PARALLEL COMPUTING PROXIMAL METHOD FOR NONSMOOTH CONVEX OPTIMIZATION WITH FIXED POINT CONSTRAINTS OF QUASI-NONEXPANSIVE MAPPINGS

KENGO SHIMIZU¹, KAZUHIRO HISHINUMA¹,* HIDEAKI IIDUKA²,**

¹Computer Science Course, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
²Department of Computer Science, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan

Abstract. We present a parallel computing proximal method for solving the problem of minimizing the sum of convex functions over the intersection of fixed point sets of quasi-nonexpansive mappings in a real Hilbert space. We also provide a convergence analysis of the method for constant and diminishing step sizes under certain assumptions as well as a convergence-rate analysis for a diminishing step size. Numerical comparisons show that the performance of the algorithm is comparable with existing subgradient methods.

Keywords. Fixed point; Nonsmooth convex optimization; Parallel computing; Proximal method; Quasi-nonexpansive mapping.

2010 Mathematics Subject Classification. 65K05, 90C25, 90C90.

1. INTRODUCTION

In this paper, we consider the following problem [7, Problem 2.1] (see [3, 9, 10] for applications of Problem 1.1):

Problem 1.1. Let H be a real Hilbert space. Suppose that

(A1) $Q_i: H \to H$ $(i \in \mathcal{I} := \{1, 2, \ldots, I\})$ is quasi-firmly nonexpansive;

(A2) $f_i: H \to \mathbb{R}$ $(i \in \mathcal{I})$ is convex and continuous with $\text{dom}(f_i) := \{x \in H: f_i(x) < +\infty\} = H$.

Then,

$$\text{minimize } f(x) := \sum_{i \in \mathcal{I}} f_i(x) \text{ subject to } x \in X := \bigcap_{i \in \mathcal{I}} \text{Fix}(Q_i),$$

where one assumes that there exists a solution of Problem 1.1 (see Sections 2 and 4 for the details).

Algorithms for solving this problem have been proposed in [7, 9]. Reference [7] proposed parallel and incremental subgradient methods for solving Problem 1.1 and provided convergence as well as convergence-rate analyses. Reference [9, 10] proposed stochastic fixed point optimization algorithms for solving a convex stochastic optimization problem that is to minimize the expectation of f_is over $\text{Fix}(Q_1)$. The stochastic fixed point optimization algorithms can be applied to the classifier ensemble problem.

There are methods for solving Problem 1.1 where Q_i is taken to be a nonexpansive mapping, which is a stronger assumption than a quasi-nonexpansive mapping. Subgradient methods were presented in [4, 5, 6, 11], while proximal methods were presented in [8, 16].

*Research Fellow of the Japan Society for the Promotion of Science. **Corresponding author.
E-mail addresses: kengo@cs.meiji.ac.jp (K. Shimizu), kaz@cs.meiji.ac.jp (K. Hishinuma), iiduka@cs.meiji.ac.jp (H. Iiduka).
Received ?? ?, 20??; Accepted ?? ?, 20??.
In this paper, we present a parallel method for solving Problem 1.1. The method is obtained by combining the parallel method in [7] with the proximal method in [8]. We also present a convergence analysis for a constant step size and a diminishing step size. The analysis shows that the proposed method with a small constant step size may approximate a solution to Problem 1.1 (Theorem 3.1) and that with a diminishing step size it converges to a solution under certain assumptions (Theorem 3.2). We also provide a convergence-rate analysis with a diminishing step size (Theorem 3.3). Finally, we numerically compare the proposed method with the existing subgradient methods.

This paper is organized as follows. Section 2 gives the mathematical preliminaries. Section 3 presents the parallel proximal method for solving Problem 1.1 and analyzes its convergence. Section 4 numerically compares the behaviors of the proposed method and the existing ones. Section 5 concludes the paper with a brief summary.

2. MATHEMATICAL PRELIMINARIES

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and its induced norm $\| \cdot \|$. We use the standard notation \mathbb{N} for the natural numbers including zero and \mathbb{R}^N for the N-dimensional Euclidean space.

2.1. Quasi-nonexpansivity and demiclosedness. The fixed point set of a mapping $Q : H \to H$ is denoted by

$$\text{Fix}(Q) := \{ x \in H : Q(x) = x \}.$$

Q is said to be quasi-nonexpansive [2, Definition 4.1(iii)] if $\|Q(x) - y\| \leq \|x - y\|$ for all $x \in H$ and for all $y \in \text{Fix}(Q)$. When a quasi-nonexpansive mapping has one fixed point, its fixed point set is closed and convex [2, Proposition 2.6]. Q is said to be quasi-firmly nonexpansive [1, Section 3] if, for all $x \in H$ and for all $y \in \text{Fix}(Q)$,

$$\|Q(x) - y\|^2 + \|(\text{Id} - Q)(x)\|^2 \leq \|x - y\|^2,$$

where $\text{Id}(x) := x \ (x \in H)$. Any quasi-firmly nonexpansive mapping satisfies the quasi-nonexpansivity condition. Moreover, Q is quasi-firmly nonexpansive if and only if $R := 2Q - \text{Id}$ is quasi-nonexpansive [2, Proposition 4.2], which implies that $(1/2)(\text{Id} + R)$ is quasi-firmly nonexpansive when R is quasi-nonexpansive. Let $x, u \in H$ and $(x_n)_{n \in \mathbb{N}} \subset H$. $\text{Id} - Q$ is said to be demiclosed if a weak convergence of (x_n) to x and $\lim_{n \to +\infty} \|x_n - Q(x_n) - u\| = 0$ imply $x - Q(x) = u$. $\text{Id} - Q$ is demiclosed when Q is nonexpansive, i.e., $\|Q(x) - Q(y)\| \leq \|x - y\| \ (x, y \in H)$ [2, Theorem 4.17]. The metric projection P_C onto a nonempty, closed convex subset C of H is firmly nonexpansive, i.e., $\|P_C(x) - P_C(y)\|^2 + \|\text{Id} - P_C)(x) - (\text{Id} - P_C)(y)\|^2 \leq \|x - y\|^2 \ (x, y \in H)$. Moreover, $\text{Fix}(P_C) = C$ [2, Proposition 4.8, (4.8)].

2.2. Convexity, proximal point, and subdifferentiability. A function $f : H \to \mathbb{R}$ is said to be convex if, for all $x, y \in H$ and for all $\alpha \in [0, 1]$, $f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$. A function f is said to be strictly convex [2, Definition 8.6] if, for all $x, y \in H$ and for all $\alpha \in (0, 1)$, $x \neq y$ implies $f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$. f is strongly convex with constant β [2, Definition 10.5] if there exists $\beta > 0$ such that, for all $x, y \in H$ and for all $\alpha \in (0, 1)$, $f(\alpha x + (1 - \alpha)y) + (\beta \alpha(1 - \alpha)/2)\|x - y\|^2 \leq \alpha f(x) + (1 - \alpha)f(y)$.

Let $f : H \to (-\infty, +\infty]$ be proper, lower semicontinuous, and convex. Then the proximity operator of f [2, Definition 12.23], [14], denoted by Prox_f, maps every $x \in H$ to the unique minimizer of $f(\cdot) + \langle \cdot, x \rangle$.

\[(1/2)\|x - \cdot\|^2; \text{ i.e.,} \]

\[
\{\text{Prox}_f(x)\} = \arg\min_{y \in H} \left[f(y) + \frac{1}{2}\|x - y\|^2 \right] (x \in H).
\]

The uniqueness and existence of \(\text{Prox}_f(x)\) are guaranteed for all \(x \in H\) [2, Definition 12.23], [13]. We call \(\text{Prox}_f(x)\) the proximal point of \(f\) at \(x\). Let \(\text{dom}(f) := \{x \in H: f(x) < +\infty\}\) be the domain of a function \(f : H \rightarrow (-\infty, +\infty)\).

The subdifferential [2, Definition 16.1] of \(f\) is defined by

\[
\partial f(x) := \{u \in H: f(y) \geq f(x) + \langle y - x, u \rangle (y \in H)\} (x \in H).
\]

We call \(u \in \partial f(x)\) the subgradient of \(f\) at \(x\).

Proposition 2.1. [2, Propositions 12.26, 12.27, 12.28, and 16.14] Let \(f : H \rightarrow (-\infty, \infty]\) be proper, lower semicontinuous, and convex. Then, the following hold:

(i) Let \(x, p \in H\). \(p = \text{Prox}_f(x)\) if and only if \(x - p \in \partial f(p)\) (i.e., \(\langle y - p, x - p \rangle + f(p) \leq f(y)\) for all \(y \in H\)).

(ii) \(\text{Prox}_f\) is firmly nonexpansive with \(\text{Fix}(\text{Prox}_f) = \arg\min_{x \in H} f(x)\).

(iii) If \(f\) is continuous at \(x \in \text{dom}(f)\), \(\partial f(x)\) is nonempty. Moreover, \(\delta > 0\) exists such that \(\partial f(B(x; \delta))\) is bounded, where \(B(x; \delta)\) stands for a closed ball with center \(x\) and radius \(\delta\).

The following propositions will be used to prove the main theorems in this paper.

Proposition 2.2. [15, Lemma 3.1] Suppose that \((x_n)_{n \in \mathbb{N}} \subset H\) weakly converges to \(\hat{x} \in H\) and \(\hat{x} \neq \hat{x}\). Then, \(\liminf_{n \to +\infty} \|x_n - \hat{x}\| < \liminf_{n \to +\infty} \|x_n - \hat{x}\|\).

Proposition 2.3. [2, Theorem 9.1] When \(f : H \rightarrow \mathbb{R}\) is convex, \(f\) is weakly lower semicontinuous if and only if \(f\) is lower semicontinuous.

Proposition 2.4. [12, Lemma 2.1] Let \((\Gamma_n)_{n \in \mathbb{N}} \subset \mathbb{R}\) and suppose that \((\Gamma_n)_{j \in \mathbb{N}} \subset (\Gamma_n)_{n \in \mathbb{N}}\) exists such that \(\Gamma_n < \Gamma_{n+1}\) for all \(j \in \mathbb{N}\). Define \((\tau(n))_{n \geq n_0} \subset \mathbb{N}\) by \(\tau(n) := \max\{k \leq n : \Gamma_k < \Gamma_{k+1}\}\) for some \(n_0 \in \mathbb{N}\). Then, \((\tau(n))_{n \geq n_0}\) is increasing and \(\lim_{n \to +\infty} \tau(n) = +\infty\). Moreover, \(\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}\) and \(\Gamma_n \leq \Gamma_{\tau(n)+1}\) for all \(n \geq n_0\).

3. Proposed Parallel Proximal Method

Algorithm 1 is the proposed algorithm for solving Problem 1.1.

Let us consider a network system with \(J\) users and assume that user \(i\) has its own private objective function \(f_i\) and mapping \(Q_i\) and tries to minimize \(f_i\) over \(\text{Fix}(Q_i)\). Moreover, let us assume that each user can communicate with other users. Then, at iteration \(n\), each user can have \(x_n\) in common. Since user \(i\) has its own objective function \(f_i\), it computes \(y_{n,i} := \text{Prox}_{p_i,f_i}(x_n)\). Moreover, user \(i\) has its own constraint set \(\text{Fix}(Q_i)\), with which it tries to find a fixed point of \(Q_i\) by using \(x_{n,i} := Q_i(y_{n,i})\). Since the users can communicate with each other, user \(i\) can receive all \(x_{n,i}\), and hence, user \(i\) can compute \(x_{n+1} := (1/J)\sum_{i \in G} x_{n,i}\).
The definition of x_i^2 which, together with Lemma 3.1, and algorithm (while algorithm (Algorithm 3.1) for concrete optimization problems.

First, we prove the following lemma:

Lemma 3.1. Suppose that (A1) and (A2) hold and define $y_{n,i} := \text{Prox}_{\gamma_i f_i}(x_n)$ for all $i \in \mathcal{I}$ and for all $n \in \mathbb{N}$. Then, Algorithm 1 satisfies that, for all $x \in X$ and for all $n \in \mathbb{N}$,

$$\|x_{n+1} - x\|^2 \leq \|x_n - x\|^2 - \frac{1}{T} \sum_{i \in \mathcal{I}} \left\{ \|x_n - y_{n,i}\|^2 + \|x_{n,i} - y_{n,i}\|^2 \right\} + \frac{2}{T} \gamma_n \sum_{i \in \mathcal{I}} (f_i(x) - f_i(y_{n,i})).$$

Proof. Let $x \in X$ and $n \in \mathbb{N}$ be fixed arbitrarily. The definition of $y_{n,i} := \text{Prox}_{\gamma_i f_i}(x_n)$ and Proposition 2.1(i) ensure that, for all $i \in \mathcal{I}$,

$$\langle x - y_{n,i}, x_n - y_{n,i} \rangle \leq \gamma_n (f_i(x) - f_i(y_{n,i})), \quad \text{which, together with } 2 \langle x, y \rangle = \|x\|^2 + \|y\|^2 - \|x - y\|^2 \quad (x, y \in H), \text{ implies that}$$

$$2\gamma_n (f_i(x) - f_i(y_{n,i})) \geq \|x - y_{n,i}\|^2 + \|x_n - y_{n,i}\|^2 - \|x - x_n\|^2.$$

Accordingly, for all $i \in \mathcal{I}$,

$$\|y_{n,i} - x\|^2 \leq \|x_n - x\|^2 - \|x_n - y_{n,i}\|^2 + 2\gamma_n (f_i(x) - f_i(y_{n,i})). \quad (3.2)$$

The definition of $x_{n,i} := Q_i(y_{n,i})$ and (A1) guarantee that, for all $i \in \mathcal{I}$,

$$\|x_{n,i} - x\|^2 \leq \|y_{n,i} - x\|^2 - \|x_{n,i} - y_{n,i}\|^2. \quad (3.3)$$

Let us compare Algorithm 1 with the existing parallel subgradient method [7, Algorithm 3.1] for solving Problem 1.1. The parallel subgradient method [7, Algorithm 3.1] is as follows:

$$Q_{\alpha,i} := \alpha I + (1 - \alpha) Q_i,$$

$$g_{n,i} \in \partial f_i(Q_{\alpha,i}(x_n)),$$

$$x_{n,i} := Q_{\alpha,i}(x_n) - \lambda_n g_{n,i}, \quad (3.1)$$

$$x_{n+1} := \frac{1}{T} \sum_{i \in \mathcal{I}} x_{n,i}.$$
Hence, (3.2) and (3.3) imply that
\[\|x_{n,i} - x\|^2 \leq \|x_n - x\|^2 - \|x_n - y_{n,i}\|^2 - \|x_{n,i} - y_{n,i}\|^2 + 2\gamma_n (f_i(x) - f_i(y_{n,i})). \]
Summing the above inequality from \(i = 1 \) to \(i = I \) and the convexity of \(\| \cdot \|^2 \) ensure that
\[I \|x_{n+1} - x\|^2 \leq \sum_{i \in \mathcal{I}} \|x_{n,i} - x\|^2 \leq I \|x_n - x\|^2 - \sum_{i \in \mathcal{I}} \left\{ \|x_n - y_{n,i}\|^2 + \|x_{n,i} - y_{n,i}\|^2 \right\} + 2\gamma_n \sum_{i \in \mathcal{I}} (f_i(x) - f_i(y_{n,i})), \]
which completes the proof.

The convergence analysis of Algorithm 1 depends on the following:

Assumption 3.1. The sequence \((y_{n,i})_{n \in \mathbb{N}}\) \((i \in \mathcal{I})\) is bounded.

Assume that, for all \(i \in \mathcal{I} \), \(\arg\min_{x \in H} f_i(x) = \text{Fix}(\text{Prox}_{f_i}) \neq \emptyset \) and \(\text{Fix}(Q_i) \) is bounded. Then, we can choose in advance of running the algorithm a bounded, closed convex set \(C_i \) (e.g., \(C_i \) is a closed ball with a large enough radius) satisfying \(C_i \supset \text{Fix}(Q_i) \). Accordingly, we can compute
\[x_{n,i} := P_{C_i}(Q_i(y_{n,i})) \in C_i \] \hspace{1cm} (3.4)
instead of \(x_{n,i} \) in Algorithm 1. The boundedness of \(C_i \) \((i \in \mathcal{I})\) implies that \((x_{n,i})_{n \in \mathbb{N}} \) \((i \in \mathcal{I})\) is bounded. Accordingly, \((x_{n,i})_{n \in \mathbb{N}} \) is also bounded. Moreover, Proposition 2.1(ii) ensures that, for all \(i \in \mathcal{I} \), for all \(n \in \mathbb{N} \), and for all \(x \in \text{Fix}(\text{Prox}_{f_i}) \), \(\|y_{n,i} - x\| \leq \|x_n - x\| \). Hence, the boundedness of \((x_{n,i})_{n \in \mathbb{N}} \) guarantees that \((y_{n,i})_{n \in \mathbb{N}} \) \((i \in \mathcal{I})\) is bounded. Hence, it can be assumed that \((x_{n,i})_{n \in \mathbb{N}} \) \((i \in \mathcal{I})\) in Algorithm 1 is as in (3.4) in place of Assumption 3.1.

We also have the following lemma:

Lemma 3.2. Suppose that (A1), (A2), and Assumption 3.1 hold. Then, \((x_{n,i})_{n \in \mathbb{N}}\) \((i \in \mathcal{I})\) and \((x_n)_{n \in \mathbb{N}}\) are bounded.

Proof. Assumption (A1) ensures that, for all \(x \in X \), for all \(i \in \mathcal{I} \), and for all \(n \in \mathbb{N} \),
\[\|x_{n,i} - x\| \leq \|y_{n,i} - x\|, \]
which, together with Assumption 3.1, implies that \((x_{n,i})_{n \in \mathbb{N}} \) \((i \in \mathcal{I})\) is bounded. Hence, the definition of \(x_n \) implies that \((x_n)_{n \in \mathbb{N}} \) is also bounded. \(\square \)

3.1. Constant step-size rule

The following is a convergence analysis of Algorithm 1 with a constant step size, which indicates that Algorithm 1 with a small constant step size may approximate a solution of Problem 1.1.

Theorem 3.1. Suppose that (A1), (A2), and Assumption 3.1 hold. Then, Algorithm 1 with \(\gamma_n := \gamma > 0 \) satisfies that
\[\liminf_{n \to +\infty} \sum_{i \in \mathcal{I}} \|y_{n,i} - Q_i(y_{n,i})\|^2 \leq IM_1 \gamma \quad \text{and} \quad \liminf_{n \to +\infty} \sum_{i \in \mathcal{I}} f_i(y_{n,i}) \leq f^*, \]
where \(M_1 := \sup \{(2/I)\sum_{i \in \mathcal{I}} (f_i(x) - f_i(y_{n,i})) : n \in \mathbb{N}\} < +\infty \) for some \(x \in X \) and \(f^* \) is the optimal value of Problem 1.1.
Proof. Let \(x \in X \) be fixed arbitrarily. The definition of \(\partial f_i(x) \) and the Cauchy-Schwarz inequality imply that, for all \(i \in \mathcal{I} \), for all \(n \in \mathbb{N} \), and for all \(u_i \in \partial f_i(x) \),

\[
 f_i(x) - f_i(y_{n,i}) \leq \langle x - y_{n,i}, u_i \rangle \leq \|y_{n,i} - x\| \|u_i\|,
\]

which, together with \(\tilde{B} := \max_{i \in \mathcal{I}} \sup \{\|y_{n,i} - x\| : n \in \mathbb{N}\} < +\infty \) (by Assumption 3.1), implies that

\[
 M_1 := \sup \left\{ \frac{2}{I} \sum_{i \in \mathcal{I}} (f_i(x) - f_i(y_{n,i})) : n \in \mathbb{N} \right\} \leq 2\tilde{B} \max_{i \in \mathcal{I}} \|u_i\| < +\infty. \tag{3.5}
\]

We first show that

\[
 \liminf_{n \to +\infty} \sum_{i \in \mathcal{I}} \left\{ \|x_n - y_{n,i}\|^2 + \|x_n - y_{n,i}\|_2^2 \right\} \leq IM_1 \gamma. \tag{3.6}
\]

If (3.6) does not hold, there exists \(\delta > 0 \) such that

\[
 \liminf_{n \to +\infty} \sum_{i \in \mathcal{I}} X_{n,i} > IM_1 \gamma + 2\delta.
\]

Accordingly, the property of the limit inferior of \(\left(\sum_{i \in \mathcal{I}} \{\|x_n - y_{n,i}\|^2 + \|x_n - y_{n,i}\|_2^2\} \right)_{n \in \mathbb{N}} \) ensures that

\[
 \sum_{i \in \mathcal{I}} X_{n,i} > IM_1 \gamma + \delta. \tag{3.7}
\]

Accordingly, Lemma 3.1 with \(\gamma_n := \gamma \ (n \in \mathbb{N}) \) guarantees that, for all \(n \geq n_0 \),

\[
 \|x_{n+1} - x\|^2 \leq \|x_n - x\|^2 - \frac{1}{I} \sum_{i \in \mathcal{I}} X_{n,i} + \frac{2}{I} \gamma \sum_{i \in \mathcal{I}} (f_i(x) - f_i(y_{n,i}))
 < \|x_n - x\|^2 - \frac{1}{I} (IM_1 \gamma + \delta) + M_1 \gamma
 = \|x_n - x\|^2 - \frac{\delta}{I}
 < \|x_{n_0} - x\|^2 - \frac{\delta}{I} (n + 1 - n_0).
\]

The right side of the above inequality approaches minus infinity as \(n \) diverges. Hence, we have a contradiction. This implies that (3.6) holds. Therefore,

\[
 \liminf_{n \to +\infty} \sum_{i \in \mathcal{I}} \|y_{n,i} - x_{n,i}\|^2 = \liminf_{n \to +\infty} \sum_{i \in \mathcal{I}} \|y_{n,i} - Q_i(y_{n,i})\|^2 \leq IM_1 \gamma.
\]

Next, we show that

\[
 \liminf_{n \to +\infty} \sum_{i \in \mathcal{I}} f_i(y_{n,i}) \leq f^*. \tag{3.8}
\]

Assume that (3.8) does not hold. An argument similar to the one for obtaining (3.7) implies that there exist \(\zeta > 0 \) and \(m_0 \in \mathbb{N} \) such that, for all \(n \geq m_0 \),

\[
 \sum_{i \in \mathcal{I}} f_i(y_{n,i}) - f^* > \zeta.
\]
Lemma 3.1 thus ensures that, for all \(n \geq m_0 \) and for all \(x^* \in X^* := \{ x^* \in X : f(x^*) = f^* = \inf_{x \in X} f(x) \} \),

\[
\|x_{n+1} - x^*\|^2 \leq \|x_n - x^*\|^2 + \frac{2}{I} \gamma \left(f^* - \sum_{i \in I} f_i(y_{n,i}) \right) < \|x_n - x^*\|^2 - \frac{2}{I} \gamma \xi
\]

which is a contradiction. Accordingly, (3.8) holds. This completes the proof. \(\square \)

3.2. **Diminishing step-size rule.** The following is a convergence analysis of Algorithm 1 with a diminishing step size.

Theorem 3.2. Suppose that (A1), (A2), and Assumption 3.1 hold and \(\text{Id} - Q_i \) is demiclosed.* Let \((x_n)_{n \in \mathbb{N}} \) be the sequence generated by Algorithm 1 with \((\gamma_n)_{n \in \mathbb{N}} \) satisfying \(\lim_{n \to +\infty} \gamma_n = 0 \) and \(\sum_{n=0}^{\infty} \gamma_n = +\infty \). Then, there exists a subsequence of each of \((x_n)_{n \in \mathbb{N}} \), \((x_{n,i})_{n \in \mathbb{N}} \), and \((y_{n,i})_{n \in \mathbb{N}} \) (i.e., \(i \in I \)) that weakly converges to a solution of Problem 1.1. Moreover, \((x_n)_{n \in \mathbb{N}} \), \((x_{n,i})_{n \in \mathbb{N}} \), and \((y_{n,i})_{n \in \mathbb{N}} \) (i.e., \(i \in I \)) strongly converge to a unique solution of Problem 1.1 if one of the following holds:

(i) One \(f_i \) is strongly convex;

(ii) \(H \) is finite-dimensional, and one \(f_i \) is strictly convex.

Proof. We consider two cases.

Case 1: Suppose that there exists \(m_0 \in \mathbb{N} \) such that, for all \(n \in \mathbb{N} \) and for all \(x^* \in X^* \), \(n \geq m_0 \) implies \(\|x_{n+1} - x^*\| \leq \|x_n - x^*\| \), where \(X^* := \{ x^* \in X : f(x^*) = f^* = \inf_{x \in X} f(x) \} \). Then, there exists \(c := \lim_{n \to +\infty} \|x_n - x^*\| \). Let \(x^* \in X^* \) be fixed arbitrarily. Lemma 3.1, together with a discussion similar to that of (3.5), guarantees that there exists

\[
M_2 := \sup \left\{ \frac{2}{I} \sum_{i \in I} (f_i(x^*) - f_i(y_{n,i})) : n \in \mathbb{N} \right\} < +\infty
\]

such that, for all \(n \geq m_0 \),

\[
\frac{1}{I} \sum_{i \in I} \left\{ \|x_n - y_{n,i}\|^2 + \|x_{n,i} - y_{n,i}\|^2 \right\} \leq \|x_n - x^*\|^2 - \|x_{n+1} - x^*\|^2 + M_2 \gamma_n. \quad (3.9)
\]

Accordingly, the conditions \(\lim_{n \to +\infty} \gamma_n = 0 \) and \(c := \lim_{n \to +\infty} \|x_n - x^*\| \) mean that

\[
\lim_{n \to +\infty} \|x_n - y_{n,i}\| = 0 \quad \text{and} \quad \lim_{n \to +\infty} \|x_{n,i} - y_{n,i}\| = 0 \quad (i \in I). \quad (3.10)
\]

From Lemma 3.1, for all \(x \in X \) and for all \(k \in \mathbb{N} \),

\[
\frac{2}{I} \gamma_k \sum_{i \in I} f_i(y_{k,i}) - f_i(x) \leq \|x_k - x\|^2 - \|x_{k+1} - x\|^2, \quad (3.11)
\]

which implies that, for all \(n \in \mathbb{N} \) and for all \(x \in X \),

\[
\frac{2}{I} \sum_{k=0}^{n} \gamma_k N_k(x) \leq \|x_0 - x\|^2 - \|x_{n+1} - x\|^2 \leq \|x_0 - x\|^2.
\]

* See Section 4 for an example in which \(Q_i \) is quasi-firmly nonexpansive and \(\text{Id} - Q_i \) is demiclosed.
Accordingly, for all \(x \in X \),
\[
2 \sum_{k=0}^{+\infty} \gamma_N(x) < +\infty.
\] (3.12)

Here, we show that, for all \(x \in X \),
\[
\liminf_{n \to +\infty} N_n(x) \leq 0.
\] (3.13)

Assume that (3.13) does not hold; i.e., there exists \(x_0 \in X \) such that \(\liminf_{n \to +\infty} N_n(x_0) > 0 \). Then, \(m_1 \in \mathbb{N} \) and \(\theta > 0 \) exist such that, for all \(n \geq m_1 \), \(N_n(x_0) \geq \theta \). From (3.12) and \(\sum_{n=0}^{+\infty} \gamma_n = +\infty \),
\[
+\infty = \frac{2\theta}{I} \sum_{k=m_1}^{+\infty} \gamma_k \leq \frac{2}{I} \sum_{k=m_1}^{+\infty} \gamma_N(x_0) < +\infty,
\]
which is a contradiction. Hence, (3.13) holds, i.e., for all \(x \in X \),
\[
\liminf_{n \to +\infty} \sum_{i \in \mathcal{I}} f_i(y_{n,i}) \leq \sum_{i \in \mathcal{I}} f_i(x) =: f(x).
\] (3.14)

The definition of \(u_{n,i} \in \partial f_i(x_n) \) and the Cauchy-Schwarz inequality ensure that, for all \(i \in \mathcal{I} \) and for all \(n \in \mathbb{N} \),
\[
f_i(x_n) - f_i(y_{n,i}) \leq \langle x_n - y_{n,i}, u_{n,i} \rangle \leq \|x_n - y_{n,i}\| \|u_{n,i}\|.
\]

Proposition 2.1(iii) and the boundedness of \((x_n)_{n \in \mathbb{N}} \) (see also Lemma 3.2) guarantee that there exists \(B_1 := \max_{i \in \mathcal{I}} \sup \{ \|u_{n,i}\| : n \in \mathbb{N} \} < +\infty \) such that, for all \(n \in \mathbb{N} \),
\[
f(x_n) = \sum_{i \in \mathcal{I}} f_i(x_n) \leq B_1 \sum_{i \in \mathcal{I}} \|x_n - y_{n,i}\| + \sum_{i \in \mathcal{I}} f_i(y_{n,i}).
\]

Therefore, (3.10) and (3.14) lead to the finding that, for all \(x \in X \),
\[
\liminf_{n \to +\infty} f(x_n) \leq B_1 \liminf_{n \to +\infty} \sum_{i \in \mathcal{I}} \|x_n - y_{n,i}\| + \liminf_{n \to +\infty} \sum_{i \in \mathcal{I}} f_i(y_{n,i}) \leq f(x).
\] (3.15)

Accordingly, a subsequence \((x_{n_k})_{k \in \mathbb{N}} \) of \((x_n)_{n \in \mathbb{N}} \) exists such that, for all \(x \in X \),
\[
\lim f(x_{n_k}) = \liminf_{n \to +\infty} f(x_n) \leq f(x).
\] (3.16)

Since \((x_{n_k})_{k \in \mathbb{N}} \) is bounded (see also Lemma 3.2), there exists \((x_{n_{l_m}})_{m \in \mathbb{N}} \subset (x_{n_k})_{k \in \mathbb{N}} \) such that \((x_{n_{l_m}})_{m \in \mathbb{N}} \) weakly converges to \(x_s \in H \). From (3.10), \((y_{n_{l_m},i}) \ (i \in \mathcal{I}) \) weakly converges to \(x_s \). Hence, (3.10) and the demiclosedness of \(\text{Id} - Q_i \) ensure that \(x_s \in \text{Fix}(Q_i) \ (i \in \mathcal{I}) \), i.e., \(x_s \in X \). Proposition 2.3 ensures that the continuity and convexity of \(f \) (by (A2)) imply that \(f \) is weakly lower semicontinuous, which means that
\[
f(x_s) \leq \liminf_{m \to +\infty} f(x_{n_{l_m}}).
\]

Therefore, (3.16) leads to the finding that, for all \(x \in X \),
\[
f(x_s) \leq \liminf_{m \to +\infty} f(x_{n_{l_m}}) = \lim_{m \to +\infty} f(x_{n_{l_m}}) \leq f(x),
\]
that is, \(x_s \in X^* \). Let us take another subsequence \((x_{n_{k_l}})_{k \in \mathbb{N}} \subset (x_{n_k})_{k \in \mathbb{N}} \) such that \((x_{n_{k_l}})_{k \in \mathbb{N}} \) weakly converges to \(x_{ss} \in H \). A discussion similar to the one for obtaining \(x_s \in X^* \) guarantees that \(x_{ss} \in X^* \).
Here, it is proven that $x_* = x_{ss}$. Now, let us assume that $x_* \neq x_{ss}$. Then, the existence of $c := \lim_{n \to \infty} \| x_n - x^* \| (x^* \in X^*)$ and Proposition 2.2 imply that

$$c = \lim_{n \to \infty} \| x_n - x_* \| < \lim_{n \to \infty} \| x_n - x_{ss} \| = \lim_{n \to \infty} \| x_n - x_{ss} \| < \lim_{k \to \infty} \| x_{nk} - x_* \| = c,$$

which is a contradiction. Hence, $x_* = x_{ss}$. Accordingly, any subsequence of $(x_n)_{n \in \mathbb{N}}$ converges weakly to $x_* \in X^*$; i.e., $(x_n)_{n \in \mathbb{N}}$ converges weakly to $x_* \in X^*$. This means that x_* is a weak cluster point of $(x_n)_{n \in \mathbb{N}}$ and belongs to X^*. A discussion similar to the one for obtaining $x_* = x_{ss}$ guarantees that there is only one weak cluster point of $(x_n)_{n \in \mathbb{N}}$, so we can conclude that, in Case 1, $(x_n)_{n \in \mathbb{N}}$ weakly converges to a point in X^*.

Case 2: Suppose that, for all $m \in \mathbb{N}$, there exist $n \in \mathbb{N}$ and $x_0^* \in X^*$ such that $n \geq m$ and $\| x_{n+1} - x_0^* \| > \| x_n - x_0^* \|$. This implies that $(x_n)_{j \in \mathbb{N}} \subset (x_n)_{n \in \mathbb{N}}$ exists such that, for all $j \in \mathbb{N}$, $\| x_{n+1} - x_0^* \| > \| x_n - x_0^* \| =: \Gamma_j$. Proposition 2.4 thus guarantees that $m_1 \in \mathbb{N}$ exists such that, for all $n \geq m_1$, $\Gamma(n) \leq \Gamma(n+1)$, where $\tau(n)$ is defined as in Proposition 2.4. From Lemma 3.1 (see also (3.9)), for all $n \geq m_1$,

$$\frac{1}{I} \sum_{i \in I} \left\{ \| x^{(n)} - y^{(n),i} \|^2 + \| x^{(n),i} - y^{(n),i} \| \right\} \leq \Gamma^2(n) - \Gamma^2(n+1) + \tilde{M}_2 \gamma(n) \leq \tilde{M}_2 \gamma(n),$$

where

$$\tilde{M}_2 := \sup \left\{ \frac{2}{I} \sum_{i \in I} (f_i(x^*) - f_i(y^{(n),i})) : n \in \mathbb{N} \right\}$$

is finite by Assumption 3.1 (see also (3.5)). Hence, the condition $\lim_{n \to +\infty} \gamma(n) = 0$ implies that

$$\lim_{n \to +\infty} \| x^{(n)} - y^{(n),i} \| = 0 \quad \text{and} \quad \lim_{n \to +\infty} \| x^{(n),i} - y^{(n),i} \| = 0 \quad (i \in I). \quad (3.17)$$

From (3.11), for all $n \geq m_1$,

$$\frac{2}{I} \gamma(n) N_{\tau(n)}(x_0^*) \leq \Gamma^2(n) - \Gamma^2(n+1) \leq 0,$$

which, together with $\gamma(n) \geq 0 \quad (n \geq m_1)$, implies that $N_{\tau(n)}(x_0^*) \leq 0$. Accordingly,

$$\limsup_{n \to +\infty} \sum_{i \in I} f_i(y^{(n),i}) \leq f^*.$$

An argument similar to the one for obtaining (3.15), together with (3.17), implies that

$$\limsup_{n \to +\infty} f(x_{\tau(n)}) \leq f^*.$$

Choose a subsequence $(x_{\tau(n_k)})_{k \in \mathbb{N}}$ of $(x_{\tau(n)})_{n \geq m_1}$ arbitrarily. Then,

$$\limsup_{k \to +\infty} f(x_{\tau(n_k)}) \leq \limsup_{n \to +\infty} f(x_{\tau(n)}) \leq f^*.$$

(3.18)

The boundedness of $(x_{\tau(n_k)})_{k \in \mathbb{N}}$ ensures that $(x_{\tau(n_k)})_{k \in \mathbb{N}} \subset (x_{\tau(k)})_{k \in \mathbb{N}}$ exists such that $(x_{\tau(n_k)})_{k \in \mathbb{N}}$ weakly converges to $x_* \in H$. Then, (3.17) and the demiclosedness of $\text{Id} - Q_1$ ensure that $x_* \in X$. Moreover, Proposition 2.3 and (3.18) guarantee that

$$f(x_*) \leq \liminf_{l \to +\infty} f\left(x_{\tau(n_l)}\right) \leq \limsup_{l \to +\infty} f\left(x_{\tau(n_l)}\right) \leq f^*.$$
that is, \(x_* \in X^* \). Therefore, \((x_{(n)}^i)_{i \in \mathbb{N}} \) weakly converges to \(x_* \in X^* \). From Cases 1 and 2, there exists a subsequence of \((x_n)_{n \in \mathbb{N}} \) that weakly converges to a point in \(X^* \).

Suppose that assumption (i) in Theorem 3.2 holds. The strong convexity of \(f := \sum_{i \in \mathcal{F}} f^{(i)} \) implies that \(X^* \) consists of one point, denoted by \(x^* \). In Case 1, the strong convexity of \(f \) guarantees that there exists \(\beta > 0 \) such that, for all \(\alpha \in (0, 1) \) and for all \(l \in \mathbb{N} \), \((\beta/2)(1 - \alpha)\|x_{n} - x^*\|^2 \leq \alpha f(x_{n}) + (1 - \alpha)f^* - f(\alpha x_{n} + (1 - \alpha)x^*) \). Accordingly, from the existence of \(c := \lim_{n \to +\infty} \|x_{n} - x^*\| \) and (3.16), we have
\[
\frac{\beta}{2} (1 - \alpha) \lim_{l \to +\infty} \|x_{n} - x^*\|^2 \leq \alpha \lim_{l \to +\infty} (\alpha f(x_{n}) + (1 - \alpha)f^*)
+ \limsup_{l \to +\infty} (-f(\alpha x_{n} + (1 - \alpha)x^*)
\leq f^* - \liminf_{l \to +\infty} f(\alpha x_{n} + (1 - \alpha)x^*) ,
\]
which, together with the weak convergence of \((x_{n})_{l \in \mathbb{N}} \) to \(x^* \) and Proposition 2.3, implies that
\[
\frac{\beta}{2} (1 - \alpha) \lim_{l \to +\infty} \|x_{n} - x^*\|^2 \leq f^* - f(\alpha x^* + (1 - \alpha)x^*) = 0.
\]
Hence, \((x_{n})_{l \in \mathbb{N}} \) strongly converges to \(x^* \). Therefore, from [2, Theorem 5.11], the whole sequence \((x_{n})_{n \in \mathbb{N}} \) strongly converges to \(x^* \). From (3.10), \((x_{n}, i \in \mathbb{N} \) and \((y_{n}, i \in \mathcal{F}) \) strongly converge to \(x^* \). In Case 2, the strong convexity of \(f \) leads to the deduction that, for all \(\alpha \in (0, 1) \) and for all \(l \in \mathbb{N} \),
\[
\frac{\beta}{2} (1 - \alpha) \limsup_{l \to +\infty} \|x_{(n)}^i - x^*\|^2 \leq \alpha \limsup_{l \to +\infty} f(x_{(n)}^i) + (1 - \alpha)f^*
- \liminf_{l \to +\infty} f(\alpha x_{(n)}^i + (1 - \alpha)x^*).
\]
The weak convergence of \((x_{(n)}^i)_{i \in \mathbb{N}} \) to \(x^* \), the weakly lower semicontinuity of \(f \) (by Proposition 2.3), and (3.18) imply that
\[
\frac{\beta}{2} (1 - \alpha) \limsup_{l \to +\infty} \|x_{(n)}^i - x^*\|^2 \leq f^* - f(\alpha x^* + (1 - \alpha)x^*) = 0,
\]
which implies that \((x_{(n)}^i)_{i \in \mathbb{N}} \) strongly converges to \(x^* \). When another subsequence \((x_{(n_{m})}^i)_{m \in \mathbb{N}} \subset (x_{(n)}^i)_{k \in \mathbb{N}} \) can be chosen, a discussion similar to the one for showing the weak convergence of \((x_{(n)}^i)_{i \in \mathbb{N}} \) to a point in \(X^* \) guarantees that \((x_{(n)}^i)_{m \in \mathbb{N}} \) also weakly converges to a point in \(X^* \). Furthermore, a discussion similar to the one for showing the strong convergence of \((x_{(n)}^i)_{i \in \mathbb{N}} \) to \(x^* \) ensures that \((x_{(n_{m})}^i)_{m \in \mathbb{N}} \) strongly converges to the same \(x^* \). Hence, it is guaranteed that \((x_{(n)}^i)_{i \in \mathbb{N}} \) strongly converges to \(x^* \). Since \((x_{(n)}^i)_{k \in \mathbb{N}} \) is an arbitrary subsequence of \((x_{(n)}^i)_{n \geq m_{1}}, (x_{(n)}^i)_{n \geq m_{1}} \) strongly converges to \(x^* \); i.e., \(\lim_{n \to +\infty} \Gamma_{(n)} = \lim_{n \to +\infty} \|x_{(n)} - x^*\| = 0 \). Accordingly, Proposition 2.4 ensures that
\[
\limsup_{n \to +\infty} \|x_{n} - x^*\| \leq \limsup_{n \to +\infty} \Gamma_{(n)+1} = 0,
\]
which implies that, in Case 2, the whole sequence \((x_{n})_{n \in \mathbb{N}} \) converges to \(x^* \). Moreover, Lemma 3.1 and \(\lim_{n \to +\infty} y_{n} = 0 \) imply that \(\lim_{n \to +\infty} \|x_{n} - y_{n,i}\| = \lim_{n \to +\infty} \|x_{n,i} - y_{n,i}\| = 0 \) (\(i \in \mathcal{F} \)). Therefore, \((x_{n,i})_{n \in \mathbb{N}} \) and \((y_{n,i})_{n \in \mathcal{F}} \) converges to \(x^* \).

Suppose that assumption (ii) in Theorem 3.2 holds. Let \(x^* \in X^* \) be the unique solution to Problem 1.1. In Case 1, it is guaranteed that \((x_{n})_{n \in \mathbb{N}} \) converges to \(x^* \in X^* \). From (3.10), \((x_{n,i})_{n \in \mathbb{N}} \) and \((y_{n,i})_{n \in \mathcal{F}} \) strongly converge to \(x^* \). Moreover, in Case 2, the convergence of \((x_{(n)}^i)_{i \in \mathbb{N}} \) to \(x^* \) is guaranteed. A discussion similar to the one for showing the strong convergence of \((x_{(n)}^i)_{n \geq m_{1}} \) to \(x^* \) ensures that
Proposition 2.4 thus guarantees that the whole sequence \((x_n)_{n \in \mathbb{N}}\) converges to \(x^* \in X^*\). Lemma 3.1 and \(\lim_{n \to +\infty} \gamma_n = 0\) imply that \(\lim_{n \to +\infty} \|x_n - y_{n,i}\| = \lim_{n \to +\infty} \|x_{n,i} - y_{n,i}\| = 0\) \((i \in \mathcal{I})\). Therefore, \((x_{n,i})_{n \in \mathbb{N}}\) and \((y_{n,i})_{n \in \mathbb{N}}\) \((i \in \mathcal{I})\) converge to \(x^*\). This completes the proof. \(\square\)

The following is a convergence-rate analysis of Algorithm 1 with a diminishing step size.

Theorem 3.3. Suppose that the assumptions in Theorem 3.1 hold and a monotone decreasing sequence \((\gamma_n)_{n \in \mathbb{N}}\) satisfies \(\lim_{n \to +\infty} \gamma_n = 0\), \(\lim_{n \to +\infty} (n \gamma_n)^{-1} = 0\), \(\sum_{n=0}^{+\infty} \gamma_n = +\infty\), and \(\lim_{n \to +\infty} n^{-1} \sum_{k=0}^{n-1} \gamma_k = 0\). Then, Algorithm 1 satisfies that, for all \(n \geq 1\),

\[
\sum_{i \in \mathcal{I}} \left(\frac{1}{n} \sum_{k=0}^{n-1} \|y_{k,i} - Q_i(y_{k,i})\|^2 \right) \leq \frac{I}{n} \|x_0 - x\|^2 + \frac{\tilde{M}_1}{n} \sum_{k=0}^{n-1} \gamma_k \quad \text{and} \quad \sum_{i \in \mathcal{I}} f_i \left(\frac{1}{n} \sum_{k=0}^{n-1} y_{k,i} \right) \leq f^* + \frac{IB}{2n \gamma_n},
\]

where \(x^*\) is a solution of Problem 1.1, \(\tilde{M}_1 := \sup \{2 \sum_{i \in \mathcal{I}} (f_i(x^*) - f_i(y_{n,i})) : n \in \mathbb{N} \} < +\infty\), and \(B := \sup \{\|x_n - x^*\|^2 : n \in \mathbb{N} \} < +\infty\).

Proof. Let \(x^* \in X^*\). Lemma 3.1 implies that, for all \(n \geq 1\),

\[
\frac{1}{I} \sum_{i \in \mathcal{I}} \sum_{k=0}^{n-1} \left\{ \|y_{k,i} - x_{k,i}\|^2 + \|x_{k,i} - y_{k,i}\|^2 \right\} \leq \|x_0 - x\|^2 + \frac{\tilde{M}_1}{I} \sum_{k=0}^{n-1} \gamma_k,
\]

which in turn implies that

\[
\sum_{i \in \mathcal{I}} \left(\frac{1}{n} \sum_{k=0}^{n-1} \|y_{k,i} - x_{k,i}\|^2 \right) \leq \frac{1}{n} \sum_{i \in \mathcal{I}} \sum_{k=0}^{n-1} \left\{ \|y_{k,i} - x_{k,i}\|^2 + \|x_{k,i} - y_{k,i}\|^2 \right\} \leq \frac{I}{n} \|x_0 - x\|^2 + \frac{\tilde{M}_1}{n} \sum_{k=0}^{n-1} \gamma_k.
\]

Lemma 3.1 indicates that, for all \(k \in \mathbb{N}\),

\[
\sum_{i \in \mathcal{I}} f_i(y_{k,i}) - f^* \leq \frac{I}{2 \gamma_k} \left\{ \|x_k - x^*\|^2 \right\}.
\]

Summing the above inequality from \(k = 0\) to \(k = n - 1\) implies that, for all \(n \geq 1\),

\[
\frac{1}{n} \sum_{k=0}^{n-1} f_i(y_{k,i}) - f^* \leq \frac{I}{2n} \sum_{k=0}^{n-1} \frac{1}{\gamma_k} \left\{ \|x_k - x^*\|^2 \right\}.
\]

The definition of \(X_n\) means that

\[
X_n = \frac{\|x_0 - x^*\|}{\gamma_0} + \sum_{k=0}^{n-1} \left\{ \frac{\|x_k - x^*\|^2}{\gamma_k} - \frac{\|x_k - x^*\|^2}{\gamma_{k-1}} \right\} = \frac{\|x_n - x^*\|^2}{\gamma_{n-1}},
\]

which, together with \(\gamma_n \leq \gamma_{n-1} \quad (n \geq 1)\) and \(B := \sup \{\|x_n - x^*\|^2 : n \in \mathbb{N} \} < +\infty\) (by Lemma 3.2), implies that

\[
X_n \leq \frac{B}{\gamma_0} + B \sum_{k=1}^{n-1} \left(\frac{1}{\gamma_k} - \frac{1}{\gamma_{k-1}} \right) = \frac{B}{\gamma_{n-1}} \leq \frac{B}{\gamma_n}.
\]

The convexity of \(f_i\) thus ensures that, for all \(n \geq 1\),

\[
\sum_{i \in \mathcal{I}} f_i \left(\frac{1}{n} \sum_{k=0}^{n-1} y_{k,i} \right) - f^* \leq \frac{IB}{2n \gamma_n},
\]

which completes the proof. \(\square\)
Let us consider the rate of convergence of Algorithm 1 with \(\gamma_n := n^{-1/2} \) \((n \geq 1)\). The step size \((\gamma_n)_{n \geq 1}\) is monotone decreasing and satisfies \(\lim_{n \to +\infty} \gamma_n = 0\), \(\lim_{n \to +\infty} (n \gamma_n)^{-1} = 0\), and \(\sum_{n=0}^{\infty} \gamma_n = +\infty\). Moreover, the Cauchy-Schwarz inequality and \(\sum_{k=0}^{n-1} k^{-1} \leq 1 + \ln n\) mean that

\[
\frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{\sqrt{k}} \leq \sqrt{n} \frac{\sum_{k=0}^{n-1} 1}{\sqrt{k}} \leq \sqrt{\frac{1 + \ln n}{n}},
\]

which implies that \(\lim_{n \to +\infty} n^{-1} \sum_{k=0}^{n-1} k = 0\). Theorem 3.3 indicates that Algorithm 1 with \(\gamma_n := n^{-1/2} \) satisfies that, for all \(n \geq 1 \),

\[
\sum_{i \in \mathcal{I}} \left(\frac{1}{n} \sum_{k=0}^{n-1} \|y_{k,i} - Q_i(y_{k,i})\|^2 \right) = O\left(\sqrt{\frac{1 + \ln n}{n}} \right) \quad \text{and} \quad \sum_{i \in \mathcal{I}} f_i \left(\frac{1}{n} \sum_{k=0}^{n-1} y_{k,i} \right) \leq f^* + \frac{IB}{2\sqrt{n}},
\]

where \(O\) stands for the Landau notation (see [10] for a convergence rate analysis of stochastic approximation methods).

4. Numerical Comparisons

Let us compare the performance of Algorithm 1 with the one of the existing parallel subgradient method (PSM) [7, Algorithm 3.1] (see (3.1)) and incremental subgradient method (ISM) [7, Algorithm 4.1] for the following problem (see also [7, Problem 5.1]): Let \(a_{i,j} > 0, b_{i,j}, d_i \in \mathbb{R} \) \((i \in \mathcal{I}, j = 1, 2, \ldots, N)\), and \(c_i := (c_{i,j})_{j=1}^{N} \in \mathbb{R}^{N} \) \((i \in \mathcal{I})\) with \(c_{i,j} > 0\). Then,

\[
\text{minimize } f(x) := \sum_{i \in \mathcal{I}} f_i(x) \text{ subject to } x \in X := \bigcap_{i \in \mathcal{I}} \text{Fix}(Q_i) = \bigcap_{i \in \mathcal{I}} \text{lev}_{\leq 0} g_i,
\]

where \(f_i: \mathbb{R}^N \to \mathbb{R} \) and \(Q_i: \mathbb{R}^N \to \mathbb{R}^N \) are defined for all \(x := (x_j)_{j=1}^{N} \in \mathbb{R}^N \) by

\[
f_i(x) := \sum_{j=1}^{N} a_{i,j} |x_j - b_{i,j}| \quad \text{and} \quad Q_i(x) := \begin{cases} x - \frac{g_i(x)}{\|z_i(x)\|^2} z_i(x) & \text{if } g_i(x) > 0, \\ x & \text{if } x \in \text{lev}_{\leq 0} g_i := \{ x \in \mathbb{R}^N : g_i(x) \leq 0 \}, \end{cases}
\]

\(g_i: \mathbb{R}^N \to \mathbb{R} \) is defined for all \(x \in \mathbb{R}^N \) by

\[
g_i(x) := \begin{cases} \langle c_i, x \rangle + d_i & \text{if } \langle c_i, x \rangle > -d_i, \\ 0 & \text{otherwise}, \end{cases}
\]

and \(z_i(x)\) is any vector in \(\partial g_i(x)\). The above mapping \(Q_i\) is called the subgradient projection related to \(g_i\). \(Q_i\) satisfies quasi-firm nonexpansivity, and \(\text{Id} - Q_i\) satisfies the demiclosedness condition [1, Lemma 3.1].

The experiment was conducted on a MacBook Air (13-inch, 2017) with a 1.8 GHz Intel (R) Core (TM) i5 CPU processor, 8 GB, 1600 MHz DDR3 memory, and Mac OS Catalina (Version 10.15) operating system. PSM, ISM, and Algorithm 1 were written in Python 3.7.4 with the NumPy 1.17.2 package. We set \(I = 256\) and \(N = 1000\) and randomly chose \(a_{i,j} \in (0, 100], b_{i,j} \in [-100, 100), d_i \in [-1, 0], \) and \(c_{i,j} \in [-0.5, 0.5]\). The stopping condition was \(n = 10000\). The step sizes were as follows:

- Constant step sizes: \(\gamma_n := 10^{-1}, 10^{-3}\),
- Diminishing step sizes: \(\gamma_n := \frac{10^{-1}}{n+1}, \frac{10^{-3}}{n+1}\).
The performance measures were as follows: for \(n \in \mathbb{N} \),
\[
F_n := \frac{1}{10} \sum_{s=1}^{10} \sum_{l \in S} f_l(x_n(s)) \quad \text{and} \quad D_n := \frac{1}{10} \sum_{s=1}^{10} \sum_{l \in S} \|x_n(s) - Q_l(x_n(s))\|,
\]
where \((x_n(s))_{n \in \mathbb{N}}\) is the sequence generated by each of the three algorithms with the randomly chosen initial point \(x_0(s) \in [0,1]^N \) \((s = 1,2,\ldots,10)\). If \((D_n)_{n \in \mathbb{N}}\) converges to 0, the algorithms converge to a point in \(X \).

Figure 1 shows that the algorithms with \(\gamma_n = \lambda_n = 10^{-1} \) did not converge to a point in \(X \). Figure 2 indicates that, although the values of \(D_n \) generated by the algorithms with \(\gamma_n = \lambda_n = 10^{-3} \) were less than those generated by the algorithms with \(\gamma_n = \lambda_n = 10^{-1} \), the algorithms with \(\gamma_n = \lambda_n = 10^{-3} \) did not converge to a point in \(X \). These results imply that it would be difficult to set an appropriate constant step size in advance.

Figure 1. Behaviors of \(F_n \) and \(D_n \) for Algorithm 1, PSM, and ISM with \(\gamma_n = \lambda_n = 10^{-1} \)

Figure 2. Behaviors of \(F_n \) and \(D_n \) for Algorithm 1, PSM, and ISM with \(\gamma_n = \lambda_n = 10^{-3} \)

Meanwhile, Figures 3 and 4 show that Algorithm 1 with diminishing step sizes \(\gamma_n = 10^{-1}/(n + 1), 10^{-3}/(n + 1) \) converged to a point in \(X \), as guaranteed by Theorem 3.2. These figures also show
that F_n remains stable. Accordingly, from Theorem 3.2, Algorithm 1 converged to a solution of problem (4.1). Figures 3 and 4 also indicate that Algorithm 1 performs comparably to PSM and ISM.

![Algorithm 1, PSM, and ISM with $\gamma_n = \lambda_n = 10^{-1}/(n+1)$](image1)

Figure 3. Behaviors of F_n and D_n for Algorithm 1, PSM, and ISM with $\gamma_n = \lambda_n = 10^{-1}/(n+1)$

![Algorithm 1, PSM, and ISM with $\gamma_n = \lambda_n = 10^{-3}/(n+1)$](image2)

Figure 4. Behaviors of F_n and D_n for Algorithm 1, PSM, and ISM with $\gamma_n = \lambda_n = 10^{-3}/(n+1)$

5. **Conclusion**

This paper presented a parallel proximal method for solving the minimization problem of the sum of convex functions over the intersection of fixed point sets of quasi-nonexpansive mappings in a real Hilbert space. It also provided convergence and convergence-rate analyses. Numerical comparisons showed that the performance of the algorithm is almost the same as those of the existing methods.

Acknowledgments

The authors would like to thank Professor Xiaolong Qin for giving us a chance to submit our paper to this journal. This work was supported by JSPS KAKENHI Grant Numbers, JP18K11184 and JP17J09220.
REFERENCES

