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Abstract This paper proposes a decentralized optimization algorithm for the
triple-hierarchical constrained convex optimization problem of minimizing a
sum of strongly convex functions subject to a paramonotone variational in-
equality constraint over an intersection of fixed point sets of nonexpansive
mappings. The existing algorithms for solving this problem are centralized
optimization algorithms using all the information in the problem, and these
algorithms are effective, but only under certain additional restrictions. The
main contribution of this paper is to present a convergence analysis of the
proposed algorithm in order to show that the proposed algorithm using incre-
mental gradients with diminishing step-size sequences converges to the solution
to the problem without any additional restrictions. Another contribution of
this paper is the elucidation of the practical applications of hierarchical con-
strained optimization in the form of network resource allocation and optimal
control problems. In particular, it is shown that the proposed algorithm can be
applied to decentralized network resource allocation with a triple-hierarchical
structure.
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1 Introduction

Hierarchical constrained convex optimization problems (see [1,8,13,20,22,31,
36,39,51] and references therein) have been developed to solve many important
practical problems, such as optimal control [42], network resource allocation
[46, Chapter 2], and signal processing [11,45,52].

In this paper, we focus on convex optimization with the following three
stages. The first stage is to find a common fixed point of nonexpansive map-
pings. Complicated convex sets, such as the intersection of many convex sets,
the set of minimizers of a convex function, and the solution set of a monotone
variational inequality, can be expressed as the fixed point set of a nonexpansive
mapping [3, Subchapter 4.5], [12,20,51]. The second stage is to find a point in
a paramonotone variational inequality [9] over the intersection of fixed point
sets of nonexpansive mappings. A particularly interesting example of such an
inequality-constrained set is the set of minimizers of a convex function over
the intersection of fixed point sets of nonexpansive mappings. The third stage
is to minimize a sum of strongly convex functions over the second stage. For
example, the third stage includes the case of trying to find a unique minimizer
of a sum of strongly convex functions over the set of minimizers of a convex
function over a complicated convex set.

Iterative algorithms have been proposed to solve hierarchical constrained
optimization problems related to the proposed problem. A fixed point algo-
rithm [39] based on the Krasnosel’skĭı-Mann fixed point algorithm [34,37]
can be applied to a hierarchical fixed point problem formulated as a double-
hierarchical constrained convex optimization problem. An iterative algorithm
[36] can find a unique minimizer of a specific strongly convex function over
the solution set of a hierarchical fixed point problem. A proximal point algo-
rithm [8] was proposed to solve a double-hierarchical constrained convex op-
timization problem, along with a variation of the proximal point algorithm to
solve a different multiple-hierarchical constrained convex optimization prob-
lem. Some useful algorithms were reported for solving the problem of opti-
mizing a strongly convex function over the fixed point set of a nonexpansive
mapping that is a double-hierarchical constrained convex optimization prob-
lem. For example, the hybrid steepest descent method [51] can be applied to
practical problems in signal processing [45,52]. A useful iterative algorithm [11]
was proposed to accelerate the hybrid steepest descent method. Since then,
algorithms [24,30] using conjugate gradient directions to accelerate the hybrid
steepest descent method have also been presented. Optimization algorithms
were proposed in [23,25,26,28] to solve a decentralized convex optimization
problem over the intersection of fixed point sets of nonexpansive mappings.

Since the proposed problem has a triple-hierarchical structure, whereas
double-hierarchical constrained optimization problems are conventionally con-
sidered in convex optimization, the problem is referred to as the triple-hierarchical
constrained convex optimization problem. Some algorithms [8,20,36] to solve
the proposed problem have already been reported. Unfortunately, these algo-
rithms are effective only under some restrictions (see Subsection 3.1 for the
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conventional algorithms [8,20,36] under the restrictions). Accordingly, triple-
hierarchical optimization remains a challenging task [1,8,13] in the field of
convex optimization.

In this paper, we propose an iterative algorithm (Algorithm 1) for con-
vex optimization with the three stages listed in the second paragraph, i.e.,
the triple-hierarchical constrained convex optimization problem (Problem 3.1)
of minimizing a sum of strongly convex functions subject to a paramono-
tone variational inequality constraint over the fixed point sets of nonexpansive
mappings. The proposed algorithm is based on the incremental optimization
algorithms [6, Subchapter 8.2], [5,23,19,40] that are useful for decentralized
convex optimization so as to be applicable to decentralized convex optimiza-
tion with a triple-hierarchical structure.

The main contribution of this paper is to present a convergence analysis
(Theorem 4.1) of the proposed algorithm. This analysis shows that the pro-
posed algorithm with diminishing step-size sequences converges to the solution
to the problem without assuming any additional restrictions. The analysis
is based on the assumption of a paramonotone variational inequality (As-
sumption 3.1(A2)) and the choices of step sizes (Assumption 4.1). Relying on
[9, Proposition 13(ii)] regarding paramonotone variational inequality, we can
carry out the most difficult task, which is to prove the convergence of the pro-
posed algorithm to a solution to a variational inequality over the fixed point
sets (i.e., the second stage of the optimization in the proposed problem can
be achieved). In addition, a useful lemma [35, Lemma 2.1] allows us to prove
that the proposed algorithm can perform the third stage of the optimization
in the proposed problem.

Another contribution of the present paper is to demonstrate that the pro-
posed algorithm can be applied to two practical real-world problems. First,
we consider the network utility maximization (NUM) problem [27,32,38,41,
46,53] of maximizing the overall utility of sources under the capacity con-
straints. In contrast to the existing NUM problems [27,32,38,41,46,53] that
can be represented as double-hierarchical constrained convex optimizations,
the present paper deals with a NUM problem that is subject to not only ca-
pacity constraints but also compoundable constraints regarding the preferable
transmission rates [22,29]. We show that the NUM problem considered here
can be expressed as the triple-hierarchical constrained convex optimization
problem and that the proposed algorithm can solve the NUM problem in a de-
centralized manner (Subsection 4.2). Secondly, we consider a stochastic linear-
quadratic (LQ) control problem [10,31,42,50] with indefinite state weighting
and indefinite control weighting matrices. We show that the trace maximiza-
tion problem over the linear matrix inequalities (LMIs) in the stochastic LQ
control problem can be expressed as the triple-hierarchical constrained convex
optimization problem. As a result, we can define the optimal control of the
stochastic LQ control problem by using the solution to the trace maximization
problem computed by the proposed algorithm (Subsection 4.3).

The remainder of this paper is organized as follows. Section 2 gives the
mathematical preliminaries. Section 3 states the triple-hierarchical constrained
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convex optimization problem and the relationships between this problem and
the existing hierarchical constrained convex optimization problems. Section 4
presents the proposed algorithm for solving the problem and a convergence
analysis of the proposed algorithm. Subsection 4.1 gives the proof of the con-
vergence analysis, and Subsections 4.2 and 4.3 provide practical applications
of the proposed algorithm. Section 5 concludes the paper by summarizing its
key points and mentions topics of future research for further developing the
proposed algorithm.

2 Mathematical preliminaries

Let N be the set of all positive integers. Let RN be anN -dimensional Euclidean
space with inner product ⟨·, ·⟩ and its associated norm ∥ · ∥, and let RN

+ :=
{(xi)

N
i=1 ∈ RN : xi ≥ 0 (i = 1, 2, . . . , N)}. Let Id denote the identity mapping

on RN . LetX⊤ denote the transpose of a matrixX and Tr(X) denote the trace
of X. Let SN denote the subspace of RN×N consisting of all N×N symmetric
matrices. A matrix X being symmetric positive-definite (resp. semidefinite)
is denoted by X ≻ O (resp. X ⪰ O). Suppose that (xn)n∈N and (yn)n∈N
are positive real sequences. Let o and O denote the Landau symbols; i.e.,
yn = o(xn) if, for all ϵ > 0, there exists n0 ∈ N such that yn ≤ ϵxn for all
n ≥ n0, and yn = O(xn) if there exist c > 0 and n0 ∈ N such that yn ≤ cxn

for all n ≥ n0.

2.1 Convexity and monotonicity

A function f : RN → R is said to be strongly convex [3, Definition 10.5] if
there exists β > 0 such that, for all x, y ∈ RN and all α ∈ (0, 1), f(αx +
(1 − α)y) + (β/2)α(1 − α)∥x − y∥2 ≤ αf(x) + (1 − α)f(y). Such an f is also
referred to as a β-strongly convex function. The subdifferential [3, Definition
16.1], [43, Section 23] of f : RN → R is defined for all x ∈ RN by ∂f(x) :=
{u ∈ RN : f(y) ≥ f(x) + ⟨y − x, u⟩ (y ∈ RN )}. A point u ∈ ∂f(x) is called a
subgradient of f at x ∈ RN . ∂f satisfies the monotonicity condition [3, Example
20.3]; i.e., ⟨x − y, u − v⟩ ≥ 0 (x, y ∈ RN , u ∈ ∂f(x), v ∈ ∂f(y)). Suppose that
f : RN → R is convex and differentiable. Then ∂f(x) = {∇f(x)} for all x ∈ RN

[3, Proposition 17.26], where ∇f is the gradient of f .
A : RN → RN is said to be strongly monotone (β-strongly monotone)

[3, Definition 22.1(iv)] if there exists β > 0 such that, for all x, y ∈ RN ,
⟨x− y,A(x)−A(y)⟩ ≥ β∥x− y∥2. A : RN → RN is said to be inverse-strongly
monotone (α-inverse-strongly monotone) [7, Definition, p.200] (see [3, Defini-
tion 4.4], [15, Definition 2.3.9(e)] for the definition of this operator, which is
called a cocoercive operator) if there exists α > 0 such that, for all x, y ∈ RN ,
⟨x− y,A(x)−A(y)⟩ ≥ α∥A(x)−A(y)∥2. A : RN → RN is said to be Lipschitz
continuous (L-Lipschitz continuous) if there exists L > 0 such that, for all
x, y ∈ RN , ∥A(x)−A(y)∥ ≤ L∥x−y∥. Suppose that f : RN → R is convex and
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∇f : RN → RN is L-Lipschitz continuous. Then ∇f is 1/L-inverse-strongly
monotone [2, Théorème 5]. A : RN → RN is said to be paramonotone [9, Defi-
nition 11] if A is monotone and if, for all x, y ∈ RN , ⟨x− y,A(x)−A(y)⟩ = 0
implies A(x) = A(y). The gradient of a convex function f : RN → R is para-
monotone [9, Lemma 12].

Proposition 2.1 [51, Lemma 3.1] Suppose that f : RN → R is differentiable
and β-strongly convex, ∇f : RN → RN is L-Lipschitz continuous, and µ ∈
(0, 2β/L2). Define T := Id − µα∇f , where α ∈ [0, 1]. Then ∥T (x) − T (y)∥ ≤
(1− τα)∥x− y∥ for all x, y ∈ RN , where τ := 1−

√
1− µ(2β − µL2) ∈ (0, 1].

2.2 Fixed point and variational inequality

A mapping T : RN → RN is said to be nonexpansive [3, Definition 4.1(ii)] if
∥T (x)− T (y)∥ ≤ ∥x− y∥ for all x, y ∈ RN . T : RN → RN is said to be firmly
nonexpansive [3, Definition 4.1(i)] if ∥T (x) − T (y)∥2 + ∥(Id − T )(x) − (Id −
T )(y)∥2 ≤ ∥x− y∥2 for all x, y ∈ RN . The set

Fix(T ) := {x ∈ RN : T (x) = x}

is the fixed point set of a mapping T . A fixed point set Fix(T ) of a nonexpansive
mapping T is closed and convex [16, Proposition 5.3]. If C ⊂ RN is bounded
and T : C → C is nonexpansive, then Fix(T ) ̸= ∅ [16, Theorem 5.1]. Themetric
projection [3, Subchapter 4.2, Chapter 28] onto a nonempty closed convex set
C ⊂ RN , denoted by PC , is defined for all x ∈ RN by

PC(x) ∈ C and ∥x− PC(x)∥ = d(x,C) := inf
y∈C

∥x− y∥.

PC is firmly nonexpansive with Fix(PC) = C [3, Proposition 4.8, (4.8)].
Given a nonempty closed convex set C ⊂ RN and a monotone operator

A : RN → RN , the variational inequality problem [14,33] is to find a point in

VI(C,A) := {x ∈ C : ⟨y − x,A(x)⟩ ≥ 0 for all y ∈ C} .

Proposition 2.2 Suppose that C ⊂ RN is nonempty, closed, and convex;
A : RN → RN is monotone and Lipschitz continuous; and f : RN → R is
convex and differentiable. Then the following hold:

(i) [47, Lemma 7.1.7] VI(C,A) = {x ∈ C : ⟨y − x,A(y)⟩ ≥ 0 for all y ∈ C}.
(ii) [54, Theorem 25.C] VI(C,A) ̸= ∅ when C is bounded.
(iii) [48, Lemma 2.24] VI(C,A) = Fix(PC(Id− αA)) for all α > 0.
(iv) [48, Theorem 2.31] VI(C,A) consists of one point when A is strongly mono-

tone.
(v) [14, Chapter II, Proposition 2.1 (2.1) and (2.2)] VI(C,∇f) = argminx∈C f(x).
(vi) [9, Proposition 13(ii)] Suppose that A is paramonotone, z ∈ VI(C,A), and

x̄ ∈ C satisfies ⟨z − x̄, A(x̄)⟩ = 0. Then x̄ ∈ VI(C,A).
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Proposition 2.3 [20, Proposition 2.3] Suppose that C ⊂ RN is nonempty,
closed, and convex; A : RN → RN is α-inverse-strongly monotone; and ᾱ ∈
[0, 2α]. Then S := PC(Id− ᾱA) is nonexpansive with Fix(S) = VI(C,A).

The following propositions are used to prove the main theorem in the paper.

Proposition 2.4 [4, Lemma 1.2] Assume that (an)n∈N ⊂ R+ satisfies an+1 ≤
(1 − αn)an + αnβn for all n ∈ N, where (αn)n∈N ⊂ (0, 1] and (βn)n∈N ⊂ R
with

∑+∞
n=0 αn = +∞ and lim supn→+∞ βn ≤ 0. Then limn→+∞ an = 0.

Proposition 2.5 [47, Problem 6.2.4, p.216] Suppose that (αn)n∈N ⊂ R+ with∑+∞
n=0 αn = +∞ and (βn)n∈N ⊂ R satisfy

∑+∞
n=0 αnβn < +∞. Then lim infn→+∞ βn ≤

0.

Proposition 2.6 [35, Lemma 2.1] Let (Γn)n∈N ⊂ R and suppose that (Γnj
)j∈N ⊂

(Γn)n∈N exists such that Γnj
< Γnj+1 for all j ∈ N. Define (γ(n))n≥n0

⊂ N
by γ(n) := max{k ≤ n : Γk < Γk+1} for some n0 ∈ N. Then (γ(n))n≥n0

is nondecreasing and limn→+∞ γ(n) = +∞. Moreover, Γγ(n) ≤ Γγ(n)+1 and
Γn ≤ Γγ(n)+1 for all n ≥ n0.

3 Triple-hierarchical constrained convex optimization problem

This paper assumes the following:

Assumption 3.1

(A1) Tk : RN → RN (k ∈ K := {1, 2, . . . ,K}) is firmly nonexpansive with∩
k∈K Fix(Tk) ̸= ∅;

(A2) Aj : RN → RN (j ∈ J := {1, 2, . . . , J}) is αj-inverse-strongly monotone
(which implies that it is paramonotone) with VI(

∩
k∈K Fix(Tk),

∑
j∈J Aj) ̸=

∅;
(A3) fi : RN → R (i ∈ I := {1, 2, . . . , I}) is differentiable and βi-strongly con-

vex, and ∇fi : RN → RN (i ∈ I) is Li-Lipschitz continuous.

The main objective of this paper is to solve the following triple-hierarchical
constrained convex optimization problem.

Problem 3.1 Under Assumption 3.1,

minimize f(x) :=
∑
i∈I

fi(x) subject to x ∈ VI

∩
k∈K

Fix(Tk),
∑
j∈J

Aj

 .

The first stage of Problem 3.1 is to find a point in
∩

k∈K Fix(Tk). The
second stage is to find a point in VI(

∩
k∈K Fix(Tk),

∑
j∈J Aj). The third

stage is to find a minimizer of
∑

i∈I fi over VI(
∩

k∈K Fix(Tk),
∑

j∈J Aj).
Proposition 2.2(iii) and Proposition 2.3, together with Assumption 3.1(A1)
and (A2), and the fact that the fixed point set of a nonexpansive mapping
is closed and convex [16, Proposition 5.3], ensure that the constraint set
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VI(
∩

k∈K Fix(Tk),
∑

j∈J Aj) is nonempty, closed, and convex. Proposition 2.2(v)
thus guarantees that Problem 3.1 is equivalent to the following variational in-
equality problem:

Find x⋆ ∈ VI

VI

∩
k∈K

Fix(Tk),
∑
j∈J

Aj

 ,
∑
i∈I

∇fi

 .

Accordingly, Proposition 2.2(iv) and Assumption 3.1(A3) guarantee that there
exists a unique solution to Problem 3.1.

The firm nonexpansivity condition, Assumption 3.1(A1), regarding Tk (k ∈
K) guarantees that, if

∩
k∈K Fix(Tk) ̸= ∅, then Fix(TKTK−1 · · ·T1) =

∩
k∈K Fix(Tk)

[3, Corollary 4.37], which is used to prove the convergence of the proposed al-
gorithm to a common fixed point of Tk (k ∈ K). In the case of K = 1, it is
not necessary to find common fixed points. Hence, Assumption 3.1(A1) can
be replaced with (A1)’ T : RN → RN is nonexpansive with Fix(T ) ̸= ∅.

3.1 Problems related to Problem 3.1 and their algorithms

Let us consider the following hierarchical fixed point problem [36,39]: given
nonexpansive mappings S, T : RN → RN ,

find x∗ ∈ HFP(T, S) :=
{
x∗ ∈ Fix(T ) : x∗ = PFix(T )S(x

∗)
}
. (1)

Set S := Id − ᾱA, where A is α-inverse-strongly monotone and ᾱ ∈ (0, 2α].
Proposition 2.3 ensures that the mapping S is nonexpansive. Accordingly, from
Proposition 2.2(iii), problem (1) with S := Id − ᾱA can be reformulated as
the following variational inequality problem:

find x∗ ∈ HFP(T, Id− ᾱA) = VI(Fix(T ), A).

Let us also define A : RN → RN by A := (Id − S)/r, where S : RN → RN is
nonexpansive and r > 0. Then the operator A is r/2-inverse-strongly monotone
[47, p.176]. The properties of PFix(T ) imply that the variational inequality
problem for A := (Id− S)/r can be reformulated as the following hierarchical
fixed point problem:

find x∗ ∈ VI

(
Fix(T ),

Id− S

r

)
= HFP(T, S).

Hence, we can see that HFP(T, S) and VI(Fix(T ), A) are comparable in the
sense of equivalence transformation.

Moudafi proposed the following algorithm [39] based on the Krasnosel’skĭı-
Mann fixed point algorithm [34,37] for solving problem (1): for all n ∈ N,

xn+1 := (1− αn)xn + αn(σnS(xn) + (1− σn)T (xn)), (2)
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where x0 ∈ RN , and (αn)n∈N and (σn)n∈N are sequences in R+ satisfying∑+∞
n=0 σn < +∞ and

∑+∞
n=0 αn(1−αn) = +∞. The sequence (xn)n∈N generated

by algorithm (2) converges to x∗ ∈ HFP(T, S) if the condition

∥xn+1 − xn∥ = o((1− αn)σn) (n ∈ N) (3)

is satisfied [39, Theorem 2.1]. Maingé and Moudafi proposed an algorithm [36]
based on the Halpern fixed point algorithm [18,49],

xn+1 := αnx0 + (1− αn)(σnS(xn) + (1− σn)T (xn)), (4)

where (αn)n∈N and (σn)n∈N satisfy limn→+∞ αn = limn→+∞ σn = 0. Theorem
3.3 in [36] indicates that, if there exist θ, κ > 0 such that, for all x ∈ RN ,

∥x− T (x)∥ ≥ κd(x,Fix(T ))θ := κ

(
inf

y∈Fix(T )
∥x− y∥

)θ

, (5)

then the sequence (xn)n∈N generated by algorithm (4) with αn = o(σn) and

σ
1+1/θ
n = o(αn) converges to a point x∗ ∈ HFP(T, S) satisfying

{x∗} = argmin
x∈HFP(T,S)

1

2
∥x− x0∥2; (6)

i.e., under the condition (5), algorithm (4) can solve the specific triple-hierarchical
constrained optimization problem.

Next, let us consider the following constrained convex optimization prob-
lem [8]: given convex functions Φ0, Φ1 : RN → R,

minimize Φ1(x) subject to x ∈ S0 := argmin
x∈RN

Φ0(x). (7)

Define T := PRN (Id − α∇Φ0) = Id − α∇Φ0, where ∇Φ0 : RN → RN is L-
Lipschitz continuous, and α ∈ (0, 2/L]. From [2, Théorème 5], we know that
∇Φ0 is 1/L-inverse-strongly monotone. Propositions 2.2(v) and 2.3 thus guar-
antee that T := Id−α∇Φ0 is nonexpansive with Fix(T ) = VI(RN ,∇Φ0) = S0.
Accordingly, problem (7) is equivalent to the following problem:

minimize Φ1(x) subject to x ∈ Fix(T ) = VI
(
RN ,∇Φ0

)
. (8)

There are useful algorithms for convex optimization over the fixed point set
of a nonexpansive mapping. For example, the hybrid steepest descent method
[51] defined for all n ∈ N by

xn+1 := T (xn)− λn∇Φ1(T (xn)) (9)

can be applied to general smooth convex optimization problems including
problem (8). See [11,24,30] for acceleration algorithms based on algorithm
(9).
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Cabot proposed the following proximal point algorithm [8] for solving prob-
lem (7): given (ϵn)n∈N, (λn)n∈N, (ηn)n∈N ⊂ (0,+∞), and xn ∈ RN ,

−xn+1 − xn

λn
∈ ∂ηn (Φ0 + ϵnΦ1) (xn+1), (10)

where ∂η denotes the η-approximate subdifferential. Propositions 3.5 and 3.6
in [8] indicate that, if there exist a > 0 and p ≥ 1 such that, for all x ∈ RN ,

Φ0(x)− min
x∈RN

Φ0(x) ≥ ad(x, S0)
p, (11)

then the sequence (xn)n∈N generated by algorithm (10) converges to a mini-
mizer of Φ1 over S0 = argminx∈RN Φ0(x). Section 4.2 in [8] considered the fol-
lowing multiple-hierarchical optimization problem (see also [1,13]): given con-
vex functions Φi : RN → R (i = 0, 1, . . . , I) with (Si)

I
i=0 defined as S0 := RN

and Si := argminx∈Si−1
Φi(x) (i = 1, 2, . . . , I),

minimize ΦI(x) subject to x ∈ SI−1. (12)

The proximal point algorithm

−xn+1 − xn

λn
∈ ∂ηn

(
Φ0 + ϵ(1)n Φ1 + · · · ϵ(I)n ΦI

)
(xn+1)

was presented as a method for solving the multiple-hierarchical optimization
problem under (11) [8, Proposition 4.2].

Iiduka proposed the following optimization algorithm [20] for solving Prob-
lem 3.1 when I = J = K = 1:{

yn := T1(xn − λnA1(xn)),

xn+1 := yn − αn∇f1(yn),
(13)

where A1 is α-inverse-strongly monotone, and (λn)n∈N and (αn)n∈N are slowly
diminishing sequences of step sizes. Theorem 4.1 in [20] indicates that the
sequence (xn)n∈N generated by algorithm (13) converges to a unique solution
to Problem 3.1 when I = J = K = 1 if the condition

∥xn − yn∥ = o(λn) (n ∈ N) (14)

is satisfied (see [21] for a convergence analysis of the algorithm under (14) for
a variational inequality problem involving a continuous operator over the fixed
point set).

The above discussion implies that the existing algorithms [8,20,36,39]
are effective only under certain additional restrictions, such as (3), (5), (11),
and (14), that cannot be checked before implementing the algorithms. In the
present paper, in order to propose an algorithm that works without assuming
any additional restrictions, we consider a convex optimization problem un-
der the paramonotone variational inequality constraint [9] over the fixed point
sets of nonexpansive mappings (Problem 3.1). The paramonotonicity condition
(Assumption 3.1(A2)) is not restrictive, because the gradient of any convex
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function satisfies paramonotonicity [9, Lemma 12]. Accordingly, we can pro-
vide the following important and interesting example of Problem 3.1 (see, e.g.,
[20, Examples 2.1 and 3.1–3.4] for examples of fixed point sets of nonexpansive
mappings).

Example 3.1 Assume that (A1) and (A3) of Assumption 3.1 are satisfied,
and (A2)’ gj : RN → R (j ∈ J ) is convex and differentiable, and ∇gj : RN →
RN (j ∈ J ) is lj-Lipschitz continuous. Then

minimize f(x) :=
∑
i∈I

fi(x) subject to x ∈ argmin
y∈

∩
k∈K Fix(Tk)

∑
j∈J

gj(y),

where argminx∈
∩

k∈K Fix(Tk)

∑
j∈J gj(x) ̸= ∅.

From [9, Lemma 12] and [2, Théorème 5], ∇gj (j ∈ J ) in (A2)’ is 1/lj-
inverse-strongly monotone and paramonotone. Since Proposition 2.2(v) implies
VI(
∩

k∈K Fix(Tk),
∑

j∈J ∇gj) = argminx∈
∩

k∈K Fix(Tk)

∑
j∈J gj(x) ̸= ∅, Exam-

ple 3.1 is an example of Problem 3.1. Two practical applications of Problem
3.1—network resource allocation and optimal control—are presented in Sub-
sections 4.2 and 4.3, respectively.

Algorithm (13) for Problem 3.1 is given as follows:

yn :=
∏
k∈K

Tk

xn − λn

∑
j∈J

Aj(xn)

 , xn+1 := yn − αn

∑
i∈I

∇fi(yn), (15)

where
∏

k∈K Tk := TKTK−1 · · ·T1. Algorithm (15) is called a centralized opti-
mization algorithm for solving Problem 3.1 since it needs to use all Tk (k ∈ K),
Aj (j ∈ J ), and ∇fi (i ∈ I) at each iteration. In practical applications, we
cannot use all of Tk (k ∈ K), Aj (j ∈ J ), and ∇fi (i ∈ I). For example, the
existing machine learning algorithms [44] randomly choose a training example
and update its estimate by using only a gradient of a loss function correspond-
ing to the chosen example. Network resource allocation algorithms [53] for a
network of sources and links are implemented to try to maximize the overall
utility of sources without using all of the link capacities and all of the forms of
utility functions. Hence, it would be difficult to apply centralized optimization
algorithms to practical real-world problems.

In this paper, we propose a decentralized optimization algorithm for solv-
ing Problem 3.1. The proposed algorithm is based on incremental optimization
algorithms (see, e.g., [6, Subchapter 8.2], [5,19,23,40] and references therein),
which are useful algorithms for decentralized convex optimization. The se-
quence (xn)n∈N is generated by the incremental subgradient algorithm [40,
(1.4)–(1.6)] as follows: given that fi : RN → R (i ∈ I) is convex; C ⊂ RN is
nonempty, closed, and convex; and x0 = x0,0 ∈ RN ,{

xn,i := PC (xn,i−1 − λngn,i) , gn,i ∈ ∂fi(xn,i−1) (i ∈ I),
xn+1 = xn+1,0 := xn,I ,

(16)
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where (λn)n∈N ⊂ (0,+∞) is a diminishing step-size sequence. Proposition
2.4 in [40] indicates that the sequence (xn)n∈N generated by algorithm (16)
converges to a minimizer of f :=

∑
i∈I fi over C. It can be seen that xn,i in

algorithm (16) is computed without using all fi (i ∈ I).

4 Incremental optimization algorithm

Algorithm 1 is proposed for solving Problem 3.1.

Algorithm 1 Incremental optimization algorithm for Problem 3.1
Require: (αn)n∈N, (λn)n∈N ⊂ (0,+∞)
1: n← 0, x0 := x0,0 ∈ RN

2: loop
3: for i = 1 to i = I do
4: xn,i := xn,i−1 − αn∇fi(xn,i−1)
5: end for
6: yn = yn,0 := xn,I

7: for j = 1 to j = J do
8: yn,j := yn,j−1 − λnAj(yn,j−1)
9: end for
10: zn = zn,0 := yn,J

11: for k = 1 to k = K do
12: zn,k := Tk(zn,k−1)
13: end for
14: xn+1 = xn+1,0 := zn,K

15: n← n+ 1
16: end loop

Steps 4, 8, and 12 in Algorithm 1 are based on the incremental subgradient
algorithm (16).

The convergence analysis of Algorithm 1 depends on the following assump-
tion.

Assumption 4.1 The step size sequences (αn)n∈N and (λn)n∈N are decreas-
ing such that 0 ≤ λn ≤ αn for all n ∈ N and limn→+∞ αn = limn→+∞ λn = 0,
and satisfy the following additional conditions:1

(C1)

+∞∑
n=0

αn = +∞, (C2)

+∞∑
n=0

λn = +∞, (C3) lim
n→+∞

λn

αn
= 0,

(C4) lim
n→+∞

1

λn+1

|αn+1 − αn|
α2
n+1

= 0, (C5) lim
n→+∞

1

αn+1

∣∣∣∣1− λn

λn+1

∣∣∣∣ = 0.

Examples of (αn)n∈N and (λn)n∈N are αn := 1/(n+ 1)a and λn := 1/(n+ 1)b

(n ∈ N), where a ∈ (0, 1/2), b ∈ (a, 1− a).
The following is a convergence analysis of Algorithm 1.

1 (C2) and λn ≤ αn (n ∈ N) imply (C1).
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Theorem 4.1 Under Assumptions 3.1 and 4.1, the sequence (xn)n∈N gener-
ated by Algorithm 1 converges to the solution to Problem 3.1.

Here, let us compare Theorem 4.1 with the existing results in Subsection
3.1. Algorithm (2) (resp. (4)) converges to a point in HFP(T, S) if the con-
dition (3) (resp. (5)) is satisfied. In addition, Theorem 4.1 guarantees that
Algorithm 1 with I = J = K = 1 converges to the point x⋆ ∈ VI(Fix(T1), A1)
such that f1(x

⋆) = minx∈VI(Fix(T1),A1) f1(x) without assuming (3) and (5).
Under the assumption that Φ0, Φ1 : RN → R are convex and differentiable,
and ∇Φ0,∇Φ1 : RN → RN are Lipschitz continuous, Algorithm 1 converges to
a solution to problem (7) without assuming (11). In contrast to algorithm (15)
(see also algorithm (13)) being a centralized optimization algorithm for Prob-
lem 3.1 under the restriction (14), Algorithm 1 is a decentralized optimization
algorithm for solving Problem 3.1 without assuming (14).

4.1 Proof of Theorem 4.1

We can prove the following lemma.

Lemma 4.1 Suppose that Assumption 3.1 holds, and (αn)n∈N and (λn)n∈N
satisfy λn ≤ αn for all n ∈ N and converge to 0. Then the sequences (xn)n∈N,
(yn)n∈N, (zn)n∈N, (xn,i)n∈N (i ∈ I), (yn,j)n∈N (j ∈ J ), and (zn,k)n∈N (k ∈ K)
generated by Algorithm 1 are bounded.

Proof Let µ⋆ := mini∈I 2βi/L
2
i , τi := 1 −

√
1− µ⋆(2βi − µ⋆L2

i ) (i ∈ I), and
τ := mini∈I τi. Proposition 2.1 implies that, if (αn)n∈N ⊂ (0, µ⋆), then, for all
i ∈ I and all x, y ∈ RN ,

∥(Id− αn∇fi) (x)− (Id− αn∇fi) (y)∥ ≤ (1− ταn)∥x− y∥. (17)

Since (αn)n∈N converges to 0, there exists n0 ∈ N such that (αn)n≥n0 ⊂ (0, µ⋆).
Accordingly, (17) is satisfied for all n ≥ n0. Moreover, Proposition 2.3 implies
that, if (λn)n∈N ⊂ (0, 2minj∈J αj ], then, for all j ∈ J and all x, y ∈ RN ,

∥(Id− λnAj) (x)− (Id− λnAj) (y)∥ ≤ ∥x− y∥. (18)

The convergence of (λn)n∈N to 0 guarantees that there exists n1 ∈ N such that
(λn)n≥n1 ⊂ (0, 2minj∈J αj ], which implies that (18) is satisfied for all n ≥ n1.
Let x ∈

∩
k∈K Fix(Tk). The definition of xn,i (i ∈ I, n ∈ N) and (17) ensure

that, for all i ∈ I and all n ≥ n2 := max{n0, n1},

∥xn,i − x∥ = ∥(xn,i−1 − αn∇fi(xn,i−1))− (x− αn∇fi(x))− αn∇fi(x)∥
≤ ∥(xn,i−1 − αn∇fi(xn,i−1))− (x− αn∇fi(x))∥+ αn∥∇fi(x)∥
≤ (1− ταn)∥xn,i−1 − x∥+M1αn,

(19)
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where M1 := max{∥∇fi(x)∥ : i ∈ I} < +∞. Moreover, the definition of yn,j
(j ∈ J , n ∈ N) and (18) ensure that, for all j ∈ J and all n ≥ n2,

∥yn,j − x∥ = ∥(yn,j−1 − λnAj(yn,j−1))− (x− λnAj(x))− λnAj(x)∥
≤ ∥(yn,j−1 − λnAj(yn,j−1))− (x− λnAj(x))∥+ λn∥Aj(x)∥
≤ ∥yn,j−1 − x∥+M2λn,

(20)

where M2 := max{∥Aj(x)∥ : j ∈ J } < +∞. Accordingly, from the nonexpan-
sivity of Tk (k ∈ K), (19), and (20), for all n ≥ n2,

∥xn+1 − x∥ = ∥TK(zn,K−1)− TK(x)∥
≤ ∥TK−1(zn,K−2)− TK−1(x)∥
≤ ∥zn − x∥
= ∥yn,J − x∥
≤ ∥yn,J−1 − x∥+M2λn

≤ ∥yn − x∥+ JM2λn

= ∥xn,I − x∥+ JM2λn

≤ (1− ταn)
I∥xn,0 − x∥+ IM1αn + JM2λn

≤ (1− ταn)∥xn − x∥+ IM1αn + JM2λn.

(21)

Hence, the condition λn ≤ αn (n ∈ N) ensures that, for all n ≥ n2,

∥xn+1 − x∥ ≤ (1− ταn)∥xn − x∥+ (IM1 + JM2)αn,

which implies that, for all n ≥ n2,

∥xn+1 − x∥ ≤ max

{
∥xn2 − x∥, IM1 + JM2

τ

}
.

Therefore, (xn)n∈N is bounded. The boundedness of (xn)n∈N and (21) ensure
that (yn)n∈N, (zn)n∈N, (xn,i)n∈N (i ∈ I), (yn,j)n∈N (j ∈ J ), and (zn,k)n∈N
(k ∈ K) are bounded. This completes the proof. ⊓⊔

Next, we prove the following lemma.

Lemma 4.2 Suppose that the assumptions in Lemma 4.1, and (C1), (C3),
(C4), and (C5) of Assumption 4.1 hold. Then the sequences (xn)n∈N, (yn)n∈N,
(zn)n∈N, (xn,i)n∈N (i ∈ I), and (yn,j)n∈N (j ∈ J ) generated by Algorithm 1
have the following properties:

(i) limn→+∞ ∥xn+1 − xn∥/αn = 0;
(ii) limn→+∞ ∥xn,i−xn,i−1∥ = 0 (i ∈ I), limn→+∞ ∥yn,j−yn,j−1∥ = 0 (j ∈ J ),

limn→+∞ ∥xn − yn∥ = 0, and limn→+∞ ∥yn − zn∥ = 0;
(iii) limn→+∞ ∥xn − T (xn)∥ = 0, where T := TKTK−1 · · ·T1;
(iv) lim supn→+∞

∑
i∈I⟨xn,i−x⋆,∇fi(xn,i−1)⟩ ≤ 0, where x⋆ is the solution to

Problem 3.1.
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Proof (i) Inequality (17) and the triangle inequality guarantee that, for all
i ∈ I and all n ≥ n2,

∥xn,i − xn−1,i∥ = ∥(xn,i−1 − αn∇fi(xn,i−1))− (xn−1,i−1 − αn−1∇fi(xn−1,i−1))∥
≤ ∥(xn,i−1 − αn∇fi(xn,i−1))− (xn−1,i−1 − αn∇fi(xn−1,i−1))∥
+ |αn − αn−1| ∥∇fi(xn−1,i−1)∥

≤ (1− ταn) ∥xn,i−1 − xn−1,i−1∥+M3 |αn − αn−1| ,

where M3 := maxi∈I(sup{∥∇fi(xn,i−1)∥ : n ∈ N}) is finite from the Lipschitz
continuity of ∇fi (i ∈ I) and the boundedness of (xn,i)n∈N (i ∈ I) (see Lemma
4.1). Moreover, (18) and the triangle inequality guarantee that, for all j ∈ J
and all n ≥ n2,

∥yn,j − yn−1,j∥ = ∥(yn,j−1 − λnAj(yn,j−1))− (yn−1,j−1 − λn−1Aj(yn−1,j−1))∥
≤ ∥(yn,j−1 − λnAj(yn,j−1))− (yn−1,j−1 − λnAj(yn−1,j−1))∥
+ |λn − λn−1| ∥Aj(yn−1,j−1)∥

≤ ∥yn,j−1 − yn−1,j−1∥+M4 |λn − λn−1| ,

where M4 := maxj∈J (sup{∥Aj(yn,j−1)∥ : n ∈ N}) < +∞. Accordingly, an
argument similar to the one for obtaining (21) can be made to show that, for
all n ≥ n2,

∥xn+1 − xn∥ ≤ ∥zn − zn−1∥
≤ ∥yn − yn−1∥+ JM4 |λn − λn−1|
≤ (1− ταn)∥xn − xn−1∥+ IM3 |αn − αn−1|+ JM4 |λn − λn−1| .

Hence, for all n ≥ n2,

∥xn+1 − xn∥
αn

≤ (1− ταn)
∥xn − xn−1∥

αn
+ IM3

|αn − αn−1|
αn

+ JM4
|λn − λn−1|

αn

= (1− ταn)
∥xn − xn−1∥

αn−1
+ (1− ταn)

{
∥xn − xn−1∥

αn
− ∥xn − xn−1∥

αn−1

}
+ IM3

|αn − αn−1|
αn

+ JM4
|λn − λn−1|

αn

≤ (1− ταn)
∥xn − xn−1∥

αn−1
+M5

∣∣∣∣ 1αn
− 1

αn−1

∣∣∣∣+ IM3
|αn − αn−1|

αn

+ JM4
|λn − λn−1|

αn
,

where M5 := sup{∥xn+1−xn∥ : n ∈ N} < +∞. From λn ≤ αn and αn+1 ≤ αn

(n ∈ N), we have

|λn − λn−1|
αn

= ταn
|λn − λn−1|

τα2
n

≤ ταn
|λn − λn−1|

τλnαn
= ταn

1

ταn

∣∣∣∣1− λn−1

λn

∣∣∣∣ ,∣∣∣∣ 1αn
− 1

αn−1

∣∣∣∣ = ταn
1

ταn

|αn − αn−1|
αnαn−1

≤ ταn
1

τλn

|αn − αn−1|
α2
n

.
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From λn ≤ αn and αn ≤ 1 (n ∈ N), we also have

|αn − αn−1|
αn

= ταn
|αn − αn−1|

τα2
n

≤ ταn
|αn − αn−1|

τλnαn
≤ ταn

1

τλn

|αn − αn−1|
α2
n

.

Accordingly, for all n ≥ n2,

∥xn+1 − xn∥
αn

≤ (1− ταn)
∥xn − xn−1∥

αn−1
+ ταnXn,

where

Xn := (IM3 +M5)
1

τλn

|αn − αn−1|
α2
n

+ JM4
1

ταn

∣∣∣∣1− λn−1

λn

∣∣∣∣ .
Hence, Proposition 2.4, together with (C1), (C4), and (C5), guarantees that

lim
n→+∞

∥xn+1 − xn∥
αn

= 0.

(ii) The definition of xn,i (i ∈ I, n ∈ N) implies that, for all i ∈ I and all
n ∈ N, ∥xn,i − xn,i−1∥ = αn∥∇fi(xn,i−1)∥. Accordingly, the boundedness of
(xn,i)n∈N (i ∈ I), the Lipschitz continuity of ∇fi (i ∈ I), and the convergence
of (αn)n∈N to 0 together imply that

lim
n→+∞

∥xn,i − xn,i−1∥ = 0 (i ∈ I).

Since the definitions of xn and yn (n ∈ N) and the triangle inequality ensure
that, for all n ∈ N,

∥xn − yn∥ = ∥xn,0 − xn,I∥ ≤
∑
i∈I

∥xn,i−1 − xn,i∥,

we also have

lim
n→+∞

∥xn − yn∥ = 0.

Moreover, from the definition of yn,j (j ∈ J , n ∈ N), for all j ∈ J and all
n ∈ N, ∥yn,j − yn,j−1∥ = λn∥Aj(yn,j−1)∥ and ∥yn − zn∥ = ∥yn,0 − yn,J∥ ≤∑

j∈J ∥yn,j−1 − yn,j∥, which in turn imply that

lim
n→+∞

∥yn,j − yn,j−1∥ = 0 (j ∈ J ) and lim
n→+∞

∥yn − zn∥ = 0.

(iii) Define a nonexpansive mapping T := TKTK−1 · · ·T1. Then the defini-
tions of xn+1 and yn (n ∈ N) imply that, for all n ∈ N,

∥xn+1 − T (yn)∥ = ∥T (yn,J−1 − λnAJ(yn,J−1))− T (yn)∥
≤ ∥yn,J−1 − yn,0∥+ λn∥AJ(yn,J−1))∥.
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From ∥yn,J−1−yn,0∥ ≤
∑J−1

j=1 ∥yn,j−1−yn,j∥ and the boundedness of (AJ(yn,J−1)))n∈N,
we have limn→+∞ ∥xn+1 − T (yn)∥ = 0. The nonexpansivity of T and the tri-
angle inequality ensure that, for all n ∈ N,

∥xn − T (xn)∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − T (yn)∥+ ∥T (yn)− T (xn)∥
≤ ∥xn − xn+1∥+ ∥xn+1 − T (yn)∥+ ∥yn − xn∥,

which, together with limn→+∞ ∥xn−xn+1∥ = 0, limn→+∞ ∥xn+1−T (yn)∥ = 0,
and limn→+∞ ∥xn − yn∥ = 0, imply that

lim
n→+∞

∥xn − T (xn)∥ = 0.

(iv) Let x⋆ ∈
∩

k∈K Fix(Tk) be the unique solution to Problem 3.1. Since
∥x − y∥2 ≤ ∥x∥2 − 2⟨x − y, y⟩ holds for all x, y ∈ RN , we have that, for all
i ∈ I and all n ∈ N,

∥xn,i − x⋆∥2 = ∥(xn,i−1 − x⋆)− αn∇fi(xn,i−1)∥2

≤ ∥xn,i−1 − x⋆∥2 − 2αn ⟨xn,i − x⋆,∇fi(xn,i−1)⟩ .
(22)

This in turn implies that, for all j ∈ J and all n ∈ N,

∥yn,j − x⋆∥2 ≤ ∥yn,j−1 − x⋆∥2 − 2λn ⟨yn,j − x⋆, Aj(yn,j−1)⟩ . (23)

Hence, the nonexpansivity of Tk (k ∈ K), together with (22) and (23), implies
that, for all n ∈ N,

∥xn+1 − x⋆∥2 ≤ ∥xn − x⋆∥2 − 2αn

∑
i∈I

⟨xn,i − x⋆,∇fi(xn,i−1)⟩

− 2λn

∑
j∈J

⟨yn,j − x⋆, Aj(yn,j−1)⟩ .
(24)

Accordingly, for all n ∈ N,

2
∑
i∈I

⟨xn,i − x⋆,∇fi(xn,i−1)⟩

≤ 1

αn

{
∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2

}
+

2λn

αn

∑
j∈J

⟨x⋆ − yn,j , Aj(yn,j−1)⟩

≤ M6
∥xn − xn+1∥

αn
+M7

λn

αn
,

where M6 := sup{∥xn − x⋆∥ + ∥xn+1 − x⋆∥ : n ∈ N} < +∞ and M7 :=
sup{2

∑
j∈J |⟨x⋆−yn,j , Aj(yn,j−1)⟩| : n ∈ N} < +∞, and the second inequality

comes from ∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 = (∥xn − x⋆∥ + ∥xn+1 − x⋆∥)(∥xn −
x⋆∥ − ∥xn+1 − x⋆∥) ≤ M6∥xn − xn+1∥. Hence, Lemma 4.2(i) and (C3) ensure
that

lim sup
n→+∞

∑
i∈I

⟨xn,i − x⋆,∇fi(xn,i−1)⟩ ≤
M6

2
lim

n→+∞

∥xn − xn+1∥
αn

+
M7

2
lim

n→+∞

λn

αn
= 0,

which completes the proof. ⊓⊔
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Let x⋆ ∈ VI(
∩

k∈K Fix(Tk),
∑

j∈J Aj) be the unique solution to Problem
3.1. We consider the following cases:

(Case 1) There exists m ∈ N such that, for all n ∈ N, n ≥ m implies ∥xn+1 −
x⋆∥ ≤ ∥xn − x⋆∥.

(Case 2) For all m ∈ N, there exists n ∈ N such that n ≥ m and ∥xn+1−x⋆∥ >
∥xn − x⋆∥.

It is necessary to prove that, for each of the two cases, the sequence (xn)n∈N
generated by Algorithm 1 converges to x⋆.

Lemma 4.3 For Case 1, suppose that Assumptions 3.1 and 4.1 hold. Then
the sequence (xn)n∈N generated by Algorithm 1 converges to x⋆.

Proof Summing (24) from n = 0 to n = l ensures that, for all l ∈ N,

2

l∑
n=0

αn

∑
i∈I

⟨xn,i − x⋆,∇fi(xn,i−1)⟩+ λn

∑
j∈J

⟨yn,j − x⋆, Aj(yn,j−1)⟩

 ≤ ∥x0 − x⋆∥2 ,

which implies that

+∞∑
n=0

αn

∑
i∈I

⟨xn,i − x⋆,∇fi(xn,i−1)⟩ < +∞,

+∞∑
n=0

λn

∑
j∈J

⟨yn,j − x⋆, Aj(yn,j−1)⟩ < +∞.

Proposition 2.5, together with (C2), ensures that

lim inf
n→+∞

∑
j∈J

⟨yn,j − x⋆, Aj(yn,j−1)⟩ ≤ 0. (25)

From (25), there exists (ynk,j)k∈N ⊂ (yn,j)n∈N (j ∈ J ) such that

lim
k→+∞

∑
j∈J

⟨ynk,j − x⋆, Aj(ynk,j−1)⟩ = lim inf
n→+∞

∑
j∈J

⟨yn,j − x⋆, Aj(yn,j−1)⟩ ≤ 0.

(26)

For some j ∈ J , (ynk,j)k∈N is bounded. Hence, there exists (ynkl
,j)l∈N ⊂

(ynk,j)k∈N which converges to x̂ ∈ RN . Lemma 4.2(ii) implies that (ynkl
,j)l∈N

(j ∈ J ), (xnkl
)l∈N, and (xnkl

,i)l∈N (i ∈ I) converge to x̂. The continuity of
∇fi (i ∈ I) and Aj (j ∈ J ) implies that (∇fi(xnkl

,i−1))l∈N (i ∈ I) and
(Aj(ynkl

,j−1))l∈N (j ∈ J ) converge to ∇fi(x̂) and Aj(x̂), respectively. Lemma
4.2(iii) and the continuity of T imply that

0 = lim
l→+∞

∥∥∥xnkl
− T

(
xnkl

)∥∥∥ = ∥x̂− T (x̂)∥, i.e., x̂ ∈ Fix(T ).

Corollary 4.37 in [3] guarantees that Fix(T ) = Fix(TKTK−1 · · ·T1) =
∩

k∈K Fix(Tk) ̸=
∅. Accordingly, we have x̂ ∈

∩
k∈K Fix(Tk). From (26), we have

0 ≥ lim
l→+∞

∑
j∈J

⟨
ynkl

,j − x⋆, Aj

(
ynkl

,j−1

)⟩
=

⟨
x̂− x⋆,

∑
j∈J

Aj(x̂)

⟩
.



18 Hideaki Iiduka

Proposition 2.2(i) and the conditions x⋆ ∈ VI(
∩

k∈K Fix(Tk),
∑

j∈J Aj) and
x̂ ∈

∩
k∈K Fix(Tk) ensure that ⟨x̂− x⋆,

∑
j∈J Aj(x̂)⟩ ≥ 0. Hence,⟨

x̂− x⋆,
∑
j∈J

Aj(x̂)

⟩
= 0.

The paramonotonicity of Aj (j ∈ J ) implies that
∑

j∈J Aj is paramonotone.
Accordingly, Proposition 2.2(vi) implies that

x̂ ∈ VI

∩
k∈K

Fix(Tk),
∑
j∈J

Aj

 .

Moreover, Lemma 4.2(iv) ensures that

lim sup
l→+∞

∑
i∈I

⟨
xnkl

,i − x⋆,∇fi

(
xnkl

,i−1

)⟩
≤ lim sup

n→+∞

∑
i∈I

⟨xn,i − x⋆,∇fi(xn,i−1)⟩ ≤ 0,

which implies that

0 ≥
∑
i∈I

⟨x̂− x⋆,∇fi(x̂)⟩ =

⟨
x̂− x⋆,

∑
i∈I

∇fi(x̂)

⟩
.

Accordingly,

⟨x̂− x⋆,∇f(x̂)⟩ =

⟨
x̂− x⋆,∇

(∑
i∈I

fi

)
(x̂)

⟩
=

⟨
x̂− x⋆,

∑
i∈I

∇fi(x̂)

⟩
≤ 0.

Hence, the strong convexity of f :=
∑

i∈I fi with constant β :=
∑

i∈I βi means
that

β ∥x̂− x⋆∥2 ≤ ⟨x̂− x⋆,∇f(x̂)⟩+ ⟨x⋆ − x̂,∇f(x⋆)⟩ ≤ ⟨x⋆ − x̂,∇f(x⋆)⟩ ≤ 0,

where the third inequality comes from x̂ ∈ VI(Fix(T ),
∑

j∈J Aj) and {x⋆} =
VI(VI(Fix(T ),

∑
j∈J Aj),∇f). Therefore, (xnkl

)l∈N converges to x̂ = x⋆. Choose

another subsequence (ynkm ,j)m∈N ⊂ (ynk,j)k∈N which converges to x̌ ∈ RN .
An argument similar to the one for obtaining the relation x̂ = x⋆ guarantees
that x̌ = x⋆. Accordingly, any subsequence of (xnk

)k∈N converges to x⋆, i.e.,
(xnk

)k∈N converges to x⋆. Case 1 implies the existence of limn→+∞ ∥xn−x⋆∥.
Therefore,

lim
n→+∞

∥xn − x⋆∥ = lim
k→+∞

∥xnk
− x⋆∥ = 0.

This completes the proof. ⊓⊔

Lemma 4.4 For Case 2, suppose that Assumptions 3.1 and 4.1 hold. Then
the sequence (xn)n∈N generated by Algorithm 1 converges to x⋆.
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Proof Case 2 implies the existence of a subsequence (xnl
)l∈N of (xn)n∈N such

that, for all l ∈ N, ∥xnl+1 − x⋆∥2 > ∥xnl
− x⋆∥2. Hence, Proposition 2.6

guarantees that there exists m0 ∈ N such that, for all n ≥ m0, ∥xγ(n) −
x⋆∥2 ≤ ∥xγ(n)+1 − x⋆∥2, where γ(n) is defined as in Proposition 2.6 with
Γn := ∥xn − x⋆∥2 (n ∈ N) and satisfies limn→+∞ γ(n) = +∞. From (24), we
have that, for all n ≥ m0,

Γγ(n)+1 ≤ Γγ(n) − 2αγ(n)

∑
i∈I

⟨
xγ(n),i − x⋆,∇fi

(
xγ(n),i−1

)⟩
− 2λγ(n)

∑
j∈J

⟨
yγ(n),j − x⋆, Aj

(
yγ(n),j−1

)⟩
.

(27)

Lemma 4.2(iv) ensures that any subsequence (xγ(nm))m∈N ⊂ (xγ(n))n≥m0
can

be chosen such that

lim sup
m→+∞

∑
i∈I

⟨
xγ(nm),i − x⋆,∇fi

(
xγ(nm),i−1

)⟩
≤ lim sup

n→+∞

∑
i∈I

⟨
xγ(n),i − x⋆,∇fi

(
xγ(n),i−1

)⟩
≤ lim sup

n→+∞

∑
i∈I

⟨xn,i − x⋆,∇fi (xn,i−1)⟩

≤ 0. (28)

Inequality (27) and Γγ(n) ≤ Γγ(n)+1 (n ≥ m0) (by Proposition 2.6) imply that,
for all m ∈ N,

αγ(nm)

∑
i∈I

⟨
xγ(nm),i − x⋆,∇fi

(
xγ(nm),i−1

)⟩
+ λγ(nm)

∑
j∈J

⟨
yγ(nm),j − x⋆, Aj

(
yγ(nm),j−1

)⟩
≤ 0.

Summing the above inequality guarantees that

+∞∑
m=0

[
αγ(nm)

∑
i∈I

⟨
xγ(nm),i − x⋆,∇fi

(
xγ(nm),i−1

)⟩
+ λγ(nm)

∑
j∈J

⟨
yγ(nm),j − x⋆, Aj

(
yγ(nm),j−1

)⟩ ]
< +∞,

which implies that

+∞∑
m=0

λγ(nm)

∑
j∈J

⟨
yγ(nm),j − x⋆, Aj

(
yγ(nm),j−1

)⟩
< +∞.

Proposition 2.5 and (C2) thus give that

lim inf
m→+∞

∑
j∈J

⟨
yγ(nm),j − x⋆, Aj

(
yγ(nm),j−1

)⟩
≤ 0. (29)
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Accordingly, there exists (yγ(nml
),j)l∈N ⊂ (yγ(nm),j)m∈N (j ∈ J ) such that

lim
l→+∞

∑
j∈J

⟨
yγ(nml

),j − x⋆, Aj

(
yγ(nml

),j−1

)⟩
= lim inf

m→+∞

∑
j∈J

⟨
yγ(nm),j − x⋆, Aj

(
yγ(nm),j−1

)⟩
≤ 0.

The boundedness of (yγ(nml
),j)l∈N (j ∈ J ) and Lemma 4.2(ii), (iii) guarantee

the existence of (yγ(nmlk
),j)k∈N ⊂ (yγ(nml

),j)l∈N (j ∈ J ) converging to x̄ ∈
Fix(T ) =

∩
k∈K Fix(Tk) (see also the proof of x̂ ∈ Fix(T ) for Lemma 4.3).

Hence,

0 ≥ lim
k→+∞

∑
j∈J

⟨
yγ(nmlk

),j − x⋆, Aj

(
yγ(nmlk

),j−1

)⟩
=

⟨
x̄− x⋆,

∑
j∈J

Aj(x̄)

⟩
,

which, together with x⋆ ∈ VI(Fix(T ),
∑

j∈J Aj) and Proposition 2.2(i), im-
plies that ⟨

x̄− x⋆,
∑
j∈J

Aj(x̄)

⟩
= 0.

The paramonotonicity of
∑

j∈J Aj and Proposition 2.2(vi) thus guarantee
x̄ ∈ VI(Fix(T ),

∑
j∈J Aj). From (28), Lemma 4.2(ii), and the continuity of

∇fi (i ∈ I),

0 ≥ lim sup
k→+∞

∑
i∈I

⟨
xγ(nmlk

),i − x⋆,∇fi

(
xγ(nmlk

),i−1

)⟩
=

⟨
x̄− x⋆,

∑
i∈I

∇fi(x̄)

⟩
.

An argument similar to the one for obtaining the relation x̂ = x⋆ (see the proof
of Lemma 4.3) guarantees that x̄ = x⋆, i.e., (xγ(nmlk

))k∈N (⊂ (xγ(nm))m∈N)

converges to x⋆. Since (xγ(nm))m∈N is an arbitrary subsequence of (xγ(n))n≥m0
,

(xγ(n))n≥m0
converges to x⋆. This implies that limn→+∞ Γγ(n) = 0. Therefore,

Proposition 2.6 ensures that

lim sup
n→+∞

∥xn − x⋆∥2 = lim sup
n→+∞

Γn ≤ lim sup
n→+∞

Γγ(n)+1 = 0,

which implies that (xn)n∈N converges to x⋆. This completes the proof. ⊓⊔

Regarding an approximation of a convergence rate of Algorithm 1, we note
the following.

Remark 4.1 From ∥x − y∥2 ≤ ∥x∥2 − 2⟨x − y, y⟩ (x, y ∈ RN ) and (17), for
all i ∈ I and all n ≥ n2,

∥xn,i − x⋆∥2 = ∥(xn,i−1 − αn∇fi(xn,i−1))− (x⋆ − αn∇fi(x
⋆))− αn∇fi(x

⋆)∥2

≤ ∥(xn,i−1 − αn∇fi(xn,i−1))− (x⋆ − αn∇fi(x
⋆))∥2

− 2αn ⟨xn,i − x⋆,∇fi(x
⋆)⟩

≤ (1− ταn)∥xn,i−1 − x⋆∥2 − 2αn ⟨xn,i − x⋆,∇fi(x
⋆)⟩ .
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Then from inequality (18), for all j ∈ J and all n ≥ n2,

∥yn,j − x⋆∥2 ≤ ∥yn,j−1 − x⋆∥2 − 2λn ⟨yn,j − x⋆, Aj(x
⋆)⟩ .

Hence, for all n ≥ n2,

∥xn+1 − x⋆∥2 ≤ (1− ταn) ∥xn − x⋆∥2 − 2αn

∑
i∈I

⟨xn,i − x⋆,∇fi(x
⋆)⟩

− 2λn

∑
j∈J

⟨yn,j − x⋆, Aj(x
⋆)⟩ .

Theorem 4.1 ensures that (xn,i)n∈N (i ∈ I) and (yn,j)n∈N (j ∈ J ) converge to
x⋆. Accordingly, for all ϵ > 0, there exists n3 ∈ N such that, for all n ≥ n4 :=
max{n2, n3},∑

i∈I
|⟨xn,i − x⋆,∇fi(x

⋆)⟩| ≤ τϵ

4
and

∑
j∈J

|⟨yn,j − x⋆, Aj(x
⋆)⟩| ≤ τϵ

4
.

The condition λn ≤ αn (n ∈ N) thus ensures that, for all n ≥ n4,

∥xn+1 − x⋆∥2 ≤ (1− ταn) ∥xn − x⋆∥2 + ταnϵ,

which implies that, for all n ≥ n4,

∥xn+1 − x⋆∥2 ≤
n∏

k=n4

(1− ταk) ∥xn4
− x⋆∥2 +

(
1−

n∏
k=n4

(1− ταk)

)
ϵ.

Condition (C1) guarantees that
∏+∞

k=n4
(1 − ταk) = 0. If ϵ > 0 is sufficiently

small, then we have the following approximation in the sense of the norm on
R:

∥xn+1 − x⋆∥2 ≈ O

(
n∏

k=n4

(1− ταk)

)
.

4.2 Application to network utility maximization (NUM)

In modern communication networks, a critical problem is how best to allocate
the network resources. This problem, called the NUM problem [32,38,46], is
to determine the source rates that maximize the overall utility, that is, the
utility aggregated over all sources, where the constraints are all of the link
capacity constraints.

We consider an abstract network comprising a set of sources S := {1, 2, . . . , S}
and a set of links L := {1, 2, . . . , L}, where link l has capacity cl ≥ 0. Let
S(l) ⊂ S denote the set of sources that use link l, and xs ≥ 0 denote the
transmission rate of source s. The capacity constraint for link l is the restric-
tion that the sum of the transmission rates of all the sources sharing the link
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be less than or equal to cl. Hence, the constraint set in the NUM problem is
defined as the following set:

C := RS
+ ∩

∩
l∈L

Cl, where Cl :=

(xs)
S
s=1 ∈ RS :

∑
s∈S(l)

xs ≤ cl

 . (30)

We assume that source s has a transmission rate demand rs > 0 [22, (2.2)], [29]
which is the preferable transmission rate for an application’s service, and the
problem is to satisfy this demand as much as possible. Then the compoundable
constraint set for source s is defined as

Ds :=
{
(xs)

S
s=1 ∈ RS : xs ≥ rs

}
. (31)

It is desirable that all sources satisfy C ∩
∩

s∈S Ds ̸= ∅. However, it is possible
that C ∩

∩
s∈S Ds = ∅, for example, when there exists a selfish source s0 with

sufficiently large rs0 .

Here, we define compromise points that belong to the absolute set C and
try to satisfy the constraints involved in

∩
s∈S Ds as much as possible. A set

with such compromise points is formulated as a subset of C whose elements
are closest to Ds (s ∈ S) in the sense of the mean-square norm. This subset
is called a generalized convex feasible set [12, Section I, Framework 2], [51,
Definition 4.1] and is defined as follows:

Cg := argmin
x∈C

g(x), (32)

where g(x) is the mean-square value of the distances from x ∈ RS to Ds

(s ∈ S), i.e., for (ws)s∈S ⊂ (0, 1) with
∑

s∈S ws = 1,

g(x) :=
∑
s∈S

ws

2
d(x,Ds)

2︸ ︷︷ ︸
=:gs(x)

=
∑
s∈S

ws

2

(
inf

y∈Ds

∥x− y∥
)2

. (33)

Even if C ∩
∩

s∈S Ds = ∅, Cg is well defined since Cg is the set of minimizers
of a convex function g over C. The relation Cg = C ∩

∩
s∈S Ds holds when

C ∩
∩

s∈S Ds ̸= ∅. Hence, Cg is a generalization of C ∩
∩

s∈S Ds.

Although the set C defined by (30) is complicated, RS
+ and Cl (l ∈ L)

are simple in the sense that the metric projection can be easily computed
[3, Example 28.16]. Hence, we can define a computable, firmly nonexpansive
mapping Tl : RS → RS (l ∈ L ∪ {L+ 1}) as follows [3, Subchapter 4.5]:

Tl := Pl (l ∈ L) and TL+1 := P+

with
∩

l∈L∪{L+1}

Fix(Tl) = Fix (TL+1TL · · ·T1) = RS
+ ∩

∩
l∈L

Cl = C ̸= ∅, (34)
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where Pl := PCl
(l ∈ L) and P+ := PRS

+
. This implies that Tl (l ∈ L∪{L+1})

defined by (34) satisfies Assumption 3.1(A1). The function gs (s ∈ S) defined
by (33) is convex and the gradient of gs (s ∈ S) defined for all x ∈ RS by

∇gs(x) = ws(Id− Ps)(x), (35)

where Ps := PDs (s ∈ S), is 2ws-Lipschitz continuous. Accordingly, ∇gs (s ∈
S) is 1/(2ws)-inverse-strongly monotone [2, Théorème 5]. Lemma 12 in [9]
ensures that ∇gs (s ∈ S) is paramonotone. Since Ds (s ∈ S) defined by (31)
is a half-space, Ps (s ∈ S) can be easily computed. Moreover, (32), (33), and
(34), together with Proposition 2.2(ii) and (v) and the boundedness of C,
imply that

Cg = argmin
x∈

∩
l∈L∪{L+1} Fix(Tl)

∑
s∈S

gs(x) = VI

 ∩
l∈L∪{L+1}

Fix(Tl),
∑
s∈S

∇gs

 ̸= ∅.

(36)

Hence, As := ∇gs (s ∈ S) defined by (35) satisfies Assumption 3.1(A2). The
utility of source s is defined as the value of the utility function us at current
rate xs. For example, the resource allocation from the NUM with the utility
functions defined for all x := (xs)s∈S ∈ RS

+ by

us(x) := ωs log(xs + ps), (37)

where ωs, ps > 0 (s ∈ S), is said to be weighted proportionally fair [32,38], [46,
Chapter 2]. The function us defined by (37) is strongly concave on

∏
s∈S [0,Ms]

and ∇us is Lipschitz continuous on
∏

s∈S [0,Ms], where Ms > 0 (s ∈ S) can be
chosen so that

∏
s∈S [0,Ms] includes the bounded absolute set C. Accordingly,

fs := −us (s ∈ S) defined by (37) satisfies Assumption 3.1(A3).
Therefore, the NUM problem can be expressed as follows:

Maximize
∑
s∈S

us(x) subject to x ∈ VI

 ∩
l∈L∪{L+1}

Fix(Tl),
∑
s∈S

∇gs

 , (38)

where Tl (l ∈ L ∪ {L+ 1}) is defined by (34), ∇gs (s ∈ S) is defined by (35),
and fs := −us (s ∈ S) satisfies Assumption 3.1(A3). Hence, we can conclude
that the NUM problem (38) is an example of Problem 3.1.

Useful decentralized network resource allocation algorithms have previ-
ously been reported. For example, Nedić and Ozdaglar studied the dual of the
NUM problem of maximizing

∑
s∈S us over C defined by (30), and proposed a

dual subgradient and primal-dual subgradient algorithm [41, Subsection 2.2].
Their algorithm uses all of the values of cl at each iteration [41, p.1761] and
it can be applied to the case where us (s ∈ S) is not always differentiable. Yu
and Neely proposed a decentralized dual subgradient algorithm [53, Algorithm
2] that can be implemented under the condition that only link l knows cl. This
algorithm can be applied to a multipath NUM problem with nondifferentiable
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utility functions. Iiduka proposed distributed proximal and subgradient algo-
rithms [27, Algorithms 1 and 2] for the NUM problem with nondifferentiable
utility functions that can be implemented under the condition that only link
l knows cl.

Although us (s ∈ S) in the NUM problem (38) is assumed to be differ-
entiable, the NUM problem (38) is to maximize the overall utility subject to
not only the capacity constraints but also the compoundable constraints re-
garding the preferable transmission rate, in contrast to the NUM problems in
[27,41,53]. Optimization algorithms [22,29] have been proposed specifically for
solving the NUM problem (38). However, these are all centralized algorithms
that need additional restrictions. To the best of our knowledge, there have
been no reports on decentralized network resource allocation algorithms for
triple-hierarchical constrained convex optimization.

To propose a decentralized optimization algorithm for the NUM problem
(38), we assume the following:

(D1) The closed forms of Ds defined by (31) and us (e.g., us is defined by (37))
are source s’s private information.

(D2) The closed form of Cl defined by (30) is link l’s private information.
(D3) Source s can communicate with source (s − 1) in a cyclic manner, and

source S can communicate with link 1.
(D4) Link l can communicate with link (l − 1) in a cyclic manner, and link L

can communicate with source 1.

Assumption (D1) ensures that source s can use ∇gs defined by (35) and
∇fs = −∇us (e.g., us is defined by (37)), while Assumption (D2) ensures that
link l can use Pl defined by (34). Assumptions (D3) and (D4) are needed to
implement incremental optimization algorithms.

Under Assumptions (D1)–(D4), the NUM problem (38) can be solved by
Algorithm 1 with fs := −us (s ∈ S), As := ∇gs (s ∈ S) defined by (35), and
Tl := Pl (l ∈ L ∪ {L+ 1}) defined by (34). Concretely speaking, Algorithm 2
is the proposed algorithm for solving the NUM problem (38):

Steps 4 and 8 in Algorithm 2 can be implemented under Assumptions (D1)
and (D3). Step 12 in Algorithm 2 can be implemented under Assumptions
(D2), (D3), and (D4). Step 14 implies that source 1 receives zn,L from link L
and computes zn,L+1 := P+(zn,L) using TL+1 := P+. Theorem 4.1 and Lemma
4.2(ii) guarantee that the sequence (xn,s)n∈N (s ∈ S) generated by Algorithm
2 with Assumption 4.1 converges to a unique solution to problem (38), i.e.,
each source can find the optimal resource allocation in a decentralized manner.
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Algorithm 2 Incremental optimization algorithm for NUM with compound-
able constraints
Require: (αn)n∈N, (λn)n∈N ⊂ (0,+∞)
1: n← 0, x0 := x0,0 ∈ RN

2: loop
3: for s = 1 to s = S do
4: xn,s := xn,s−1 − λn∇fs(xn,s−1)
5: end for
6: yn = yn,0 := xn,S

7: for s = 1 to s = S do
8: yn,s := yn,s−1 − αn∇gs(yn,s−1) = yn,s−1 − αnws{yn,s−1 − Ps(yn,s−1)}
9: end for
10: zn = zn,0 := yn,S

11: for l = 1 to l = L do
12: zn,l := Pl(zn,l−1)
13: end for
14: xn+1 = xn+1,0 = zn,L+1 := P+(zn,L)
15: n← n+ 1
16: end loop

4.3 Application to stochastic linear-quadratic (LQ) control

The following stochastic LQ control problem has been widely studied in the
control theory field (see, e.g., [10,31,42,50] and references therein):

minimize E
[∫ +∞

0

{⟨x(t), Qx(t)⟩+ ⟨u(t), Ru(t)⟩} dt
]

subject to

{
dx(t) = [Ax(t) +Bu(t)]dt+ [Cx(t) +Du(t)]dw(t),

x(0) = x0 ∈ RN ,

(39)

where E[X] is the expected value of random variable X, A,C,Q ∈ RN×N ,
B,D ∈ RN×Nu , R ∈ RNu×Nu , x(t) is a state variable, and w(t) is a scalar that
represents Brownian motion. Problem (39) with an indefinite state weighting
matrix Q and a definite control weighting matrix R can be regarded as a
stochastic H∞ problem. Such a problem is called an indefinite stochastic LQ
problem [42]. Rami and Zhou introduced the following LMIs [42, (6)]:M(X1) :=

[
A⊤X1 +X1A+ C⊤X1C +Q X1B + C⊤X1D

B⊤X1 +D⊤X1C R+D⊤X1D

]
⪰ O,

R+D⊤X1D ≻ O.

(40)

Sections V and VI in [42] imply that the optimal control of problem (39) is
u(t) = −(R+D⊤X⋆

1D)−1(B⊤X⋆
1 +D⊤X⋆

1C)x(t) if there exists a solution X⋆
1

to LMIs (40). The solvability of LMIs (40) is guaranteed, for example, Q ⪰ O
and R ≻ O. However, it is possible that there is no solution to LMIs (40) since
problem (39) is an indefinite stochastic LQ problem (i.e., Q and R are not
always positive semidefinite).
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To solve the indefinite stochastic LQ problem, we first define the following
convex sets of SN+Nu [31, (2.5)–(2.7)]:

K1 :=

{
X :=

[
X1 O
O O

]
∈ SN+Nu : X1 ∈ SN

}
,

K2 :=

{
X :=

[
X1 X2

X3 X4

]
∈ SN+Nu : X1 ∈ SN ,M̄(X) ⪰ O

}
,

K3 :=

{
X :=

[
X1 X2

X3 X4

]
∈ SN+Nu : X1 ∈ SN , R̄+ D̄⊤XD̄ ⪰ ϵIN+Nu

}
,

where Ā = [ A B
O O ], C̄ = [C D

O O ], Q̄ = [Q O
O R

], R̄ = [R O
O IN

], D̄ = [D O
O O ], ϵ > 0 is

sufficiently small, IN is the N ×N identity matrix, and

M̄(X) := Ā⊤X +XĀ+ C̄⊤XC̄ + Q̄.

X1 satisfiesM(X1) ⪰ O if and only ifX = [X1 O
O O

] satisfies M̄(X) ⪰ O, andX1

satisfies R+D⊤X1D ≻ O if and only if X = [X1 X2

X3 X4
] satisfies R̄+D̄⊤XD̄ ≻ O

[31, p.2175, (i)–(iii)]. Under the assumption that K1 ∩ K2 ̸= ∅, a generalized
convex feasible set [12, Section I, Framework 2], [51, Definition 4.1] for Ki

(i = 1, 2, 3) can be defined as follows (see also (32)):

Cg := argmin
X∈K1∩K2

g(X), (41)

where ∥ · ∥F denotes the Frobenius norm and

g(X) :=
1

2
d(X,K3)

2 =
1

2

(
inf

Y ∈K3

∥X − Y ∥F
)2

. (42)

The set Cg defined by (41) is a subset of the absolute set K1 ∩ K2 whose
matrices are closest to K3 in the sense of the Frobenius norm. Accordingly,
it is reasonable to consider the set Cg when LMIs (40) are infeasible, i.e.,∩

k=1,2,3 Kk = ∅. The set Cg is well defined even if
∩

k=1,2,3 Kk = ∅, and
Cg =

∩
k=1,2,3 Kk holds when

∩
k=1,2,3 Kk ̸= ∅.

Define a nonexpansive mapping Tk : SN+Nu → SN+Nu (k = 1, 2) by

Tk := Pk with
∩

k=1,2

Fix(Tk) = Fix(T2T1) = K1 ∩ K2 ̸= ∅, (43)

where Pk := PKk
(k = 1, 2, 3) can be computed within a finite number of

arithmetic operations [17, Proposition 5.3]. The mapping Tk (k = 1, 2) defined
by (43) satisfies Assumption 3.1(A1), and the function g defined by (42) is
convex with the 2-Lipschitz continuous gradient defined for all X ∈ SN+Nu

by

∇g(X) = X − P3(X). (44)
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Hence, ∇g defined by (44) is 1/2-inverse-strongly monotone [2, Théorème 5]
and paramonotone [9, Lemma 12]. Here, let us consider the following problem
[31, Problem 4.2]:

Maximize Tr(X)

subject to X ∈ Cg = argmin
X∈

∩
k=1,2 Fix(Tk)

g(X) = VI

 ∩
k=1,2

Fix(Tk),∇g

 .
(45)

Proposition 2.2(v) ensures that Cg = VI(
∩

k=1,2 Fix(Tk),∇g). Theorem 4.1 in
[31] ensures that, under certain assumptions, there exists a unique solution to
problem (45) (see [31, Section 4] for details). Since this implies that Cg ̸= ∅,
(A1) and (A2) of Assumption 3.1 (see also (A2)’ in Example 3.1) hold. We
modify the objective function in problem (45) as

f(X) := −Tr(X) +
ϵ

2
∥X∥2F (X ∈ SN+Nu)

to satisfy Assumption 3.1(A3). 2

Theorem 5.1 in [31] guarantees that, under certain assumptions,

u(t) = −
(
R+D⊤X⋆

1D
)−1 (

B⊤X⋆
1 +D⊤X⋆

1C
)
x(t),

where X⋆ := [X
⋆
1 O

O O
] is the unique solution to problem (45), is the optimal

control of problem (39) with indefinite matrices Q and R (see [31, Section
5] for details). Hence, we need to find the unique solution X⋆ := [X

⋆
1 O

O O
] to

problem (45).
The existing algorithm [31, Algorithm 6.1] for solving problem (45) gener-

ates the following sequence:

Yn := P2P1 ((1− λn)Xn + λnP3(Xn)) ,

Xn+1 := Yn − αn∇f(Yn),
(46)

where (αn)n∈N and (λn)n∈N satisfy the conditions

lim
n→+∞

αn = 0,

+∞∑
n=0

αn = +∞,

+∞∑
n=0

|αn+1 − αn| < +∞,

+∞∑
n=0

|λn+1 − λn| < +∞, λn ≤ αn, and ∥Xn − Yn∥ = o(λn) (n ∈ N).

(47)

Theorem 4.1 in [20] implies that the sequence (Xn)n∈N generated by algorithm
(46), with the bounded assumption of (Yn)n∈N and the conditions (47), con-
verges to the unique solution to the problem of minimizing f(X) := −Tr(X)+
(ϵ/2)∥X∥2F (X ∈ SN+Nu) over Cg.

The following is the proposed algorithm for solving problem (45).

2 Since ϵ > 0 is sufficiently small, we have that f(X) ≈ −Tr(X) (X ∈ SN+Nu ) in the
sense of the norm of R. Hence, we can expect that the unique solution X⋆ to problem (45)
is almost the same as the unique minimizer of f over Cg .
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Algorithm 3 Incremental optimization algorithm for stochastic LQ control
Require: (αn)n∈N, (λn)n∈N ⊂ (0,+∞), ϵ > 0
1: n← 0, X0 ∈ SN+Nu

2: loop
3: Yn := Xn − λn∇f(Xn) = Xn + λn(IN+Nu − ϵXn)
4: Zn := Yn − αn∇g(Yn) = Yn − αn(Yn − P3(Yn))
5: Zn,0 = Zn

6: for k = 1 to k = 2 do
7: Zn,k := Pk(Zn,k−1)
8: end for
9: Xn+1 = Zn,2

10: n← n+ 1
11: end loop

Theorem 4.1 guarantees that the sequence (Xn)n∈N generated by Algo-
rithm 3 under Assumption 4.1 converges to the minimizer of f over Cg. Al-
gorithm 3 can work without assuming the boundedness of (Yn)n∈N and the
condition ∥Xn − Yn∥ = o(λn), in contrast to algorithm (46). This difference
between algorithm (46) and Algorithm 3 is caused by the choices of the step-
size sequences (αn)n∈N and (λn)n∈N (see (47) and Assumption 4.1 for the
conditions on (αn)n∈N and (λn)n∈N).

5 Conclusion and future work

This paper presented a decentralized optimization algorithm for solving the
triple-hierarchical constrained convex optimization problem and showed a con-
vergence analysis of this algorithm. The analysis leads to the finding that the
proposed algorithm with diminishing step-size sequences converges to the so-
lution to the problem without assuming any additional restrictions. Next, we
showed that practical applications, such as network resource allocation and
optimal control, can be expressed as the triple-hierarchical constrained convex
optimization problem and that the proposed algorithm can solve them.

In the future, we should consider developing decentralized optimization
algorithms for solving multiple-hierarchical constrained convex optimization
problems. Although we cannot extend directly the results for triple-hierarchical
constrained convex optimization to multiple-hierarchical constrained convex
optimization, we believe that our convergence analyses will help us to develop
algorithms for multiple-hierarchical constrained convex optimization and to
solve currently unsolved practical optimization problems.
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35. Maingé, P.E.: The viscosity approximation process for quasi-nonexpansive mappings in
Hilbert spaces. Computers and Mathematics with Applications 59, 74–79 (2010)
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