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Abstract. This paper considers a networked system with a finite number of users and deals with
the problem of minimizing the sum of all users’ objective functions over the intersection of all users’
constraint sets, onto which the projection cannot be easily implemented. The main objective of this
paper is to devise distributed optimization algorithms, which enable each user to find the solution
of the problem without using other users’ objective functions and constraint sets. To reach this
goal, we first introduce easily implementable nonexpansive mappings of which the intersection of the
fixed point sets is equal to the constraint set in the problem. We formulate the problem as a convex
minimization problem over the intersection of the fixed point sets of the nonexpansive mappings.
We then present an iterative algorithm, based on the conventional incremental subgradient methods
which use the projection, for solving the problem. The algorithm can be implemented by using other
nonexpansive mappings than the projection. We prove that the algorithm with slowly diminishing
step-size sequences converges to a solution of the problem in the sense of weak topology of a Hilbert
space. We also present a broadcast type of distributed optimization algorithm that weakly converges
to a solution of the problem. Numerical examples for the bandwidth allocation demonstrate the
convergence of these algorithms.
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1. Introduction. This paper presents distributed optimization algorithms for
solving the convex minimization problem,

minimize f(x) :=
∑
i∈I

f (i)(x) subject to x ∈ C :=
∩
i∈I

C(i), (1.1)

where f (i) (i ∈ I := {1, 2, . . . ,K}) is a convex functional of a real Hilbert space H
and C(i) (⊂ H) (i ∈ I) is nonempty, closed, and convex.

We focus on Problem (1.1) in a networked system in which user i (i ∈ I) has
its own private objective function, f (i), and constraint set, C(i), and cannot get the
explicit forms of other users’ objective functions and constraint sets. Problem (1.1) in
this situation includes important and practical engineering problems, such as signal
and image processing [9], channel allocation [20], bandwidth allocation [22], storage
allocation [23], and power allocation [27] problems.

Distributed optimization algorithms for Problem (1.1) can be implemented through
all users’ cooperating, and they enable each user to find the optimal solution of Prob-
lem (1.1) without using the private information of other users such as their objective
functions and constraint sets. A useful distributed algorithm for solving Problem (1.1)
is the incremental subgradient method (see [4, Subchapter 8.2], [5, 19, 21, 24] and ref-
erences therein). The sequence, (xn)n∈N, is generated by the incremental subgradient
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method as follows: given (λn)n∈N ⊂ (0,∞) and xn := x
(0)
n ∈ H,{

x
(i)
n := PC

(
x
(i−1)
n − λng

(i)
n

)
, g

(i)
n ∈ ∂f (i)

(
x
(i−1)
n

)
(i = 1, 2, . . . ,K),

xn+1 := x
(K)
n ,

(1.2)

where PC is the metric projection onto C and ∂f (i)(x) stands for the subdifferential
of f (i) at x ∈ H. Convergence analyses of Algorithm (1.2) have been done when
(λn)n∈N is a constant step-size [4, Subchapter 8.2.1], [5, 24], a diminishing step-size [4,
Subchapter 8.2.1], [21, 24], or a dynamic step-size [4, Subchapter 8.2.2], [19, 24]. When
(λn)n∈N is a slowly diminishing step-size sequence, (xn)n∈N generated by Algorithm
(1.2) converges to a solution of Problem (1.1) [4, Proposition 8.2.6], [24, Proposition
2.4]. The analyses guarantee that, under the assumption that C :=

∩
i∈I C

(i) is known
to the all users in advance and is simple enough so that the projection can be easily
implemented, Algorithm (1.2) enables each user in the network to decide its own
optimal solution by using only its own private objective function and the transmitted
information from the neighbor user.

In this paper, we will discuss Problem (1.1) under the following assumptions:
(I) User i (i ∈ I) has its own private f (i) and C(i), and cannot get the explicit

forms of other users’ objective functions and constraint sets, i.e., none of users
can use PC = P∩

i∈I C(i) .

(II) C(i) (i ∈ I) does not always have a simple form.1

(III) User i (i ∈ I) can use a firmly nonexpansive mapping2, T (i) : H → H, satis-
fying Fix(T (i)) := {x ∈ H : T (i)(x) = x} = C(i).

A particularly interesting application of Problem 1.1 under Assumptions (I), (II),
and (III) is when user i (i ∈ I) has a nonempty, closed and convex constraint set,

C(i) :=
∩

j∈J(i)

D
(i)
j ,

which is the intersection of simple, closed and convex setsD
(i)
j (j ∈ J(i) := {1, 2, . . . ,m(i)})

(e.g., D
(i)
j is a closed ball, a closed cone, or a half-space). Note that the projection

P
D

(i)
j

can be computed within a finite number of arithmetic operations. User i then

can use T (i) : H → H defined by

T (i) :=
1

2

Id +
∏

j∈J(i)

P
D

(i)
j

 , (1.3)

where Id stands for the identity mapping on H. The mapping T (i) satisfies the firm
nonexpansivity condition because P

D
(i)
j

(j ∈ J(i)) is nonexpansive. Moreover,

Fix
(
T (i)

)
= Fix

 ∏
j∈J(i)

P
D

(i)
j

 = C(i).

1In this paper, D (⊂ H) is said to be simple when D is, for example, a closed ball, a closed cone,
or a half-space, onto which the projection can be easily implemented. In the case where PC(i) can be

implemented, user i can use T (i) = PC(i) satisfying the firm nonexpansivity and Fix(T (i)) = C(i).
2T : H → H is said to be firmly nonexpansive [1], [11, Chapter 12], [12, Chapter 1-11] if ∥T (x)−

T (y)∥2 ≤ ⟨x− y, T (x)− T (y)⟩ (x, y ∈ H). Firm nonexpansivity is stronger than the nonexpansivity
(i.e., ∥T (x) − T (y)∥ ≤ ∥x − y∥ (x, y ∈ H)). T := (1/2)(Id + S) satisfies the firm nonexpansivity
condition when S is nonexpansive [2, Definition 4.1, Proposition 4.2].
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Let us consider the problem of network bandwidth allocation and treat the ex-
ample of T (i) represented in (1.3). The objective of bandwidth allocation is to
share the available bandwidth among K traffic sources so as to maximize all the
network’s utility subject to the capacity constraints for all links [28, Chapter 2].
The capacity constraints for all links are absolute constraints that are expressed
as a finite number of inequalities. Hence, the constraint set in this problem can
be expressed as a polyhedral set. In general, none of the sources can get the ex-
plicit form of the constraint set because there is no source who knows the utilization
situation of all links. When source i has only the explicit forms of the capacity
constraints for links used by source i, C(i) can be expressed as the intersection of

RK
+ and the sets with these capacity constraints, i.e., C(i) := RK

+ ∩
∩

j∈J(i) D
(i)
j ,

where RK
+ := {(x1, x2, . . . , xK) ∈ RK : xi ≥ 0 (i = 1, 2, . . . ,K)} and D

(i)
j (⊂ RK)

(j ∈ J(i) := {1, 2, . . . ,m(i)}) are half-spaces with the capacity constraints for links
used by source i (see Section 5 for examples of such sets). Source i then can use a
firmly nonexpansive mapping T (i) := (1/2)(Id + PRK

+

∏
j∈J(i) PD

(i)
j
), which satisfies

Fix(T (i)) = C(i).
Another application is when C(i) (i ∈ I) is the set of all minimizers of a Fréchet

differentiable and convex functional g(i) over a simple, closed and convex set D(i), i.e.,

C(i) :=

{
x ∈ D(i) : g(i)(x) = min

y∈D(i)
g(i)(y)

}
.

When ∇g(i) : H → H is Lipschitz continuous, PD(i)(Id − λ∇g(i)) with an adequate
λ (> 0) is nonexpansive [14, Proposition 2.3]. Hence, user i can use T (i) : H → H
defined by

T (i) :=
1

2

(
Id + PD(i)

(
Id− λ∇g(i)

))
, (1.4)

which satisfies the firm nonexpansivity condition (see [34, Theorem 46.C (1) and (2)]).

Fix
(
T (i)

)
= Fix

(
PD(i)

(
Id− λ∇g(i)

))
= C(i)

Let us consider the case where user i has simple, closed and convex sets D(i), D
(i)
j

(⊂ H) (j ∈ J(i) := {1, 2, . . . ,m(i)}), and the intersection of these sets are empty.
When D(i) is the absolute set, it would be reasonable to deal with a user i’s constraint

set C(i) as a subset of D(i) with the elements closest to the sets D
(i)
j in terms of the

mean square norm. This subset is referred to as a generalized convex feasible set (see
[8, section I, Framework 2], [31, Definition 4.1]). When Φ(i)(x) stands for the mean

square value3 of the distances from x ∈ H to D
(i)
j , the generalized convex feasible set

is defined by

CΦ(i) :=

{
x ∈ D(i) : Φ(i)(x) = min

y∈D(i)
Φ(i)(y)

}
.

3Φ(i) : H → R is defined as follows: for w
(i)
j (> 0) (j ∈ J(i)) satisfying

∑
j∈J(i) w

(i)
j = 1,

Φ(i)(x) := (1/2)
∑

j∈J(i) w
(i)
j (min

y∈D
(i)
j

∥x−y∥)2 (x ∈ H). Φ(i) is Fréchet differentiable and convex,

and ∇Φ(i) = Id−
∑

j∈J(i) w
(i)
j P

D
(i)
j

is Lipschitz continuous.
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The fact that CΦ(i) ̸= ∅ is guaranteed when at least one ofD(i) andD
(i)
j is bounded [31,

Remark 4.3(a)]. The set CΦ(i) is well defined because it is the set of all minimizers of

Φ(i) over D(i). Moreover, CΦ(i) = D(i)∩
∩

j∈J(i) D
(i)
j holds when D(i)∩

∩
j∈J(i) D

(i)
j ̸=

∅, which implies that CΦ(i) is a generalization of D(i) ∩
∩

j∈J(i) D
(i)
j . User i can

use a firmly nonexpansive mapping T (i) defined by (1.4) when ∇g(i) = ∇Φ(i) =

Id−
∑

j∈J(i) w
(i)
j P

D
(i)
j

(see Footnote 3 for the definition of Φ(i)), i.e., T (i) := (1/2)(Id+

PD(i)((1− λ)Id + λ
∑

j∈J(i) w
(i)
j P

D
(i)
j

)), which satisfies Fix(T (i)) = CΦ(i) .

When we consider a minimization problem in which the constraint set composed
of the absolute set and the subsidiary sets is not feasible, we can provide a meaningful
optimal solution by using a minimizer of an objective function over the generalized
convex feasible set, i.e., a compromise solution that satisfies the absolute constraints
and tries to satisfy the subsidiary constraints as much as possible. Generalized convex
feasible sets have been used to discuss real-world optimization problems that can be
formulated as such an infeasible optimization problem, including inconsistent signal
feasibility problems [8], power control problems in which the constraints about the
sufficient signal-to-interference-plus-noise ratio fall in the infeasible region [15], band-
width allocation problems in which the constraints about the preferable transmission
rate fall in the infeasible region [16], and optimal control problems given unsolvable
stochastic algebraic Riccati equations [18].

Here, we formulate Problem (1.1) under Assumptions (I), (II), and (III) into
the following convex optimization problem over the intersection of fixed point sets of
nonexpansive mappings:

Minimize f(x) :=
∑
i∈I

f (i)(x) subject to x ∈
∩
i∈I

Fix
(
T (i)

)
. (1.5)

Centralized optimization algorithms [6, 17, 31], that use all T (i)s and f (i)s, have been
developed for solving Problem (1.5). The first algorithm developed for solving Prob-
lem (1.5) works when ∇f : H → H is strongly monotone and Lipschitz continuous. It
is the hybrid steepest descent method [31, 32]: given xn ∈ H,

dn := −∇

(∑
i∈I

f (i)

)
(xn),

xn+1 :=
∏
i∈I

T (i) (xn + λndn).

The algorithm, with a slowly diminishing sequence (λn)n∈N, strongly converges to
a solution of Problem (1.5) [32, Theorem 2.15, Remark 2.17 (a)]. Some algorithms
[6, 17] have been proposed to accelerate the hybrid steepest descent method. Ref-
erence [6] presented an effective algorithm for solving the signal recovery problem,
and this algorithm strongly converges to a solution of Problem (1.5) without using a
diminishing sequence. Reference [17] presented the hybrid conjugate gradient method
defined by xn+1 :=

∏
i∈I T

(i)(xn + λndn) and the conjugate gradient direction [25,
Chapter 5],

dn := −∇

(∑
i∈I

f (i)

)
(xn) + βndn−1, (1.6)
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where βn ≥ 0 (n ∈ N), and proved that the algorithm strongly converges to a solu-
tion of Problem (1.5) if (λn)n∈N and (βn)n∈N are slowly diminishing sequences [17,
Theorem 4.1]. The numerical examples in [17] demonstrate that the hybrid conjugate
gradient method converges faster than the hybrid steepest descent method.

The main goal of this paper is to devise an incremental gradient method for solving
Problem (1.5). The framework of the proposed algorithm can be obtained by replacing
PC := P∩

i∈I Fix(T (i)) in Algorithm (1.2) with T (i) and by replacing ∇(
∑

i∈I f
(i)) in

direction (1.6) with ∇f (i). More precisely, xn := x
(0)
n ∈ H, d

(i)
n−1 ∈ H (i ∈ I),

d
(i)
n := −∇f (i)

(
x
(i−1)
n

)
+ βnd

(i)
n−1,

x
(i)
n := T (i)

(
x
(i−1)
n + λnd

(i)
n

)
(i = 1, 2, . . . ,K),

xn+1 := x
(K)
n .

(1.7)

To guarantee that Algorithm (1.7) converges to a solution of Problem (1.5), we will
modify Algorithm (1.7) by using the idea of the fixed point algorithms in [13, 30] and
prove that the algorithm with slowly diminishing step-size sequences weakly converges
to a solution of Problem (1.5).

Broadcast optimization algorithms [7, 9, 27] have been proposed for solving Prob-
lem (1.1) and have been applied to practical problems such as signal and image pro-
cessing, and power allocation. From such a viewpoint, we will also present a broadcast
type of distributed optimization algorithm that weakly converges to a solution of Prob-
lem (1.5). This analysis of the algorithm will help us to resolve resource allocation
problems in future wireless and wired networks.

The fixed point theory for nonexpansive mappings defined on infinite-dimensional
spaces [1], [2, Chapter 4], [11, Chapter 3], [12, Chapter 1] is an important area of
Nonlinear Analysis, and it has played a crucial role in resolving complex real-world
problems in Hilbert spaces, such as inconsistent signal feasibility problems [8], signal
recovery problems [6, 10], inverse problems in signal and image processing [9], and
optimal control problems [18]. Thanks to it, we can perform convergence of the
distributed optimization algorithms for Problem (1.5) that includes these problems
in Hilbert spaces. We believe that our convergence analyses will help us to develop
conventional algorithms [6, 8, 9, 10, 18] in the Hilbert space setting and to resolve
unsolved optimization problems in Hilbert spaces. It would be desirable to perform
convergence analyses of algorithms in the Banach space setting because optimization
problems in Banach spaces include practical problems in various disciplines (e.g.,
optimal flow control problems [29, Chapter 1]). Our convergence analyses may provide
useful hints on devising algorithms for solving optimization problems in Banach spaces
because our analyses are done in the infinite-dimensional Hilbert space setting.

This paper is organized as follows. Section 2 gives the convex minimization prob-
lem over the intersection of the fixed point sets of nonexpansive mappings and math-
ematical preliminaries. Section 3 devises the incremental fixed point optimization
algorithm for solving the problem. We also prove that the algorithm with slowly di-
minishing step-size sequences converges weakly to a solution of the problem. Section
4 describes the broadcast fixed point optimization algorithm that weakly converges to a
solution of the problem. Section 5 applies the algorithms to a network bandwidth al-
location problem and provides numerical examples for network bandwidth allocation.
Section 6 concludes the paper.
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2. Assumptions, Problem Formulation, and Mathematical Preliminar-
ies. Let H be a real Hilbert space with inner product ⟨·, ·⟩ and its induced norm ∥ · ∥,
and let N denote the set of all positive integers including zero. Consider a networked
system which consists of K users and suppose that the following assumptions are
satisfied in the network.

Assumption 2.1.

(A1) T (i) : H → H (i ∈ I) is firmly nonexpansive4 with
∩

i∈I Fix(T
(i)) :=

∩
i∈I{x ∈

H : T (i)(x) = x} ≠ ∅. The explicit form of T (i) is its own private information;
that is, other users cannot get the explicit form of T (i).

(A2) f (i) : H → R (i ∈ I) is strictly convex5 and Fréchet differentiable, and
∇f (i) : H → H (i ∈ I) is (1/L(i))-Lipschitz continuous6. The explicit form of
f (i) is its own private information; that is, other users cannot get the explicit
form of f (i).

This paper discusses the following problem with information on the whole net-
work:

Problem 2.1. Under Assumption 2.1, we are interested in

minimizing f(x) :=
∑
i∈I

f (i)(x) subject to x ∈
∩
i∈I

Fix
(
T (i)

)
,

where

(A3) ArgminX f := {x⋆ ∈ X :=
∩

i∈I Fix
(
T (i)

)
: f(x⋆) = minx∈X f(x)} ≠ ∅.

Assumption (A3) is guaranteed when at least one of the fixed point sets, Fix(T (i)),
is bounded [33, Theorem 25.C]. Under ArgminX f ̸= ∅, the strict convexity of f guar-
antees the uniqueness of the solution of Problem 2.1 [33, Corollary 25.15]. The con-
vexity of f (i) ensures that subsequences of (xn)n∈N which are generated by Algorithms
3.1 and 4.1 weakly converge to a solution of Problem 2.1 (Lemmata 3.3(i), (ii) and
4.3(i), (ii)). To guarantee that Algorithms 3.1 and 4.1 weakly converge to the solu-
tion, we will need the strict convexity condition of f (i) (Lemma 3.3 (iii) and Lemma
4.3 (iii)). Reference [28, Chapter 2] provides examples of strictly convex objective
functions in network resource allocation (see also Section 5).

The following propositions will be used to prove the main theorems in this paper.
Proposition 2.1. [14, Proposition 2.3] Let f : H → R be convex and Fréchet

differentiable, and let ∇f : H → H be (1/L)-Lipschitz continuous. For λ ∈ [0, 2L], we
define Sλ : H → H for all x ∈ H by Sλ(x) := x− λ∇f(x). Then Sλ is nonexpansive,
i.e., ∥Sλ(x)− Sλ(y)∥ ≤ ∥x− y∥ for all x, y ∈ H.

Proposition 2.2. [3, Lemma 1.2] Assume that (an)n∈N ⊂ R+ satisfies an+1 ≤
(1−αn)an+αnβn (n ∈ N), where (αn)n∈N ⊂ (0, 1] and (βn)n∈N ⊂ R with

∑∞
n=1 αn =

∞ and lim supn→∞ βn ≤ 0. Then, limn→∞ an = 0.

3. Incremental Fixed Point Optimization Algorithm for Distributed
Optimization. This section presents the following incremental optimization algo-
rithm.

Algorithm 3.1 (Incremental Fixed Point Optimization Algorithm).

4See Footnote 2 for the definition of a firmly nonexpansive mapping. Fix(T ) := {x ∈ H : T (x) =
x} is closed and convex when T is nonexpansive [12, Proposition 5.3].

5f : H → R is said to be strictly convex [2, Definition 8.6] if, for all x, y ∈ H with x ̸= y and for
all λ ∈ (0, 1), f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

6A : H → H is said to be Lipschitz continuous with L > 0 (L-Lipschitz continuous) if ∥A(x) −
A(y)∥ ≤ L∥x− y∥ (x, y ∈ H).
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Step 0. User i (i ∈ I) sets x(i) ∈ H arbitrarily, and sets d
(i)
−1 := −∇f (i)(x(i)).

User K sets x0 ∈ H arbitrarily and transmits x
(0)
0 := x0 ∈ H to user 1.

Step 1. Given xn = x
(0)
n ∈ H and d

(i)
n−1 ∈ H (i ∈ I), user i computes x

(i)
n ∈ H

cyclically by 
d
(i)
n := −∇f (i)

(
x
(i−1)
n

)
+ βnd

(i)
n−1,

y
(i)
n := T (i)

(
x
(i−1)
n + λnd

(i)
n

)
,

x
(i)
n := αnx

(i) + (1− αn)y
(i)
n (i = 1, 2, . . . ,K).

Step 2. User K defines xn+1 ∈ H by

xn+1 := x(K)
n

and transmits x
(0)
n+1 := xn+1 to user 1. Put n := n+ 1, and go to Step 1.

We assume that all users participating in the network know the following common
information before they execute the algorithm.

Assumption 3.1. User i (i ∈ I) uses the decreasing sequences, (λn)n∈N ⊂
(0, 2mini∈I L

(i)], (αn)n∈N ⊂ (0, 1], and (βn)n∈N ⊂ (0, 1], which converge to 0 and
satisfy the following conditions7:

(C1)

∞∑
n=0

αn = ∞, (C2) lim
n→∞

1

αn+1

∣∣∣∣ 1

λn+1
− 1

λn

∣∣∣∣ = 0, (C3) lim
n→∞

1

λn+1

∣∣∣∣1− αn

αn+1

∣∣∣∣ = 0,

(C4) lim
n→∞

αn

λn
= 0, (C5)

λn

λn+1
≤ σ for some σ ≥ 1, (C6) lim

n→∞

βn

αn+1
= 0.

Our convergence result in this section depends on the following assumption.

Assumption 3.2. The sequence (y
(i)
n )n∈N, i ∈ I, which is generated by Algorithm

3.1 is bounded.
User i can choose in advance a simple, bounded, closed and convex set, X(i) (e.g.,

X(i) is a closed ball with a large enough radius) satisfying X(i) ⊃ Fix(T (i)). Then,
user i can compute

y(i)n := PX(i)

(
T (i)

(
x(i−1)
n + λnd

(i)
n

))
(3.1)

instead of y
(i)
n in Algorithm 3.1. Since (y

(i)
n )n∈N ⊂ X(i) and X(i) is bounded, (y

(i)
n )n∈N

(i ∈ I) is bounded. Hence, we may assume that (y
(i)
n )n∈N (i ∈ I) in Algorithm 3.1 is

as in Equation (3.1) in place of Assumption 3.2. Let us show that Assumption 3.2 is

satisfied by replacing x
(i)
n in Algorithm 3.1 with y

(i)
n := T (i)(x

(i−1)
n + λnd

(i)
n ) and

x(i)
n := PX(i)

(
αnx

(i) + (1− αn)y
(i)
n

)
.

Indeed, (x
(i)
n )n∈N ⊂ X(i) (i ∈ I) is bounded. The boundedness of (x

(i)
n )n∈N, the

Lipschitz continuity of ∇f (i), and the convergence of (βn)n∈N to 0 guarantee that

7Examples of (λn)n∈N, (αn)n∈N, and (βn)n∈N are λn := (2mini∈I L
(i))/(n+ 1)a, αn := 1/(n+

1)b, and βn := 1/(n+2)c (a ∈ (0, 1/2), b ∈ (a, 1−a), b < c). If L(i)s are known from the beginning, we
can choose λn ∈ (0, 2mini∈I L

(i)] satisfying Conditions (C2)–(C5). From the convergence of (λn)n∈N
to 0, we see that even if λ0 > 2mini∈I L

(i), there exists m ∈ N such that λn ≤ 2mini∈I L
(i) for all

n ≥ m; that is, (λn)n≥m ⊂ (0, 2mini∈I L
(i)] satisfies Conditions (C2)–(C5).
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(d
(i)
n )n∈N is bounded (for details, see the proof of Lemma 3.1). The nonexpansivity

of T (i) implies that, for all x ∈
∩

i∈I Fix(T
(i)), for all i ∈ I, and for all n ∈ N,

∥y(i)n −x∥ = ∥T (i)(x
(i−1)
n +λnd

(i)
n )−T (i)(x)∥ ≤ ∥x(i−1)

n +λnd
(i)
n −x∥ ≤ ∥x(i−1)

n −x∥+
λn∥d(i)n ∥ ≤ ∥x(i−1)

n − x∥ + 2mini∈I L
(i)∥d(i)n ∥ < ∞, which means the boundedness of

(y
(i)
n )n∈N (i ∈ I).
Now let us show a convergence analysis of Algorithm 3.1.

Theorem 3.1. Under Assumptions 2.1, 3.1, and 3.2, the sequence (x
(i)
n )n∈N

(i ∈ I) generated by Algorithm 3.1 weakly converges to the solution of Problem 2.1.
Theorem 3.1 says that Algorithm 3.1 enables each user to find the solution of

Problem 2.1 by using only its own private objective function and nonexpansive map-
ping and the transmitted information from the neighbor user.

Let us compare Algorithm 3.1 with the conventional incremental subgradient
method. For convenience, we can rewrite the incremental subgradient method [4,

Equations (8.9), (8.10), and (8.11)] (see also [24]): given xn := x
(0)
n ∈ Rm,{

x
(i)
n := PC

(
x
(i−1)
n − λng

(i)
n

)
, g

(i)
n ∈ ∂f (i)

(
x
(i−1)
n

)
(i = 1, 2, . . . ,K),

xn+1 := x
(K)
n .

(3.2)

Algorithm (3.2) can be used when f (i) (i ∈ I) is convex and non-differentiable, and
PC can be easily implemented. References [4, Proposition 8.2.6] and [24, Proposi-
tion 2.4] describe that (xn)n∈N generated by Algorithm (3.2) with (λn)n∈N satisfying∑∞

n=0 λn = ∞ and
∑∞

n=0 λ
2
n < ∞ converges to a minimizer of f over C. For simplic-

ity, we will consider Algorithm 3.1 with βn := 0 (n ∈ N): given xn := x
(0)
n ∈ H,

y
(i)
n := T (i)

(
x
(i−1)
n − λn∇f (i)

(
x
(i−1)
n

))
,

x
(i)
n := αnx

(i) + (1− αn)y
(i)
n (i = 1, 2, . . . ,K),

xn+1 := x
(K)
n .

(3.3)

Algorithm (3.3) is applicable when f (i) (i ∈ I) is strictly convex and differentiable,
and P∩

i∈I Fix(T (i)) and PFix(T (i)) cannot be easily implemented. When user i has a

complicated C(i), Algorithm (3.3) can be implemented by using the easily computable
nonexpansive mapping T (i) such that Fix(T (i)) = C(i)8 (see Section 1 for examples

of such mappings). Algorithm (3.3), in general, satisfies y
(i)
n , x

(i)
n /∈ Fix(T (i)) (n ∈ N),

while Algorithm (3.2) satisfies x
(i)
n = PC(x

(i−1)
n − λng

(i)
n ) ∈ C (n ∈ N). By using an

iterative technique based on the convex combination of x(i) and y
(i)
n , which is used to

solve fixed point problems [13, 30], we can prove that, if (λn)n∈N and (αn)n∈N satisfy

Conditions (C1)–(C6), then (x
(i)
n )n∈N generated by Algorithm (3.3) weakly converges

to an element in
∩

i∈I Fix(T
(i)) and to the solution of Problem 2.1.

3.1. Proof of Theorem 3.1. We first prove the following lemma.
Lemma 3.1. Let (λn)n∈N ⊂ (0,∞), (αn)n∈N ⊂ (0, 1], and (βn)n∈N ⊂ (0, 1] with

limn→∞ βn = 0, and suppose that ∇f (i) : H → H (i ∈ I) is (1/L(i))-Lipschitz contin-

uous and Assumption 3.2 is satisfied. Then, (x
(i)
n )n∈N, (∇f (i)(x

(i−1)
n ))n∈N, (d

(i)
n )n∈N

(i ∈ I), and (xn)n∈N generated by Algorithm 3.1 are bounded.

8When C(i) is simple, user i can use T (i) = PC(i) because PC(i) is easily implemented and firmly

nonexpansive and Fix(PC(i) ) = C(i).
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Proof. Since (y
(i)
n )n∈N (i ∈ I) is bounded and x

(i)
n := αnx

(i) + (1 − αn)y
(i)
n

(i ∈ I, n ∈ N), (x
(i)
n )n∈N (i ∈ I) is also bounded. Moreover, (xn)n∈N is bounded

from xn+1 := x
(K)
n (n ∈ N). The Lipschitz continuity of ∇f (i) guarantees that

∥∇f (i)(x
(i−1)
n )−∇f (i)(x)∥ ≤ (1/L(i))∥x(i−1)

n − x∥ for all n ∈ N, for all i ∈ I, and for

all x ∈ H. Hence, the boundedness of (x
(i−1)
n )n∈N ensures that (∇f (i)(x

(i−1)
n ))n∈N

(i ∈ I) is bounded.

Since limn→∞ βn = 0, there exists n1 ∈ N such that βn ≤ 1/2 for all n ≥ n1.

We put M
(i)
1 := sup{∥∇f (i)(x

(i−1)
n )∥ : n ∈ N}, M̄ (i)

1 := max{M (i)
1 , ∥d(i)n1∥} (i ∈ I), and

M̄1 := maxi∈I M̄
(i)
1 < ∞. Then, we find that ∥d(i)n1∥ ≤ 2M̄1. The definition of d

(i)
n

implies that ∥d(i)n+1∥ ≤ ∥∇f (i)(x
(i−1)
n+1 )∥+βn+1∥d(i)n ∥ ≤ M̄1+(1/2)∥d(i)n ∥ for all n ≥ n1

and for all i ∈ I. Fix i ∈ I and suppose that ∥d(i)n ∥ ≤ 2M̄1 for some n ≥ n1. Then, we

find that ∥d(i)n+1∥ ≤ M̄1 + (1/2)2M̄1 = 2M̄1. Accordingly, induction guarantees that

∥d(i)n ∥ ≤ 2M̄1 for all i ∈ I and for all n ≥ n1; i.e., (d
(i)
n )n∈N (i ∈ I) is bounded.

Next, we have the following lemma.

Lemma 3.2. Suppose that T (i) : H → H (i ∈ I) is firmly nonexpansive with∩
i∈I Fix(T

(i)) ̸= ∅, f (i) : H → R (i ∈ I) is convex with (1/L(i))-Lipschitz continuous

gradient, and Assumption 3.2 is satisfied. Let (λn)n∈N ⊂ (0, 2mini∈I L
(i)], (αn)n∈N ⊂

(0, 1], and (βn)n∈N ⊂ (0, 1] be the sequences in Assumption 3.1. Then the sequence
(xn)n∈N generated by Algorithm 3.1 has the following properties:

(i) lim
n→∞

∥xn+1 − xn∥
λn

= 0;

(ii) lim
n→∞

∥∥∥x(i−1)
n − y(i)n

∥∥∥ = 0 (i ∈ I);

(iii) lim
n→∞

∥∥∥xn − x(i−1)
n

∥∥∥ = 0 and lim
n→∞

∥∥∥xn − T (i)(xn)
∥∥∥ = 0 (i ∈ I).

Proof. (i) Lemma 3.1 ensures thatM1 := maxi∈I(sup{∥∇f (i)(x
(i−1)
n )∥ : n ∈ N}) <

∞ and M2 := maxi∈I(sup{2∥d(i)n ∥ : n ∈ N}) < ∞. Proposition 2.1 and the conditions,
λn+1 ≤ λn and βn+1 ≤ βn (n ∈ N), guarantee that, for all i ∈ I and for all n ≥ 1,

∥∥∥y(i)n+1 − y(i)n

∥∥∥ =
∥∥∥T (i)

(
x
(i−1)
n+1 + λn+1d

(i)
n+1

)
− T (i)

(
x(i−1)
n + λnd

(i)
n

)∥∥∥
≤
∥∥∥(x(i−1)

n+1 + λn+1d
(i)
n+1

)
−
(
x(i−1)
n + λnd

(i)
n

)∥∥∥
≤
∥∥∥(x(i−1)

n+1 + λn+1

(
−∇f (i)

(
x
(i−1)
n+1

)
+ βn+1d

(i)
n

))
−
(
x(i−1)
n + λn

(
−∇f (i)

(
x(i−1)
n

)
+ βnd

(i)
n−1

))∥∥∥
=
∥∥∥(x(i−1)

n+1 − λn+1∇f (i)
(
x
(i−1)
n+1

))
−
(
x(i−1)
n − λn+1∇f (i)

(
x(i−1)
n

))
+ (λn − λn+1)∇f (i)

(
x(i−1)
n

)
+ λn+1βn+1d

(i)
n − λnβnd

(i)
n−1

∥∥∥
≤
∥∥∥(x(i−1)

n+1 − λn+1∇f (i)
(
x
(i−1)
n+1

))
−
(
x(i−1)
n − λn+1∇f (i)

(
x(i−1)
n

))∥∥∥
+ |λn − λn+1|

∥∥∥∇f (i)
(
x(i−1)
n

)∥∥∥+ λn+1βn+1

∥∥∥d(i)n

∥∥∥+ λnβn

∥∥∥d(i)n−1

∥∥∥
≤
∥∥∥x(i−1)

n+1 − x(i−1)
n

∥∥∥+M1|λn − λn+1|+M2λnβn.
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Hence, for all i ∈ I and for all n ≥ 1,∥∥∥x(i)
n − x

(i)
n−1

∥∥∥ =
∥∥∥(αnx

(i) + (1− αn)y
(i)
n

)
−
(
αn−1x

(i) + (1− αn−1)y
(i)
n−1

)∥∥∥
=
∥∥∥(1− αn)

(
y(i)n − y

(i)
n−1

)
+ (αn − αn−1)

(
x(i) − y

(i)
n−1

)∥∥∥
≤(1− αn)

∥∥∥y(i)n − y
(i)
n−1

∥∥∥+ |αn − αn−1|
∥∥∥x(i) − y

(i)
n−1

∥∥∥
≤(1− αn)

{∥∥∥x(i−1)
n − x

(i−1)
n−1

∥∥∥+M1|λn − λn−1|+M2λn−1βn−1

}
+M3|αn − αn−1|

≤(1− αn)
∥∥∥x(i−1)

n − x
(i−1)
n−1

∥∥∥+M1|λn − λn−1|+M2λn−1βn−1 +M3|αn − αn−1|,

whereM3 := maxi∈I(sup{∥x(i)−y
(i)
n ∥ : n ∈ N}) < ∞ from Assumption 3.2. Therefore,

we find that, for all n ≥ 1,

∥xn+1 − xn∥ =
∥∥∥x(K)

n − x
(K)
n−1

∥∥∥
≤(1− αn)

∥∥∥x(K−1)
n − x

(K−1)
n−1

∥∥∥+M1|λn − λn−1|+M2λn−1βn−1 +M3|αn − αn−1|

≤(1− αn)
K
∥∥∥x(0)

n − x
(0)
n−1

∥∥∥+KM1|λn − λn−1|+KM2λn−1βn−1 +KM3|αn − αn−1|

≤(1− αn) ∥xn − xn−1∥+ M̂1|λn − λn−1|+ M̂2λn−1βn−1 + M̂3|αn − αn−1|,

where M̂j := KMj (j = 1, 2, 3). Hence, Condition (C5) and λn ≤ 2L (n ∈ N), where
L := mini∈I L

(i), guarantee that, for all n ≥ 1,

∥xn+1 − xn∥
λn

≤ (1− αn)
∥xn − xn−1∥

λn
+ M̂1

|λn − λn−1|
λn

+ M̂2
λn−1

λn
βn−1 + M̂3

|αn − αn−1|
λn

≤ (1− αn)
∥xn − xn−1∥

λn−1
+ (1− αn)

{
∥xn − xn−1∥

λn
− ∥xn − xn−1∥

λn−1

}
+ M̂1

|λn − λn−1|
λn

+ σM̂2βn−1 + M̂3
|αn − αn−1|

λn

≤ (1− αn)
∥xn − xn−1∥

λn−1
+M4(1− αn)

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣
+ M̂1

|λn − λn−1|
λn

+ σM̂2βn−1 + M̂3
|αn − αn−1|

λn

≤ (1− αn)
∥xn − xn−1∥

λn−1
+M4αn

1

αn

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣
+ 2LM̂1αn

1

αn

|λn − λn−1|
2Lλn

+ σM̂2αn
βn−1

αn
+ M̂3αn

1

αn

|αn − αn−1|
λn

≤ (1− αn)
∥xn − xn−1∥

λn−1
+M4αn

1

αn

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣
+ 2LM̂1αn

1

αn

∣∣∣∣ 1

λn−1
− 1

λn

∣∣∣∣+ σM̂2αn
βn−1

αn
+ M̂3αn

1

λn

∣∣∣∣1− αn−1

αn

∣∣∣∣ ,
where M4 := sup{∥xn+1 − xn∥ : n ∈ N} < ∞. Proposition 2.2 and Conditions (C1),
(C2), (C3), and (C6) ensure that

lim
n→∞

∥xn+1 − xn∥
λn

= 0. (3.4)
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Equation (3.4) and limn→∞ λn = 0 imply that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.5)

(ii) The firm nonexpansivity of T (i) (i ∈ I) and the equation, 2⟨x, y⟩ = ∥x∥2 +
∥y∥2 − ∥x− y∥2 (x, y ∈ H), mean that, for all x ∈

∩
i∈I Fix(T

(i)), for all n ∈ N, and
for all i ∈ I,

2
∥∥∥y(i)n − x

∥∥∥2 = 2
∥∥∥T (i)

(
x(i−1)
n + λnd

(i)
n

)
− T (i)(x)

∥∥∥2
≤ 2

⟨(
x(i−1)
n + λnd

(i)
n

)
− x, y(i)n − x

⟩
=
∥∥∥(x(i−1)

n − x
)
+ λnd

(i)
n

∥∥∥2 + ∥∥∥y(i)n − x
∥∥∥2 − ∥∥∥(x(i−1)

n − y(i)n

)
+ λnd

(i)
n

∥∥∥2 ,
which implies that, for all x ∈

∩
i∈I Fix(T

(i)), for all n ∈ N, and for all i ∈ I,

∥∥∥y(i)n − x
∥∥∥2 ≤

∥∥∥(x(i−1)
n − x

)
+ λnd

(i)
n

∥∥∥2 − ∥∥∥(x(i−1)
n − y(i)n

)
+ λnd

(i)
n

∥∥∥2
=
∥∥∥x(i−1)

n − x
∥∥∥2 + 2λn

⟨
x(i−1)
n − x, d(i)n

⟩
−
∥∥∥x(i−1)

n − y(i)n

∥∥∥2 − 2λn

⟨
x(i−1)
n − y(i)n , d(i)n

⟩
≤
∥∥∥x(i−1)

n − x
∥∥∥2 − ∥∥∥x(i−1)

n − y(i)n

∥∥∥2 +M5λn,

where M5 := maxi∈I(sup{2|⟨y(i)n − x, d
(i)
n ⟩| : n ∈ N}) < ∞. Hence, the convexity of

∥ · ∥2 guarantees that, for all x ∈
∩

i∈I Fix(T
(i)), for all n ∈ N, and for all i ∈ I,

∥∥∥x(i)
n − x

∥∥∥2 =
∥∥∥αn

(
x(i) − x

)
+ (1− αn)

(
y(i)n − x

)∥∥∥2
≤αn

∥∥∥x(i) − x
∥∥∥2 + (1− αn)

∥∥∥y(i)n − x
∥∥∥2

≤αn

∥∥∥x(i) − x
∥∥∥2 + (1− αn)

{∥∥∥x(i−1)
n − x

∥∥∥2 − ∥∥∥x(i−1)
n − y(i)n

∥∥∥2 +M5λn

}
≤αn

∥∥∥x(i) − x
∥∥∥2 + ∥∥∥x(i−1)

n − x
∥∥∥2 − (1− αn)

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 +M5λn.

(3.6)

Accordingly, we find that, for all x ∈
∩

i∈I Fix(T
(i)) and for all n ∈ N,

∥xn+1 − x∥2 =
∥∥∥x(K)

n − x
∥∥∥2

≤αn

∥∥∥x(K) − x
∥∥∥2 + ∥∥∥x(K−1)

n − x
∥∥∥2 − (1− αn)

∥∥∥x(K−1)
n − y(K)

n

∥∥∥2 +M5λn

≤αn

∑
i∈I

∥∥∥x(i) − x
∥∥∥2 + ∥∥∥x(0)

n − x
∥∥∥2 − (1− αn)

∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 +KM5λn

=αn

∑
i∈I

∥∥∥x(i) − x
∥∥∥2 + ∥xn − x∥2 − (1− αn)

∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 + M̂5λn,

where M̂5 := KM5. This inequality means that, for all x ∈
∩

i∈I Fix(T
(i)) and for all
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n ∈ N,

(1− αn)
∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ≤ αn

∑
i∈I

∥∥∥x(i) − x
∥∥∥2 + ∥xn − x∥2 − ∥xn+1 − x∥2 + M̂5λn

=αn

∑
i∈I

∥∥∥x(i) − x
∥∥∥2 + (∥xn − x∥+ ∥xn+1 − x∥)(∥xn − x∥ − ∥xn+1 − x∥) + M̂5λn

≤αn

∑
i∈I

∥∥∥x(i)
0 − x

∥∥∥2 + (∥xn − x∥+ ∥xn+1 − x∥)∥xn − xn+1∥+ M̂5λn.

Equation (3.5), the boundedness of (xn)n∈N, and limn→∞ αn = limn→∞ λn = 0 ensure
that

lim
n→∞

∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 = 0; i.e., lim
n→∞

∥∥∥x(i−1)
n − y(i)n

∥∥∥ = 0 (i ∈ I).

(iii) Since ∥x(i)
n − y

(i)
n ∥ = αn∥x(i) − y

(i)
n ∥ (i ∈ I, n ∈ N) and limn→∞ αn = 0, we

find that limn→∞ ∥x(i)
n − y

(i)
n ∥ = 0 (i ∈ I). From ∥xn − x

(i−1)
n ∥ = ∥x(0)

n − x
(i−1)
n ∥ ≤

∥x(0)
n −y

(1)
n ∥+∥y(1)n −x

(1)
n ∥+· · ·+∥x(i−2)

n −y
(i−1)
n ∥+∥y(i−1)

n −x
(i−1)
n ∥, limn→∞ ∥x(i−1)

n −
y
(i)
n ∥ = 0, and limn→∞ ∥x(i)

n − y
(i)
n ∥ = 0 (i ∈ I), we have

lim
n→∞

∥∥∥xn − x(i−1)
n

∥∥∥ = 0 (i ∈ I). (3.7)

From ∥xn − y
(i)
n ∥ ≤ ∥xn − x

(i−1)
n ∥+ ∥x(i−1)

n − y
(i)
n ∥, we find that

lim
n→∞

∥∥∥xn − y(i)n

∥∥∥ = 0 (i ∈ I).

Moreover, since ∥y(i)n − T (i)(xn)∥ = ∥T (i)(x
(i−1)
n + λnd

(i)
n ) − T (i)(xn)∥ ≤ ∥x(i−1)

n −
xn∥+ λn∥d(i)n ∥, (3.7), and limn→∞ λn = 0, we also have

lim
n→∞

∥∥∥y(i)n − T (i)(xn)
∥∥∥ = 0 (i ∈ I).

Therefore, from ∥xn−T (i)(xn)∥ ≤ ∥xn−y
(i)
n ∥+∥y(i)n −T (i)(xn)∥, limn→∞ ∥xn−y

(i)
n ∥ =

0, and limn→∞ ∥y(i)n − T (i)(xn)∥ = 0 (i ∈ I), we find that

lim
n→∞

∥∥∥xn − T (i)(xn)
∥∥∥ = 0 (i ∈ I). (3.8)

This proves Lemma 3.2.
Lemma 3.2 and the strict convexity of f lead us to the weak convergence of

(x
(i)
n )n∈N (i ∈ I) to the solution of Problem 2.1.
Lemma 3.3. Suppose that the assumptions in Lemma 3.2 are satisfied. Then, the

following hold.
(i) There exists a subsequence, (xnk

)k∈N, of (xn)n∈N such that (xnk
)k∈N weakly

converges to x∗ ∈
∩

i∈I Fix(T
(i));

(ii) x∗ ∈
∩

i∈I Fix(T
(i)) is the solution of Problem 2.19;

9Equation (3.7) and Items (i) and (ii) in Lemma 3.3 imply that (x
(i)
nk

)k∈N (⊂ (x
(i)
n )n∈N) (i ∈ I)

weakly converges to the minimizer of f over
∩

i∈I Fix(T
(i)).
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(iii) if f is strictly convex, (x
(i)
n )n∈N (i ∈ I) generated by Algorithm 3.1 weakly

converges to x∗.

Proof. (i) The boundedness of (xn)n∈N guarantees the existence of (xnk
)k∈N

(⊂ (xn)n∈N) such that (xnk
)k∈N weakly converges to x∗ ∈ H. Fix i ∈ I arbitrar-

ily and assume that x∗ /∈ Fix(T (i)). Then, the Opial’s condition10, (3.8), and the
nonexpansivity of T (i) imply that

lim inf
k→∞

∥xnk
− x∗∥ < lim inf

k→∞

∥∥∥xnk
− T (i)(x∗)

∥∥∥
= lim inf

k→∞

∥∥∥xnk
− T (i)(xnk

) + T (i)(xnk
)− T (i)(x∗)

∥∥∥ = lim inf
k→∞

∥∥∥T (i)(xnk
)− T (i)(x∗)

∥∥∥
≤ lim inf

k→∞
∥xnk

− x∗∥.

This is a contradiction. Therefore, x∗ ∈ Fix(T (i)) (i ∈ I); that is, x∗ ∈
∩

i∈I Fix(T
(i)).

(ii) Let x ∈
∩

i∈I Fix(T
(i)) be fixed arbitrarily. We find from {∇f (i)(x

(i−1)
n )} =

∂f (i)(x
(i−1)
n ) that f (i)(x) ≥ f (i)(x

(i−1)
n ) + ⟨x − x

(i−1)
n ,∇f (i)(x

(i−1)
n )⟩ (n ∈ N, i ∈ I).

So, the nonexpansivity of T (i) guarantees that, for all i ∈ I and for all n ≥ 1,

∥∥∥y(i)n − x
∥∥∥2 ≤

∥∥∥(x(i−1)
n − x

)
+ λnd

(i)
n

∥∥∥2
=
∥∥∥x(i−1)

n − x
∥∥∥2 + 2λn

⟨
x(i−1)
n − x, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − x
∥∥∥2 + 2λn

⟨
x(i−1)
n − x,−∇f (i)

(
x(i−1)
n

)
+ βnd

(i)
n−1

⟩
+M2λ

2
n

≤
∥∥∥x(i−1)

n − x
∥∥∥2 + 2λn

⟨
x− x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+M6λnβn +M2λ

2
n

≤
∥∥∥x(i−1)

n − x
∥∥∥2 + 2λn

(
f (i)(x)− f (i)

(
x(i−1)
n

))
+M6λnβn +M2λ

2
n,

where M6 := maxi∈I(sup{2|⟨x(i−1)
n+1 − x, d

(i)
n ⟩| : n ∈ N}) < ∞. Hence, from (3.6) we

have, for all i ∈ I and for all n ≥ 1,

∥∥∥x(i)
n − x

∥∥∥2 ≤ αn

∥∥∥x(i) − x
∥∥∥2 + (1− αn)

∥∥∥y(i)n − x
∥∥∥2

≤αn

∥∥∥x(i) − x
∥∥∥2 + (1− αn)

{∥∥∥x(i−1)
n − x

∥∥∥2 + 2λn

(
f (i)(x)− f (i)

(
x(i−1)
n

))
+M6λnβn +M2λ

2
n

}
≤αn

∥∥∥x(i) − x
∥∥∥2 + ∥∥∥x(i−1)

n − x
∥∥∥2 + 2(1− αn)λn

(
f (i)(x)− f (i)

(
x(i−1)
n

))
+M6λnβn +M2λ

2
n.

10Suppose that (xn)n∈N (⊂ H) weakly converges to x̂ ∈ H and x̄ ̸= x̂. Then, the following
condition, called the Opial’s condition [26], is satisfied: lim infn→∞ ∥xn− x̂∥ < lim infn→∞ ∥xn− x̄∥.
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Therefore, from xn+1 = x
(K)
n = x

(0)
n+1 (n ∈ N) we find that, for all n ≥ 1,

∥xn+1 − x∥2 ≤αn

∑
i∈I

∥∥∥x(i) − x
∥∥∥2 + ∥xn − x∥2

+ 2(1− αn)λn

(
f(x)−

∑
i∈I

f (i)
(
x(i−1)
n

))
+ M̂6λnβn + M̂2λ

2
n

=αn

∑
i∈I

∥∥∥x(i) − x
∥∥∥2 + ∥xn − x∥2 + M̂6λnβn + M̂2λ

2
n

+ 2(1− αn)λn

(
f(x)− f(xn) +

∑
i∈I

[
f (i)(xn)− f (i)

(
x(i−1)
n

)])
,

where M̂6 := KM6. This inequality means that

2(1− αn)(f(xn)− f(x)) ≤ αn

λn

∑
i∈I

∥∥∥x(i) − x
∥∥∥2 + ∥xn − x∥2 − ∥xn+1 − x∥2

λn

+ M̂6βn + M̂2λn + 2(1− αn)
∑
i∈I

[
f (i)(xn)− f (i)

(
x(i−1)
n

)]
=

αn

λn

∑
i∈I

∥∥∥x(i) − x
∥∥∥2 + (∥xn − x∥+ ∥xn+1 − x∥)(∥xn − x∥ − ∥xn+1 − x∥)

λn

+ M̂6βn + M̂2λn + 2(1− αn)
∑
i∈I

[
f (i)(xn)− f (i)

(
x(i−1)
n

)]
≤ αn

λn

∑
i∈I

∥∥∥x(i) − x
∥∥∥2 + (∥xn − x∥+ ∥xn+1 − x∥)∥xn − xn+1∥

λn

+ M̂6βn + M̂2λn + 2(1− αn)
∑
i∈I

[
f (i)(xn)− f (i)

(
x(i−1)
n

)]
.

(3.9)

On the other hand, for all i ∈ I and for all n ∈ N, we have

f (i)(xn)− f (i)
(
x(i−1)
n

)
≤
⟨
xn − x(i−1)

n ,∇f (i)(xn)
⟩
≤
∥∥∥∇f (i)(xn)

∥∥∥ ∥∥∥xn − x(i−1)
n

∥∥∥ ,
which from the boundedness of (∇f(xn))n∈N and (3.7) implies that

lim sup
n→∞

(
f (i)(xn)− f (i)

(
x(i−1)
n

))
≤ 0 (i ∈ I).

Hence, (3.9), (3.4), Condition (C4), and the convergence of (λn)n∈N, (αn)n∈N, and
(βn)n∈N to 0 ensure that, for all x ∈

∩
i∈I Fix(T

(i)),

lim sup
n→∞

(f(xn)− f(x)) ≤ 0.

This inequality, the weak convergence of (xnk
)k∈N to x∗ ∈

∩
i∈I Fix(T

(i)), and the

convexity and continuity of f11 guarantee that, for all x ∈
∩

i∈I Fix(T
(i)),

f(x∗) ≤ lim inf
k→∞

f(xnk
) ≤ lim sup

k→∞
f(xnk

) ≤ f(x),

11When f : H → R is convex, f is weakly lower semicontinuous if and only if f is lower semicon-
tinuous [2, Theorem 9.1]. Since f in Problem 2.1 is convex and continuous, and (xnk )k∈N weakly
converges to x∗, we have f(x∗) ≤ lim infk→∞ f(xnk ).
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i.e., x∗ ∈
∩

i∈I Fix(T
(i)) is the solution of Problem 2.1.

(iii) Since f : H → R is strictly convex, the uniqueness of the solution, denoted by
x⋆, of Problem 2.1 is guaranteed. Hence, Lemma 3.3(i), (ii) ensure that (xnk

)k∈N (⊂
(xn)n∈N) exists such that (xnk

)k∈N weakly converges to x⋆. Let us take another weakly
converging subsequence, (xnl

)l∈N, of (xn)n∈N. Then, from Lemma 3.3(i), (ii), we can
prove that (xnl

)l∈N also weakly converges to x⋆ with ⟨x⋆, w⟩ = limk→∞⟨xnk
, w⟩ (w ∈

H); that is, any subsequence of (xn)n∈N weakly converges to x⋆. Hence, (xn)n∈N =

(x
(K)
n−1)n∈N weakly converges to x⋆. This implies from (3.7) that (x

(i−1)
n )n∈N (i ∈ I)

also converges weakly to x⋆. Therefore, we can conclude that (x
(i)
n )n∈N (i ∈ I) weakly

converges to the solution of Problem 2.1.

3.2. Analysis of random incremental fixed point optimization algo-
rithm. Let us analyze an incremental fixed point optimization algorithm where one
user is randomly chosen from I(j) (j = 0, 1, . . . ,K − 1) defined as follows: we first
choose i(0) ∈ I(0) := I randomly. We then define I(1) := I(0)\{i(0)} and choose
i(1) ∈ I(1) randomly. For j = 2, 3, . . . ,K − 1, we set I(j) := I(j−1)\{i(j−1)} and
choose i(j) ∈ I(j) randomly. We define i(K) := i(0).

Algorithm 3.2 (Random Incremental Fixed Point Optimization Algorithm).

Step 0. User i (i ∈ I) sets x(i) ∈ H arbitrarily, and sets d
(i)
−1 := −∇f (i)(x(i)).

User i(0) sets x0 ∈ H arbitrarily and transmits x
(i(0))
0 := x0 to user i(1).

Step 1. Given xn := x
(i(0))
n ∈ H and d

(i)
n−1 ∈ H (i ∈ I), user i(j) (j ∈ I) computes

x
(i(j))
n ∈ H cyclically by

d
(i(j))
n := −∇f(i

(j))
(
x
(i(j−1))
n

)
+ βnd

(i(j))
n−1 ,

y
(i(j))
n := T (i

(j))
(
x
(i(j−1))
n + λnd

(i(j))
n

)
,

x
(i(j))
n := αnx

(i(j)) + (1− αn)y
(i(j))
n (j = 1, 2, . . . ,K).

Step 2. User i(0) (= i(K)) defines xn+1 ∈ H by

xn+1 := x
(i(0))
n

and transmits x
(i(0))
n+1 := xn+1 to user i(1). Put n := n+ 1, and go to Step 1.

Algorithm 3.2 when i(j) = j (j ∈ I) coincides with Algorithm 3.1. We can prove
a convergence analysis of Algorithm 3.2 by referring to the proof of Theorem 3.1
(Subsection 3.1).12

Theorem 3.2. Assume that Assumptions 2.1 and 3.1 are satisfied, and the

sequence (y
(i(j))
n )n∈N, i

(j) ∈ I(j), which is generated by Algorithm 3.2 is bounded. Then

the sequence (x
(i(j))
n )n∈N (i(j) ∈ I(j)) generated by Algorithm 3.2 weakly converges to

the solution of Problem 2.1.

When one user is randomly chosen from I
(j)
n := I

(j−1)
n \{i(j−1)

n } which depends

on n, in general, I
(j)
n ∋ i

(j)
n ̸= i

(j)
n+1 ∈ I

(j)
n+1 holds, which implies T (i(j)n ) ̸= T (i

(j)
n+1).

12We can obtain all formulas (e.g., (3.9)) in Subsection 3.1 that do not depend on i ∈ I by using

firmly nonexpansive mappings T (i(j)) (j ∈ I). Therefore, we can prove Theorem 3.2 by referring to
the proof of Theorem 3.1.
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We cannot show in this case that Algorithm 3.2 weakly converges to the solution of
Problem 2.1 because the proof of Theorem 3.1 uses essentially nonexpansive mappings,

T (i(j)) = T (i(j)n ) (n ∈ N), which do not depend on n and satisfy T (i(j)n ) = T (i
(j)
n+1)

(n ∈ N). Hence, in the future, we should try to devise random incremental gradient

methods that can be applied when user i
(j)
n does not always coincide with user i

(j)
n+1.

4. Broadcast Fixed Point Optimization Algorithm for Distributed Op-
timization. In this section, we present the following broadcast type of distributed
optimization algorithm which can be implemented under the assumption that each
user can directly communicate with other users.13

Algorithm 4.1 (Broadcast Fixed Point Optimization Algorithm).

Step 0. User i (i ∈ I) transmits an arbitrarily chosen x
(i)
0 ∈ H to the all users,

and computes x0 := (1/K)
∑

i∈I x
(i)
0 . User i sets d

(i)
0 := −∇f (i)(x0).

Step 1. Given xn, d
(i)
n ∈ H, user i computes x

(i)
n+1 ∈ H by{

y
(i)
n := T (i)

(
xn + λnd

(i)
n

)
,

x
(i)
n+1 := αnx

(i)
0 + (1− αn)y

(i)
n

and transmits x
(i)
n+1 to the all users.

Step 2. User i computes xn+1 ∈ H and d
(i)
n+1 ∈ H by

xn+1 :=
1

K

∑
i∈I

x
(i)
n+1,

d
(i)
n+1 := −∇f (i)(xn+1) + βn+1d

(i)
n .

Put n := n+ 1, and go to Step 1.
In this section, we assume the following:

Assumption 4.1. The sequence (y
(i)
n )n∈N, i ∈ I, which is generated by Algorithm

4.1 is bounded.
The same discussion as in Assumption 3.2 describing the existence of a simple,

bounded, closed and convex set, X(i) (i ∈ I), satisfying X(i) ⊃ Fix(T (i)), leads us to
Assumption 4.1 (for details, see Section 3).

Theorem 4.1. Under Assumptions 2.1, 3.1, and 4.1, the sequence (xn)n∈N
generated by Algorithm 4.1 weakly converges to the solution of Problem 2.1.

We can see from Theorem 4.1 that Algorithm 4.1 enables each user to solve
Problem 2.1 by using only its private objective function and nonexpansive mapping
and the transmitted information from all users.

Let us compare Algorithms 3.1 and 4.1. In Algorithm 4.1, when user i (i ∈
I) has x

(i)
n , each point is broadcast to all users. Then, user i computes y

(i)
n :=

T (i)(xn + λnd
(i)
n ) by using xn := (1/K)

∑
i∈I x

(i)
n . All users have (xn)n∈N, which

weakly converges to the solution of Problem 2.1 (see Theorem 4.1). Therefore, all

users can solve Problem 2.1. Meanwhile, in Algorithm 3.1, y
(i)
n := T (i)(x

(i−1)
n +λnd

(i)
n )

uses x
(i−1)
n , which is the transmitted information from user (i−1). User i in this case

only computes (x
(i)
n )n∈N, which weakly converges to the solution of Problem 2.1 (see

Theorem 3.1). Hence, all users using Algorithm 3.1 can also solve Problem 2.1.

13This implies that all users have access to all information and can execute all steps in Algorithm
4.1.
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4.1. Proof of Theorem 4.1. We omit the proof of the following result since it
is similar to the proof of Lemma 3.1.

Lemma 4.1. Let (λn)n∈N ⊂ (0,∞), (αn)n∈N ⊂ (0, 1], (βn)n∈N ⊂ (0, 1] with
limn→∞ βn = 0, and suppose that ∇f (i) : H → H (i ∈ I) is (1/L(i))-Lipschitz contin-

uous and Assumption 4.1 is satisfied. Then, the sequences (x
(i)
n )n∈N, (∇f (i)(xn))n∈N,

(d
(i)
n )n∈N, i ∈ I, and (xn)n∈N which are generated by Algorithm 4.1 are bounded.
Lemma 4.2. Suppose that T (i) : H → H (i ∈ I) is firmly nonexpansive with∩

i∈I Fix(T
(i)) ̸= ∅, f (i) : H → R (i ∈ I) is convex with (1/L(i))-Lipschitz continuous

gradient, and Assumption 4.1 is satisfied. Let (λn)n∈N ⊂ (0, 2mini∈I L
(i)], (αn)n∈N ⊂

(0, 1], and (βn)n∈N ⊂ (0, 1] be the sequences in Assumption 3.1. Then, Algorithm 4.1
has the following properties:

(i) lim
n→∞

∥xn+1 − xn∥
λn

= 0;

(ii) lim
n→∞

∥∥∥xn − y(i)n

∥∥∥ = 0 (i ∈ I);

(iii) lim
n→∞

∥∥∥xn − T (i)(xn)
∥∥∥ = 0 (i ∈ I).

Proof. (i) From Proposition 2.1 and the conditions, λn+1 ≤ λn and βn+1 ≤ βn

(n ∈ N) we find that, for all i ∈ I and for all n ≥ 1,∥∥∥y(i)n+1 − y(i)n

∥∥∥ =
∥∥∥T (i)

(
xn+1 + λn+1d

(i)
n+1

)
− T (i)

(
xn + λnd

(i)
n

)∥∥∥
≤
∥∥∥(xn+1 + λn+1d

(i)
n+1

)
−
(
xn + λnd

(i)
n

)∥∥∥
=
∥∥∥(xn+1 + λn+1

(
−∇f (i)(xn+1) + βn+1d

(i)
n

))
−
(
xn + λn

(
−∇f (i)(xn) + βnd

(i)
n−1

))∥∥∥
=
∥∥∥(xn+1 − λn+1∇f (i)(xn+1)

)
−
(
xn − λn+1∇f (i)(xn)

)
+ (λn − λn+1)∇f (i)(xn) + λn+1βn+1d

(i)
n − λnβnd

(i)
n−1

∥∥∥
≤
∥∥∥(xn+1 − λn+1∇f (i)(xn+1)

)
−
(
xn − λn+1∇f (i)(xn)

)∥∥∥
+ |λn − λn+1|

∥∥∥∇f (i)(xn)
∥∥∥+ λn+1βn+1

∥∥∥d(i)n

∥∥∥+ λnβn

∥∥∥d(i)n−1

∥∥∥
≤∥xn+1 − xn∥+N1|λn − λn+1|+N2λnβn,

whereN1 := maxi∈I(sup{∥∇f (i)(xn)∥ : n ∈ N}) < ∞ andN2 := maxi∈I(sup{2∥d(i)n ∥ : n ∈
N}) < ∞. Hence, for all i ∈ I and for all n ≥ 1,∥∥∥x(i)

n+1 − x(i)
n

∥∥∥ =
∥∥∥(αnx

(i)
0 + (1− αn)y

(i)
n

)
−
(
αn−1x

(i)
0 + (1− αn−1)y

(i)
n−1

)∥∥∥
=
∥∥∥(1− αn)

(
y(i)n − y

(i)
n−1

)
+ (αn − αn−1)

(
x
(i)
0 − y

(i)
n−1

)∥∥∥
≤(1− αn)

∥∥∥y(i)n − y
(i)
n−1

∥∥∥+ |αn − αn−1|
∥∥∥x(i)

0 − y
(i)
n−1

∥∥∥
≤(1− αn) {∥xn − xn−1∥+N1|λn − λn−1|+N2λn−1βn−1}+N3|αn − αn−1|
≤(1− αn)∥xn − xn−1∥+N1|λn − λn−1|+N2λn−1βn−1 +N3|αn − αn−1|,

(4.1)

where N3 := maxi∈I(sup{∥x(i)
0 − y

(i)
n ∥ : n ∈ N}) < ∞. Moreover, for all n ≥ 1, we

have ∥xn+1 − xn∥ = ∥(1/K)
∑

i∈I(x
(i)
n+1 − x

(i)
n )∥ ≤ (1/K)

∑
i∈I ∥x

(i)
n+1 − x

(i)
n ∥, and

hence, K∥xn+1 − xn∥ ≤
∑

i∈I ∥x
(i)
n+1 − x

(i)
n ∥. Accordingly, summing up (4.1) over all
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i means that, for all n ≥ 1, we have

∥xn+1 − xn∥ ≤ (1− αn)∥xn − xn−1∥+N1|λn − λn−1|+N2λn−1βn−1 +N3|αn − αn−1|.

A similar argument as in the proof of Lemma 3.2(i) leads us to

lim
n→∞

∥xn+1 − xn∥
λn

= 0. (4.2)

From (4.2) and the convergence of (λn)n∈N to 0 we obtain that

lim
n→∞

∥xn+1 − xn∥ = 0. (4.3)

(ii) From the firm nonexpansivity of T (i) (i ∈ I) and the equation, 2⟨x, y⟩ =
∥x∥2 + ∥y∥2 − ∥x − y∥2 (x, y ∈ H), we find that, for all x ∈

∩
i∈I Fix(T

(i)), for all
n ∈ N, and for all i ∈ I,

2
∥∥∥y(i)n − x

∥∥∥2 = 2
∥∥∥T (i)

(
xn + λnd

(i)
n

)
− T (i)(x)

∥∥∥2 ≤ 2
⟨(

xn + λnd
(i)
n

)
− x, y(i)n − x

⟩
=
∥∥∥(xn − x) + λnd

(i)
n

∥∥∥2 + ∥∥∥y(i)n − x
∥∥∥2 − ∥∥∥(xn − y(i)n

)
+ λnd

(i)
n

∥∥∥2 ,
which implies that, for all x ∈

∩
i∈I Fix(T

(i)), for all n ∈ N, and for all i ∈ I, we have∥∥∥y(i)n − x
∥∥∥2 ≤

∥∥∥(xn − x) + λnd
(i)
n

∥∥∥2 − ∥∥∥(xn − y(i)n

)
+ λnd

(i)
n

∥∥∥2
=∥xn − x∥2 + 2λn

⟨
xn − x, d(i)n

⟩
−
∥∥∥xn − y(i)n

∥∥∥2 − 2λn

⟨
xn − y(i)n , d(i)n

⟩
≤∥xn − x∥2 −

∥∥∥xn − y(i)n

∥∥∥2 +N4λn,

(4.4)

where N4 := maxi∈I(sup{2|⟨y(i)n − x, d
(i)
n ⟩| : n ∈ N}) < ∞. Hence, the convexity of

∥ · ∥2 guarantees that, for all x ∈
∩

i∈I Fix(T
(i)), for all n ∈ N, and for all i ∈ I,∥∥∥x(i)

n+1 − x
∥∥∥2 =

∥∥∥αn

(
x
(i)
0 − x

)
+ (1− αn)

(
y(i)n − x

)∥∥∥2
≤αn

∥∥∥x(i)
0 − x

∥∥∥2 + (1− αn)
∥∥∥y(i)n − x

∥∥∥2
≤αn

∥∥∥x(i)
0 − x

∥∥∥2 + (1− αn)

{
∥xn − x∥2 −

∥∥∥xn − y(i)n

∥∥∥2 +N4λn

}
≤αn

∥∥∥x(i)
0 − x

∥∥∥2 + ∥xn − x∥2 − (1− αn)
∥∥∥xn − y(i)n

∥∥∥2 +N4λn.

(4.5)

On the other hand, the convexity of ∥ · ∥2 means that, for all x ∈ H and for all n ∈ N,

∥xn+1 − x∥2 =

∥∥∥∥∥ 1

K

∑
i∈I

(
x
(i)
n+1 − x

)∥∥∥∥∥
2

≤ 1

K

∑
i∈I

∥∥∥x(i)
n+1 − x

∥∥∥2 . (4.6)

Summing up (4.5) over all i we get from (4.6) that, for all x ∈
∩

i∈I Fix(T
(i)) and for

all n ∈ N,

∥xn+1 − x∥2 ≤ αn

K

∑
i∈I

∥∥∥x(i)
0 − x

∥∥∥2 + ∥xn − x∥2 − 1− αn

K

∑
i∈I

∥∥∥xn − y(i)n

∥∥∥2 +N4λn,
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which implies that

1− αn

K

∑
i∈I

∥∥∥xn − y(i)n

∥∥∥2 ≤ αn

K

∑
i∈I

∥∥∥x(i)
0 − x

∥∥∥2 + ∥xn − x∥2 − ∥xn+1 − x∥2 +N4λn

=
αn

K

∑
i∈I

∥∥∥x(i)
0 − x

∥∥∥2 + (∥xn − x∥+ ∥xn+1 − x∥)(∥xn − x∥ − ∥xn+1 − x∥) +N4λn

≤αn

K

∑
i∈I

∥∥∥x(i)
0 − x

∥∥∥2 + (∥xn − x∥+ ∥xn+1 − x∥)∥xn − xn+1∥+N4λn.

From (4.3), the boundedness of (xn)n∈N, and limn→∞ αn = limn→∞ λn = 0 ensure us
that

lim
n→∞

∑
i∈I

∥∥∥xn − y(i)n

∥∥∥2 = 0; i.e., lim
n→∞

∥∥∥xn − y(i)n

∥∥∥ = 0 (i ∈ I).

(iii) The nonexpansivity of T (i) implies that, for all i ∈ I and for all n ∈ N,
∥y(i)n −T (i)(xn)∥ = ∥T (i)(xn+λnd

(i)
n )−T (i)(xn)∥ ≤ λn∥d(i)n ∥. Hence, the boundedness

of (d
(i)
n )n∈N (i ∈ I) and limn→∞ λn = 0 guarantee that limn→∞ ∥y(i)n − T (i)(xn)∥ = 0.

Accordingly, we find from limn→∞ ∥xn−y
(i)
n ∥ = 0 and ∥xn−T (i)(xn)∥ ≤ ∥xn−y

(i)
n ∥+

∥y(i)n − T (i)(xn)∥ (i ∈ I, n ∈ N) that

lim
n→∞

∥∥∥xn − T (i)(xn)
∥∥∥ = 0 (i ∈ I). (4.7)

This proves Lemma 4.2.

Lemma 4.3. Suppose that the assumptions in Lemma 4.2 are satisfied. Then, the
following hold.

(i) There exists a subsequence, (xnk
)k∈N, of (xn)n∈N such that (xnk

)k∈N weakly
converges to x∗ ∈

∩
i∈I Fix(T

(i));

(ii) x∗ ∈
∩

i∈I Fix(T
(i)) is a solution of Problem 2.1;

(iii) if f is strictly convex, (xn)n∈N generated by Algorithm 4.1 weakly converges
to x∗.

Proof. (i) The boundedness of (xn)n∈N guarantees the existence of (xnk
)k∈N

(⊂ (xn)n∈N) such that (xnk
)k∈N weakly converges to x∗ ∈ H. Fix i ∈ I arbitrarily

and assume that x∗ /∈ Fix(T (i)). In the same manner as in the proof of Lemma 3.3(i),
Opial’s condition, (4.7), and the nonexpansivity of T (i) lead us to Lemma 4.3(i).

(ii) Let x ∈
∩

i∈I Fix(T
(i)) be arbitrarily chosen. From (4.4) and the differentia-

bility of f (i) (i ∈ I) we have, for all i ∈ I and for all n ≥ 1, that

∥∥∥y(i)n − x
∥∥∥2 ≤

∥∥∥(xn − x) + λnd
(i)
n

∥∥∥2 = ∥xn − x∥2 + 2λn

⟨
xn − x, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤∥xn − x∥2 + 2λn

⟨
xn − x,−∇f (i)(xn) + βnd

(i)
n−1

⟩
+N2λ

2
n

≤∥xn − x∥2 + 2λn

⟨
x− xn,∇f (i)(xn)

⟩
+N5λnβn +N2λ

2
n

≤∥xn − x∥2 + 2λn

(
f (i)(x)− f (i)(xn)

)
+N5λnβn +N2λ

2
n,
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where N5 := maxi∈I(sup{2|⟨xn+1 − x, d
(i)
n ⟩| : n ∈ N}) < ∞. Hence, for all n ≥ 1, that

1

K

∑
i∈I

∥∥∥y(i)n − x
∥∥∥2 ≤ ∥xn − x∥2 + 2λn

K

∑
i∈I

(
f (i)(x)− f (i)(xn)

)
+N5λnβn +N2λ

2
n

≤ ∥xn − x∥2 + 2λn

K
(f(x)− f(xn)) +N5λnβn +N2λ

2
n.

Accordingly, from (4.5) and (4.6) we obtain, for all n ≥ 1, that

∥xn+1 − x∥2 ≤ αn

K

∑
i∈I

∥∥∥x(i)
0 − x

∥∥∥2 + 1− αn

K

∑
i∈I

∥∥∥y(i)n − x
∥∥∥2

≤αn

K

∑
i∈I

∥∥∥x(i)
0 − x

∥∥∥2 + (1− αn)

{
∥xn − x∥2 + 2λn

K
(f(x)− f(xn)) +N5λnβn +N2λ

2
n

}
≤αn

K

∑
i∈I

∥∥∥x(i)
0 − x

∥∥∥2 + ∥xn − x∥2 + 2λn(1− αn)

K
(f(x)− f(xn)) +N5λnβn +N2λ

2
n.

Therefore, we get, for all n ≥ 1, that

2(1− αn)

K
(f(xn)− f(x))

≤ αn

Kλn

∑
i∈I

∥∥∥x(i)
0 − x

∥∥∥2 + ∥xn − x∥2 − ∥xn+1 − x∥2

λn
+N5βn +N2λn

≤ αn

Kλn

∑
i∈I

∥∥∥x(i)
0 − x

∥∥∥2 + (∥xn − x∥+ ∥xn+1 − x∥)∥xn − xn+1∥
λn

+N5βn +N2λn.

Hence, Condition (C4), (4.2), and limn→∞ αn = limn→∞ λn = limn→∞ βn = 0 ensure
us that, for all x ∈

∩
i∈I Fix(T

(i)),

lim sup
n→∞

(f(xn)− f(x)) ≤ 0. (4.8)

From (4.8), the weak convergence of (xnk
)k∈N to x∗ ∈

∩
i∈I Fix(T

(i)), and the con-

vexity and continuity of f guarantee that, for all x ∈
∩

i∈I Fix(T
(i)), we deduce that

f(x∗) ≤ lim inf
k→∞

f(xnk
) ≤ lim sup

k→∞
f(xnk

) ≤ f(x),

i.e., x∗ ∈
∩

i∈I Fix(T
(i)) is a solution of Problem 2.1.

(iii) Since f is strictly convex, the solution of Problem 2.1 is unique. Therefore, in
the same manner as in the proof of Lemma 3.3(iii), we can prove the weak convergence
of (xn)n∈N generated by Algorithm 4.1 to the solution of Problem 2.1.

5. Numerical Examples. Let us apply Algorithms 3.1, 3.2, and 4.1 to the
network bandwidth allocation problem. The objective of utility-based bandwidth
allocation is to share the available bandwidth among traffic sources so as to maximize
the overall utility subject to the capacity constraints [28, Chapter 2]. The utility
function of source i (user i) is defined for all x ∈ R+ as follows [28, Equation (2.4)]:
given w(i) > 0 and a(i) > 0, we define

U (i)(x) :=


w(i) log x

(
a(i) = 1

)
,

w(i) x
1−a(i)

1− a(i)

(
a(i) ̸= 1

)
.
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Since the utility function is strictly concave, f (i) := −U (i) is strictly convex and
continuously differentiable. We assume that source i has its own private f (i) := −U (i)

and C(i) with the capacity constraints for links used by source i.
Consider the following network bandwidth allocation problem on a network [28,

Fig.2.2] (see Figure 5.1) that consists of three links and four sources:

Maximize U(x) :=
∑
i∈I

U (i)(xi) subject to x ∈
∩
i∈I

C(i), (5.1)

where I := {1, 2, 3, 4}, U (1)(x) := log x, U (2)(x) := 2 log x, U (3)(x) := 0.5−1x0.5,
U (4)(x) := 0.8−1x0.8 (x ∈ R+), D

(1) := {(x1, x2, x3, x4) ∈ R4 : x1+x3 ≤ c1}14, D(2) :=
{(x1, x2, x3, x4) ∈ R4 : x2 + x3 ≤ c2}, D(3) := {(x1, x2, x3, x4) ∈ R4 : x2 + x4 ≤ c3},
C(1) := R4

+∩D(1), C(2) := R4
+∩D(2)∩D(3), C(3) := R4

+∩D(1)∩D(2), C(4) := R4
+∩D(3).

Source 1 Source 2 

Source 3 Source 4 

Link 1 Link 2 Link 3 

Fig. 5.1. Network with three links and four sources

To apply Algorithms 3.1, 3.2, and 4.1 to Problem (5.1), we define T (i) : R4 → R4

(i ∈ I) by

T (1) :=
1

2

(
Id + PR4

+
PD(1)

)
, T (2) :=

1

2

(
Id + PR4

+
PD(2)PD(3)

)
,

T (3) :=
1

2

(
Id + PR4

+
PD(1)PD(2)

)
, T (4) :=

1

2

(
Id + PR4

+
PD(3)

)
,

which satisfy∩
i∈I

Fix
(
T (i)

)
=Fix

(
PR4

+
PD(1)

)
∩ Fix

(
PR4

+
PD(2)PD(3)

)
∩ Fix

(
PR4

+
PD(1)PD(2)

)
∩ Fix

(
PR4

+
PD(3)

)
=
(
R4

+ ∩D(1)
)
∩
(
R4

+ ∩D(2) ∩D(3)
)
∩
(
R4

+ ∩D(1) ∩D(2)
)
∩
(
R4

+ ∩D(3)
)

=R4
+ ∩

3∩
i=1

D(i) =
∩
i∈I

C(i) ̸= ∅.

We can see from the fact that
∩

i∈I Fix(T
(i)) = R4

+ ∩
∩3

i=1 D
(i) that any point in∩

i∈I Fix(T
(i)) satisfies the capacity constraints for all links. We set a closed ball, X

14The projection onto D := {x ∈ RK : ⟨a, x⟩ ≤ c}, where a (̸= 0) ∈ RK and c ∈ R, is expressed as
follows [1, p.406], [2, Subchapter 28.3]: PD(x) := x+ [(c− ⟨a, x⟩)/∥a∥2]x (x /∈ D), or x (x ∈ D).
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(⊃ Fix(T (i)) (i ∈ I)), with a large enough radius and use Algorithms 3.1, 3.2, and 4.1

with y
(i)
n := PX(T (i)(x

(i−1)
n + λnd

(i)
n )), y

(i(j))
n := PX(T (i(j))(x

(i(j−1))
n + λnd

(i(j))
n )), and

y
(i)
n := PX(T (i)(xn+λnd

(i)
n )) (n ∈ N, i, j ∈ I, i(1) := 2, i(2) := 4, i(3) := 3, i(0) = i(4) :=

1), respectively. We use λn := 10−3/(n+ 1)a, αn := 1/(n+ 1)b, and βn := 1/(n+ 2)c

(a ∈ (0, 1/2), b ∈ (a, 1 − a), c > b) which satisfying Conditions (C1)–(C6). Theorems
3.1, 3.2, and 4.1 guarantee that Algorithms 3.1, 3.2, and 4.1 in the above case converge
to the solution of Problem (5.1). To compare the distributed optimization algorithms
with a centralized optimization algorithm15, we use the hybrid conjugate gradient
method (HCGM) [17] defined by xn+1 := T (1)T (2)T (3)T (4)(xn + λndn) and dn+1 :=
−∇(

∑
i∈I f

(i))(xn+1)+βn+1dn (n ∈ N), where x0 ∈ R4 and d0 := −∇(
∑

i∈I f
(i))(x0).

We set c1 := 5, c2 := 4, c3 := 5, and x := x0 = x(i) = x
(i)
0 = x

(0)
0 = x

(i(0))
0

(i ∈ I) in Algorithms 3.1, 3.2, and 4.1, and HCGM. We selected one hundred ran-
dom points x = x(k) (k = 1, 2, . . . , 100) and executed Algorithms 3.1, 3.2, and 4.1,
and HCGM for these points. Let x(k) be one of the randomly selected points and
let (xn(k))n∈N be the sequence generated by x(k) and one of Algorithms 3.1, 3.2,
4.1, and HCGM. To check whether Algorithms 3.1, 3.2, and 4.1, and HCGM con-
verge to a point in

∩
i∈I C

(i) =
∩

i∈I Fix(T
(i)), we employed the following evaluation

functions16: Dn(k) :=
∑

i∈I ∥xn(k) − T (i)(xn(k))∥ (k = 1, 2, . . . , 100, n ∈ N) and

Dn := (1/100)
∑100

k=1 Dn(k) (n ∈ N). We also employed xn,j := (1/100)
∑100

k=1 xn(k)j
(j ∈ I, n ∈ N), where xn(k) = (xn(k)j)j=1,2,3,4. The computer used in the experiment
had an Intel Boxed Core i7 i7-870 2.93 GHz 8 M CPU and 8 GB of memory. The
language was MATLAB 7.13.
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Algorithm 3.1 (a=0.45, b=0.5, c=1)

Algorithm 3.2 (a=0.45, b=0.5, c=1)

Algorithm 4.1 (a=0.45, b=0.5, c=1)

HCGM (a=0.45, c=1)

Fig. 5.2. Behavior of Dn for Algorithms
3.1, 3.2, and 4.1, and HCGM when a = 0.45,
b = 0.5, and c = 1
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Algorithm 3.1 (a=0.3, b=0.4, c=0.5)

Algorithm 3.2 (a=0.3, b=0.4, c=0.5)

Algorithm 4.1 (a=0.3, b=0.4, c=0.5)

HCGM (a=0.3, c=0.5)

Fig. 5.3. Behavior of Dn for Algorithms
3.1, 3.2, and 4.1, and HCGM when a = 0.3,
b = 0.4, and c = 0.5

Figures 5.2 and 5.3 indicate the behaviors of Dn for Algorithms 3.1, 3.2, and 4.1,
and HCGM. These figures shows that the (Dn)n∈Ns generated by these algorithms
converge to 0; i.e., the algorithms converge to a point in

∩
i∈I C

(i) =
∩

i∈I Fix(T
(i)),

HCGM converges to the point fastest, and Algorithms 3.1, 3.2, and 4.1 when a = 0.45,
b = 0.5, and c = 1 converge to the point faster than they do when a = 0.3, b = 0.4, and

15Although there are well known centralized optimization algorithms [6, 31, 32] for Problem (5.1),
we apply HCGM, which is the basis for devising Algorithms 3.1, 3.2, and 4.1 (see Section 1), to
Problem (5.1), and see how Algorithms 3.1, 3.2, and 4.1, and HCGM with the same (λn)n∈N and
(βn)n∈N work.

16x ∈ R4 satisfies
∑

i∈I ∥x − T (i)(x)∥ = 0 if and only if x ∈ Fix(T (i)) (i ∈ I), i.e.,

x ∈
∩

i∈I Fix(T
(i)) = R4

+ ∩
∩3

i=1 D
(i) =

∩
i∈I C

(i).
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Algorithm 3.1 (a=0.45, b=0.5, c=1)

Algorithm 3.2 (a=0.45, b=0.5, c=1)

Algorithm 4.1 (a=0.45, b=0.5, c=1)

HCGM (a=0.45, c=1)

Fig. 5.4. Behavior of xn,1 for Algorithms
3.1, 3.2, and 4.1, and HCGM when a = 0.45,
b = 0.5, and c = 1
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Algorithm 3.1 (a=0.45, b=0.5, c=1)

Algorithm 3.2 (a=0.45, b=0.5, c=1)

Algorithm 4.1 (a=0.45, b=0.5, c=1)

HCGM (a=0.45, c=1)

Fig. 5.5. Behavior of xn,2 for Algorithms
3.1, 3.2, and 4.1, and HCGM when a = 0.45,
b = 0.5, and c = 1
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Algorithm 3.1 (a=0.45, b=0.5, c=1)

Algorithm 3.2 (a=0.45, b=0.5, c=1)

Algorithm 4.1 (a=0.45, b=0.5, c=1)

HCGM (a=0.45, c=1)

Fig. 5.6. Behavior of xn,3 for Algorithms
3.1, 3.2, and 4.1, and HCGM when a = 0.45,
b = 0.5, and c = 1
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Algorithm 3.1 (a=0.45, b=0.5, c=1)

Algorithm 3.2 (a=0.45, b=0.5, c=1)

Algorithm 4.1 (a=0.45, b=0.5, c=1)

HCGM (a=0.45, c=1)

Fig. 5.7. Behavior of xn,4 for Algorithms
3.1, 3.2, and 4.1, and HCGM when a = 0.45,
b = 0.5, and c = 1

c = 0.5. Figures 5.4–5.7 show the behaviors of xn,j (j ∈ I) when a = 0.45, b = 0.5,
and c = 1. Figures 5.8–5.11 show the behaviors of xn,j (j ∈ I) when a = 0.3, b = 0.4,
and c = 0.5. These figures show that, although the behaviors of the distributed
optimization algorithms differ depending on the choice of the step-size sequences, the
different (xn,j)n∈N (j ∈ I) generated by the algorithms converge to the same point.

6. Conclusion and Future Work. We discussed the problem of minimizing the
sum of all users’ objective functions over the intersection of all users’ constraint sets in
a Hilbert space and presented two distributed fixed point optimization algorithms for
solving the problem. One algorithm is based on conventional incremental subgradient
methods, and the other is a broadcast type of distributed optimization algorithm. The
algorithms use easily implementable nonexpansive mappings of which the intersection
of the fixed point sets is equal to the intersection of all users’ constraint sets. They can
be applied to the problem when the projection onto each user’s constraint set cannot
be easily implemented. We showed that the algorithms with slowly diminishing step-
size sequences weakly converge to the solution of the problem. Finally, we gave
numerical results to support the convergence analyses on the algorithms.

In the future, we should consider developing distributed optimization algorithms
for solving minimization problems in which all users’ objective functions are nonconvex
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Algorithm 3.1 (a=0.3, b=0.4, c=0.5)
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Fig. 5.8. Behavior of xn,1 for Algorithms
3.1, 3.2, and 4.1, and HCGM when a = 0.3,
b = 0.4, and c = 0.5
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Algorithm 3.1 (a=0.3, b=0.4, c=0.5)
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Fig. 5.9. Behavior of xn,2 for Algorithms
3.1, 3.2, and 4.1, and HCGM when a = 0.3,
b = 0.4, and c = 0.5
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Algorithm 3.1 (a=0.3, b=0.4, c=0.5)
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Fig. 5.10. Behavior of xn,3 for Algorithms
3.1, 3.2, and 4.1, and HCGM when a = 0.3,
b = 0.4, and c = 0.5
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Fig. 5.11. Behavior of xn,4 for Algorithms
3.1, 3.2, and 4.1, and HCGM when a = 0.3,
b = 0.4, and c = 0.5

(for example, the signal-to-interference-plus-noise ratio, which is used to evaluate the
performance of each user in a wireless network, is not concave). We also need to
devise incremental fixed point optimization algorithms which work where one user is
randomly chosen at any time.
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