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Abstract This paper presents an algorithm to accelerate the Halpern fixed
point algorithm in a real Hilbert space. To this goal, we first apply the Halpern
algorithm to the smooth convex minimization problem, which is an example
of a fixed point problem for a nonexpansive mapping, and indicate that the
Halpern algorithm is based on the steepest descent method for solving the min-
imization problem. Next, we formulate a novel fixed point algorithm using the
ideas of conjugate gradient methods that can accelerate the steepest descent
method. We show that, under certain assumptions, our algorithm strongly
converges to a fixed point of a nonexpansive mapping. We numerically com-
pare our algorithm with the Halpern algorithm and show that it dramatically
reduces the running time and iterations needed to find a fixed point compared
with that algorithm.
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1 Introduction

Fixed point problems for nonexpansive mappings [2, Chapter 4], [4, Chapter
3], [5, Chapter 1], [18, Chapter 3] have been investigated in many practical
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applications, and they include convex feasibility problems [1], [2, Example
5.21], convex optimization problems [2, Corollary 17.5], problems of finding the
zeros of monotone operators [2, Proposition 23.38], and monotone variational
inequalities [2, Subchapter 25.5].

Fixed point problems can be solved by using useful fixed point algorithms,
such as the Krasnosel’skĭı-Mann algorithm [2, Subchapter 5.2], [3, Subchapter
1.2], [13,14], the Halpern algorithm [3, Subchapter 1.2], [6,19], and the hybrid
method [15]. Meanwhile, to make practical systems and networks (see, e.g.,
[7–10] and references therein) stable and reliable, the fixed point has to be
found at a faster pace. That is, we need a new algorithm that approximates
the fixed point faster than the conventional ones. In this paper, we focus on
the Halpern algorithm and present an algorithm to accelerate the search for a
fixed point of a nonexpansive mapping.

To achieve the main objective of this paper, we first apply the Halpern
algorithm to the smooth convex minimization problem, which is an example
of a fixed point problem for a nonexpansive mapping, and indicate that the
Halpern algorithm is based on the steepest descent method [16, Subchapter 3.3]
for solving the minimization problem.

A number of iterative methods [16, Chapters 5–19] have been proposed
to accelerate the steepest descent method. In particular, conjugate gradient
methods [16, Chapter 5] have been widely used as an efficient accelerated
version of most gradient methods. Here, we focus on the conjugate gradient
methods and devise an algorithm blending the conjugate gradient methods
with the Halpern algorithm.

Our main contribution is to propose a novel algorithm for finding a fixed
point of a nonexpansive mapping, which use the ideas of accelerated conjugate
gradient methods for optimization over the fixed point set [11,12], and prove
that the algorithm converges to some fixed point in the sense of the strong
topology of a real Hilbert space. To demonstrate the effectiveness and fast
convergence of our algorithm, we numerically compare our algorithm with the
Halpern algorithm. Numerical results show that it dramatically reduces the
running time and iterations needed to find a fixed point compared with that
algorithm.

This paper is organized as follows. Section 2 gives the mathematical pre-
liminaries. Section 3 devises the acceleration algorithm for solving fixed point
problems and presents its convergence analysis. Section 4 applies the proposed
and conventional algorithms to a concrete fixed point problem and provides
numerical examples comparing them.

2 Mathematical Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and its induced norm
∥ · ∥, and let N be the set of all positive integers including zero.
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2.1 Fixed point problem

Suppose that C ⊂ H is nonempty, closed, and convex. A mapping, T : C → C,
is said to be nonexpansive [2, Definition 4.1(ii)], [4, (3.2)], [5, Subchapter 1.1],
[18, Subchapter 3.1] if

∥T (x)− T (y)∥ ≤ ∥x− y∥ (x, y ∈ C).

The fixed point set of T : C → C is denoted by

Fix (T ) := {x ∈ C : T (x) = x} .

The metric projection onto C [2, Subchapter 4.2, Chapter 28] is denoted
by PC . It is defined by PC(x) ∈ C and ∥x−PC(x)∥ = infy∈C ∥x− y∥ (x ∈ H).
PC is nonexpansive with Fix(PC) = C [2, Proposition 4.8, (4.8)].

Proposition 2.1 Suppose that C ⊂ H is nonempty, closed, and convex,
T : C → C is nonexpansive, and x ∈ H. Then,

(i) [2, Corollary 4.15], [4, Lemma 3.4], [5, Proposition 5.3], [18, Theorem 3.1.6]
Fix(T ) is closed and convex.

(ii) [2, Theorem 3.14] x̂ = PC(x) if and only if ⟨x− x̂, y − x̂⟩ ≤ 0 (y ∈ C).

Proposition 2.1(i) guarantees that, if Fix(T ) ̸= ∅, PFix(T )(x) exists for all
x ∈ H.

This paper discusses the following fixed point problem.

Problem 2.1 Suppose that T : H → H is nonexpansive with Fix(T ) ̸= ∅.
Then,

find x⋆ ∈ H such that T (x⋆) = x⋆.

2.2 The Halpern algorithm and our algorithm

The Halpern algorithm generates the sequence, (xn)n∈N [3, Subchapter 1.2],
[6,19] as follows: given x0 ∈ H and (αn)n∈N satisfying limn→∞ αn = 0,∑∞

n=0 αn = ∞, and
∑∞

n=0 |αn+1 − αn| < ∞,

xn+1 := αnx0 + (1− αn)T (xn) (n ∈ N) . (1)

Algorithm (1) strongly converges to PFix(T )(x0) (∈ Fix(T )) [3, Theorem 6.17],
[6,19].

Here, we shall discuss Problem 2.1 when Fix(T ) is the set of all minimizers
of a convex, continuously Fréchet differentiable functional, f , over H and see
that algorithm (1) is based on the steepest descent method [16, Subchapter
3.3] to minimize f over H. Suppose that the gradient of f , denoted by ∇f , is
Lipschitz continuous with a constant L > 0 and define T f : H → H by

T f := I − α∇f, (2)
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where α ∈ (0, 2/L] and I : H → H stands for the identity mapping. Accord-
ingly, T f satisfies the nonexpansivity condition (see, e.g., [7, Proposition 2.3])
and

Fix
(
T f
)
= argmin

x∈H
f(x) :=

{
x⋆ ∈ H : f (x⋆) = min

x∈H
f (x)

}
.

Therefore, algorithm (1) with T := T f can be expressed as follows.
dfn+1 := −∇f (xn) ,

yn := T f (xn) = xn − α∇f (xn) = xn + αdfn+1,

xn+1 := αnx0 + (1− αn) yn (n ∈ N) .
(3)

This implies algorithm (3) uses the steepest descent direction [16, Subchapter

3.3], df,SDD
n+1 := −∇f(xn), of f at xn, and hence, algorithm (3) is based on the

steepest descent method.

Meanwhile, conjugate gradient methods [16, Chapter 5] are popular ac-
celeration methods of the steepest descent method. The conjugate gradient
direction of f at xn (n ∈ N) is df,CGD

n+1 := −∇f(xn) + βnd
f,CGD
n , where

df,CGD
0 := −∇f(x0) and {βn} ⊂ (0,∞), which, together with (2), implies

that

df,CGD
n+1 =

1

α

(
T f (xn)− xn

)
+ βnd

f,CGD
n . (4)

Therefore, by replacing dfn+1 := −∇f(xn) in algorithm (3) with df,CGD
n+1 defined

by (4), we can formulate a novel algorithm for solving Problem 2.1.

Before presenting the algorithm, we provide the following lemmas which
are used to prove the main theorem.

Proposition 2.2 [3, Lemmas 1.2 and 1.3] Let (an)n∈N, (bn)n∈N, (cn)n∈N, (αn)n∈N ⊂
(0,∞) be sequences with an+1 ≤ (1−αn)an+αnbn+ cn (n ∈ N). Suppose that∑∞

n=0 αn = ∞, lim supn→∞ bn ≤ 0, and
∑∞

n=0 cn < ∞. Then limn→∞ an = 0.

Proposition 2.3 [17, Lemma 1] Suppose that (xn)n∈N ⊂ H weakly converges
to x ∈ H and y ̸= x. Then, lim infn→∞ ∥xn − x∥ < lim infn→∞ ∥xn − y∥.

3 Acceleration of the Halpern algorithm

We present the following algorithm.

Algorithm 3.1

Step 0. Choose µ ∈ (0, 1], α > 0, and x0 ∈ H arbitrarily, and set (αn)n∈N ⊂
(0, 1), (βn)n∈N ⊂ [0,∞). Compute d0 := (Tx0 − x0)/α.



Accelerated Halpern Fixed Point Algorithm 5

Step 1. Given xn, dn ∈ H, compute dn+1 ∈ H by

dn+1 :=
1

α
(T (xn)− xn) + βndn.

Compute xn+1 ∈ H as follows.{
yn := xn + αdn+1,

xn+1 := µαnx0 + (1− µαn) yn.

Put n := n+ 1, and go to Step 1.

We can check that Algorithm 3.1 coincides with the Halpern algorithm (1)
when βn := 0 (n ∈ N) and µ := 1.

This section makes the following assumptions.

Assumption 3.1 The sequences (αn)n∈N and (βn)n∈N satisfy1

(C1) lim
n→∞

αn = 0, (C2)
∞∑

n=0

αn = ∞, (C3)
∞∑

n=0

|αn+1 − αn| < ∞,

(C4) βn ≤ α2
n (n ∈ N).

Moreover, (xn)n∈N in Algorithm 3.1 satisfies

(C5) (T (xn)− xn)n∈N is bounded.

Let us do a convergence analysis of Algorithm 3.1.

Theorem 3.1 Under Assumption 3.1, the sequence, (xn)n∈N, generated by
Algorithm 3.1 strongly converges to PFix(T )(x0).

Algorithm 3.1 when βn := 0 (n ∈ N) is the Halpern algorithm defined by

xn+1 := µαnx0 + (1− µαn)T (xn) (n ∈ N).

Hence, the nonexpansivity of T ensures that, for all x ∈ Fix(T ) and for all
n ∈ N,

∥xn+1 − x∥ = ∥µαn (x0 − x) + (1− µαn) (T (xn)− x)∥
≤ µαn ∥x0 − x∥+ (1− µαn) ∥T (xn)− x∥
≤ µαn ∥x0 − x∥+ (1− µαn) ∥xn − x∥ .

(5)

Suppose that n := 0. From (5), we have ∥x1 − x∥ ≤ µα0∥x0 − x∥ + (1 −
µα0)∥x0 − x∥ = ∥x0 − x∥. Assume that ∥xm − x∥ ≤ ∥x0 − x∥ for some m ∈ N.
Then, (5) implies that ∥xm+1 − x∥ ≤ µαm∥x0 − x∥ + (1 − µαm)∥xm − x∥ ≤
µαm∥x0 − x∥ + (1 − µαm)∥x0 − x∥ = ∥x0 − x∥. Hence, induction guarantees
that

∥xn − x∥ ≤ ∥x0 − x∥ (n ∈ N).

1 Examples of (αn)n∈N and (βn)n∈N satisfying (C1)–(C4) are αn := 1/(n + 1)a and
βn := 1/(n+ 1)2a (n ∈ N), where a ∈ (0, 1].
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Therefore, we find that (xn)n∈N is bounded. Moreover, since the nonexpan-
sivity of T ensures that (T (xn))n∈N is also bounded, (C5) holds. Accordingly,
Theorem 3.1 says that, if (αn)n∈N satisfies (C1)–(C3), Algorithm 3.1 when
βn := 0 (n ∈ N) (i.e., the Halpern algorithm) strongly converges to PFix(T )(x0).
This means that Theorem 3.1 is a generalization of the convergence analysis
of the Halpern algorithm.

3.1 Proof of Theorem 3.1

We first show the following lemma.

Lemma 3.1 Suppose that Assumption 3.1 holds. Then, (dn)n∈N, (xn)n∈N,
and (yn)n∈N are bounded.

Proof We have from (C1) and (C4) that limn→∞ βn = 0. Accordingly, there ex-
ists n0 ∈ N such that βn ≤ 1/2 for all n ≥ n0. DefineM1 := max{∥dn0∥, (2/α) supn∈N ∥T (xn)−
xn∥}. Then, (C5) implies that M1 < ∞. Assume that ∥dn∥ ≤ M1 for some
n ≥ n0. The triangle inequality ensures that

∥dn+1∥ =

∥∥∥∥ 1α (T (xn)− xn) + βndn

∥∥∥∥ ≤ 1

α
∥T (xn)− xn∥+ βn ∥dn∥ ≤ M1,

which means that ∥dn∥ ≤ M1 for all n ≥ n0, i.e., (dn)n∈N is bounded.
The definition of yn (n ∈ N) implies that

yn = xn + α

(
1

α
(T (xn)− xn) + βndn

)
= T (xn) + αβndn.

(6)

The nonexpansivity of T and (6) imply that, for all x ∈ Fix(T ) and for all
n ≥ n0,

∥yn − x∥ = ∥T (xn) + αβndn − x∥
≤ ∥T (xn)− T (x)∥+ αβn ∥dn∥
≤ ∥xn − x∥+ αM1βn.

Therefore, we find that, for all x ∈ Fix(T ) and for all n ≥ n0,

∥xn+1 − x∥ = ∥µαn (x0 − x) + (1− µαn) (yn − x)∥
≤ µαn ∥x0 − x∥+ (1− µαn) ∥yn − x∥
≤ µαn ∥x0 − x∥+ (1− µαn) {∥xn − x∥+ αM1βn}
≤ (1− µαn) ∥xn − x∥+ µαn ∥x0 − x∥+ αM1βn,

which, together with (C4) and αn < 1 (n ∈ N), means that, for all x ∈ Fix(T )
and for all n ≥ n0,

∥xn+1 − x∥ ≤ (1− µαn) ∥xn − x∥+ µαn

(
∥x0 − x∥+ αM1

µ

)
.
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Induction guarantees that, for all x ∈ Fix(T ) and for all n ≥ n0,

∥xn − x∥ ≤ ∥x0 − x∥+ αM1

µ
.

Therefore, (xn)n∈N is bounded.
The definition of yn (n ∈ N) and the boundedness of (xn)n∈N and (dn)n∈N

imply that (yn)n∈N is also bounded. This completes the proof. ⊓⊔

Lemma 3.2 Suppose that Assumption 3.1 holds. Then,

(i) limn→∞ ∥xn+1 − xn∥ = 0.
(ii) limn→∞ ∥xn − T (xn)∥ = 0.
(iii) lim supn→∞⟨x0 − x⋆, yn − x⋆⟩ ≤ 0, where x⋆ := PFix(T )(x0).

Proof (i) Equation (6), the triangle inequality, and the nonexpansivity of T
imply that, for all n ∈ N,

∥yn+1 − yn∥ = ∥T (xn+1)− T (xn) + α (βn+1dn+1 − βndn)∥
≤ ∥T (xn+1)− T (xn)∥+ α ∥βn+1dn+1 − βndn∥
≤ ∥xn+1 − xn∥+ α (βn+1 ∥dn+1∥+ βn ∥dn∥) ,

which, together with ∥dn∥ ≤ M1 (n ≥ n0) and (C4), implies that, for all
n ≥ n0,

∥yn+1 − yn∥ ≤ ∥xn+1 − xn∥+ αM1

(
α2
n+1 + α2

n

)
. (7)

On the other hand, from αn ≤ |αn+1 − αn| + αn+1 and αn < 1 (n ∈ N),
we have that, for all n ∈ N,

α2
n+1 + α2

n ≤ α2
n+1 + αn (|αn+1 − αn|+ αn+1)

≤ (αn+1 + αn)αn+1 + |αn+1 − αn|.
(8)

We also find that, for all n ∈ N\{0},

∥xn+1 − xn∥ = ∥µαnx0 + (1− µαn) yn − (µαn−1x0 + (1− µαn−1) yn−1)∥
= ∥µ (αn − αn−1)x0 + (1− µαn) (yn − yn−1)

+ µ (αn−1 − αn) yn−1∥
≤ µ |αn − αn−1| (∥x0∥+ ∥yn−1∥) + (1− µαn) ∥yn − yn−1∥
≤ (1− µαn) ∥yn − yn−1∥+M2 |αn − αn−1| ,

where M2 := supn∈N µ(∥x0∥+ ∥yn∥) < ∞. Hence, (7) and (8) ensure that, for
all n ≥ n0,

∥xn+1 − xn∥ ≤ (1− µαn) ∥xn − xn−1∥+ αM1 ((αn + αn−1)αn + |αn − αn−1|)
+M2 |αn − αn−1|

= (1− µαn) ∥xn − xn−1∥+ (αM1 +M2) |αn − αn−1|

+
αM1

µ
(αn + αn−1)µαn.
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Proposition 2.2, (C1), (C2), and (C3) lead us to

lim
n→∞

∥xn+1 − xn∥ = 0. (9)

(ii) From ∥xn+1 − yn∥ = µαn∥x0 − yn∥ ≤ M2αn (n ∈ N), (C1) means that
limn→∞ ∥xn+1−yn∥ = 0. Since the triangle inequality ensures that ∥yn−xn∥ ≤
∥yn − xn+1∥+ ∥xn+1 − xn∥ (n ∈ N), we find from (9) that

lim
n→∞

∥dn+1∥ =
1

α
lim

n→∞
∥yn − xn∥ = 0. (10)

From the definition of dn+1 (n ∈ N), we have, for all n ≥ n0,

0 ≤ 1

α
∥T (xn)− xn∥ ≤ ∥dn+1∥+ βn ∥dn∥ ≤ ∥dn+1∥+M1βn.

Since Equation (10) and limn→∞ βn = 0 guarantee that the right side of the
above inequality converges to 0, we find that

lim
n→∞

∥T (xn)− xn∥ = 0. (11)

(iii) From the limit superior of (⟨x0−x⋆, yn−x⋆⟩)n∈N, there exists (ynk
)k∈N

(⊂ (yn)n∈N) such that

lim sup
n→∞

⟨x0 − x⋆, yn − x⋆⟩ = lim
k→∞

⟨x0 − x⋆, ynk
− x⋆⟩ . (12)

Moreover, since (ynk
)k∈N is bounded, there exists (ynki

)i∈N (⊂ (ynk
)k∈N)

which weakly converges to some point ŷ (∈ H). Equation (10) guarantees
that (xnki

)i∈N weakly converges to ŷ.
We shall show that ŷ ∈ Fix(T ). Assume that ŷ /∈ Fix(T ), i.e., ŷ ̸= T (ŷ).

Proposition 2.3, (11), and the nonexpansivity of T ensure that

lim inf
i→∞

∥∥∥xnki
− ŷ
∥∥∥ < lim inf

i→∞

∥∥∥xnki
− T (ŷ)

∥∥∥
= lim inf

i→∞

∥∥∥xnki
− T

(
xnki

)
+ T

(
xnki

)
− T (ŷ)

∥∥∥
= lim inf

i→∞

∥∥∥T (xnki

)
− T (ŷ)

∥∥∥
≤ lim inf

i→∞

∥∥∥xnki
− ŷ
∥∥∥ .

This is a contradiction. Hence, ŷ ∈ Fix(T ). Hence, (12) and Proposition 2.1(ii)
guarantee that

lim sup
n→∞

⟨x0 − x⋆, yn − x⋆⟩ = lim
i→∞

⟨
x0 − x⋆, ynki

− x⋆
⟩
= ⟨x0 − x⋆, ŷ − x⋆⟩ ≤ 0.

This completes the proof. ⊓⊔
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Now, we are in a position to prove Theorem 3.1.
Proof of Theorem 3.1 The inequality, ∥x+ y∥2 ≤ ∥x∥2 +2⟨y, x+ y⟩ (x, y ∈

H), (6), and the nonexpansivity of T imply that, for all n ∈ N,

∥yn − x⋆∥2 = ∥T (xn)− x⋆ + αβndn∥2

≤ ∥T (xn)− T (x⋆)∥2 + 2αβn ⟨yn − x⋆, dn⟩

≤ ∥xn − x⋆∥2 +M3α
2
n,

where βn ≤ α2
n (n ∈ N) and M3 := supn∈N 2α|⟨yn − x⋆, dn⟩| < ∞. We thus

have that, for all n ∈ N,

∥xn+1 − x⋆∥2 = ∥µαn (x0 − x⋆) + (1− µαn) (yn − x⋆)∥2

= µ2α2
n ∥x0 − x⋆∥2 + (1− µαn)

2 ∥yn − x⋆∥2

+ 2µαn (1− µαn) ⟨x0 − x⋆, yn − x⋆⟩

≤ µ2α2
n ∥x0 − x⋆∥2 + (1− µαn)

2
{
∥xn − x⋆∥2 +M3α

2
n

}
+ 2µαn (1− µαn) ⟨x0 − x⋆, yn − x⋆⟩

≤ (1− µαn) ∥xn − x⋆∥2 +
{
µαn ∥x0 − x⋆∥2 + M3αn

µ

}
µαn

+ {2 (1− µαn) ⟨x0 − x⋆, yn − x⋆⟩}µαn.

Proposition 2.2, (C1), (C2), and Lemma 3.2(iii) lead one to deduce that

lim
n→∞

∥xn+1 − x⋆∥2 = 0.

This guarantees that (xn)n∈N generated by Algorithm 3.1 strongly converges
to x⋆ := PFix(T )(x0). ⊓⊔

Suppose that Fix(T ) is bounded. Then, we can set a bounded, closed convex
set C (⊃ Fix(T )) such that PC can be computed within a finite number of
arithmetic operations (e.g., C is a closed ball with a large enough radius).
Hence, we can compute

xn+1 := PC (µαnx0 + (1− µαn) yn) (13)

instead of xn+1 in Algorithm 3.1. From (xn)n∈N ⊂ C, the boundedness of C
means (xn)n∈N is bounded. The nonexpansivity of T guarantees that ∥T (xn)−
T (x)∥ ≤ ∥xn − x∥ (x ∈ Fix(T )), which means that (T (xn))n∈N is bounded.
Therefore, (C5) holds. We can prove that Algorithm 3.1 with (13) strongly
converges to a point in Fix(T ) by referring to the proof of Theorem 3.1.

Let us consider the case where Fix(T ) is unbounded. In this case, we cannot
choose a bounded C satisfying Fix(T ) ⊂ C. Although we can execute Algo-
rithm 3.1, we need to verify the boundedness of (T (xn) − xn)n∈N. Instead,
we can apply the Halpern algorithm (1) to this case without any problem.
However, the Halpern algorithm would converge slowly because it is based on
the steepest descent method (see section 1). Hence, in this case, it would be
desirable to execute not only the Halpern algorithm but also Algorithm 3.1.
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4 Numerical Examples and Conclusion

Let us apply the Halpern algorithm (1) and Algorithm 3.1 to the following
convex feasibility problem [1], [2, Example 5.21].

Problem 4.1 Given a nonempty, closed convex set Ci ⊂ RN (i = 0, 1, . . . ,m),

find x⋆ ∈ C :=
m∩
i=0

Ci,

where one assumes that C ̸= ∅.

Define a mapping T : RN → RN by

T := P0

(
1

m

m∑
i=1

Pi

)
, (14)

where Pi := PCi (i = 0, 1, . . . ,m) stands for the metric projection onto Ci.
Since Pi (i = 0, 1, . . . ,m) is nonexpansive, T defined by (14) is also nonexpan-
sive. Moreover, we find that

Fix(T ) = Fix (P0) ∩
m∩
i=1

Fix (Pi) = C0 ∩
m∩
i=1

Ci = C.

Therefore, Problem 4.1 coincides with Problem 2.1 with T defined by (14).
The experiment used an Apple Macbook Air with a 1.30GHz Intel(R)

Core(TM) i5-4250U CPU and 4GB DDR3 memory. The Halpern algorithm
(1) and Algorithm 3.1 were written in Java. The operating system of the
computer was Mac OSX version 10.8.5.

We set α := 1, µ := 1/105, αn := 1/(n+ 1) (n ∈ N), and βn := 1/(n+ 1)2

(n ∈ N) in Algorithm 3.1 and compared Algorithm 3.1 with the Halpern
algorithm (1) with αn := µ/(n + 1) (n ∈ N). In the experiment, we set Ci

(i = 0, 1, . . . ,m) as a closed ball with center ci ∈ RN and radius ri > 0. Thus,
Pi (i = 0, 1, . . . ,m) can be computed with

Pi(x) := ci +
ri

∥ci − x∥
(x− ci) if ∥ci − x∥ > ri,

or Pi(x) := x if ∥ci − x∥ ≤ ri.
We set N := 100, m := 3, ri := 1 (i = 0, 1, 2, 3), and c0 := 0. The

experiment used random vectors ci ∈ (−1/
√
N, 1/

√
N)N (i = 1, 2, 3) gener-

ated by the java.util.Random class so as to satisfy C ̸= ∅. We also used the
java.util.Random class to set a random initial point in (−16, 16)N .

Figure 1 describes the behaviors of ∥T (xn)−xn∥ for the Halpern algorithm
(1) and Algorithm 3.1 (Proposed). The x-axis and y-axis represent the elapsed
time and value of ∥T (xn) − xn∥. The results show that compared with the
Halpern algorithm, Algorithm 3.1 dramatically reduces the time required to
satisfy ∥T (xn)− xn∥ < 10−6. We found that the Halpern algorithm took 850
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Fig. 1 Behavior of ∥T (xn)− xn∥ for the Halpern algorithm and Algorithm 3.1 (Proposed)
(The Halpern algorithm took 850 iterations to satisfy ∥T (xn)− xn∥ < 10−6, whereas Algo-
rithm 3.1 took only six.)

iterations to satisfy ∥T (xn) − xn∥ < 10−6, whereas Algorithm 3.1 took only
six.

This paper presented an algorithm to accelerate the Halpern algorithm for
finding a fixed point of a nonexpansive mapping on a real Hilbert space and its
convergence analysis. The convergence analysis guarantees that the proposed
algorithm strongly converges to a fixed point of a nonexpansive mapping under
certain assumptions. We numerically compared the abilities of the proposed
and Halpern algorithms in solving a concrete fixed point problem. The re-
sults showed that the proposed algorithm performs better than the Halpern
algorithm.
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