman and C. Malherbe, “Robustness analysis of non-convex
stochastic gradient descent using biased expectations,” in Advances in
Neural Information Processing Systems, vol. 33, pp. 1–11, 2020.

[11] H. Chen, L. Zheng, R. A. Kontar, and G. Raskutti, “Stochastic gradient
descent in correlated settings: A study on Gaussian processes,” in
Advances in Neural Information Processing Systems, vol. 33, pp. 1–12,
2020.

[12] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
Cambridge, 2016.

[14] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic opti-
mization,” in Proceedings of The International Conference on Learning
Representations, pp. 1–15, 2015.

[15] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, pp. 1–17, 1964.

[16] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of Adam and
beyond,” in Proceedings of The International Conference on Learning
Representations, pp. 1–23, 2018.

[17] X. Chen, S. Liu, R. Sun, and M. Hong, “On the convergence of a class
of Adam-type algorithms for non-convex optimization,” in Proceedings
of The International Conference on Learning Representations, pp. 1–30,
2019.

[18] J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Papademetris,
and J. S. Duncan, “AdaBelief optimizer: Adapting stepsizes by the belief
in observed gradients,” in Proceedings of The International Conference
on Neural Information Processing Systems, pp. 1–29, 2020.

[19] D. Liang, F. Ma, and W. Li, “New gradient-weighted adaptive gradient
methods with dynamic constraints,” IEEE Access, vol. 8, pp. 110929–
110942, 2020.

[20] C. Fang, C.-J. Li, Z. Lin, and T. Zhang, “SPIDER: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator,”
in Advances in Neural Information Processing Systems, vol. 31, pp. 1–
11, 2018.

[21] H. Iiduka, “Appropriate learning rates of adaptive learning rate optimiza-
tion algorithms for training deep neural networks,” IEEE Transactions
on Cybernetics, 2021.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[23] Y. Nesterov, “A method for unconstrained convex minimization problem
with the rate of convergence O(1/k2),” Doklady AN USSR, vol. 269,
pp. 543–547, 1983.

[24] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the impor-
tance of initialization and momentum in deep learning,” in International
Conference on Machine Learning, pp. 1139–1147, 2013.

[25] J. Martens and R. Grosse, “Optimizing neural networks with Kronecker-
factored approximate curvature,” in Proceedings of Machine Learning
Research, vol. 37, pp. 2408–2417, 2015.

[26] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. New York: Springer, 2011.

[27] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational
Inequalities and Their Applications. Classics Appl. Math. 31, SIAM,
2000.

[28] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities
and Complementarity Problems I. Springer, New York, 2003.

[29] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities
and Complementarity Problems II. Springer, New York, 2003.

[30] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM Journal on
Optimization, vol. 19, pp. 1574–1609, 2009.

Hideaki Iiduka received the Ph.D. degree in mathe-
matical and computing science from Tokyo Institute
of Technology, Tokyo, Japan, in 2005. From 2005 to
2007, he was a Research Assistant in the Department
of Mathematical and Computing Sciences, Tokyo
Institute of Technology, Tokyo, Japan. From 2007
to 2008, he was a Research Fellow (PD) of the
Japan Society for the Promotion of Science. From
October 2008 to March 2013, he was an Associate
Professor in the Network Design Research Center,
Kyushu Institute of Technology, Tokyo, Japan. From

April 2013 to March 2019, he was an Associate Professor in the Department
of Computer Science, School of Science and Technology, Meiji University,
Kanagawa, Japan. Since April 2019, he has been a Professor in the same
department. He was awarded the 4th Research Encourage Award of ORSJ
in August 2014 and the 9th Research Award of ORSJ in September 2019.
His research field is optimization theory and its applications to mathematical
information science. He is a Fellow of ORSJ and a member of MOS and
SIAM.

