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This paper proposes an incremental subgradient method for solving the problem of mini-
mizing the sum of nondifferentiable, convex objective functions over the intersection of fixed
point sets of nonexpansive mappings in a real Hilbert space. The proposed algorithm can
work in nonsmooth optimization over constraint sets onto which projections cannot be al-
ways implemented, whereas the conventional incremental subgradient method can be applied
only when a constraint set is simple in the sense that the projection onto it can be easily
implemented. We first study its convergence for a constant step size. The analysis indicates
that there is a possibility that the algorithm with a small constant step size approximates a
solution to the problem. Next, we study its convergence for a diminishing step size and show
that there exists a subsequence of the sequence generated by the algorithm which weakly
converges to a solution to the problem. Moreover, we show the whole sequence generated by
the algorithm with a diminishing step size strongly converges to the solution to the problem
under certain assumptions. We also give examples of real applied problems which satisfy the
assumptions in the convergence theorems and numerical examples to support the convergence
analyses.

Keywords: fixed point; incremental subgradient method; Krasnosel’skĭı-Mann algorithm;
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1. Introduction

Convex optimization theory is a powerful tool for solving many practical problems in
operational research. In particular, it has been widely used to solve practical convex
minimization problems over complicated constraints, e.g., convex optimization problems
with a fixed point constraint [5, 14, 15, 17, 18, 36] and with a variational inequality
constraint [11–13, 19].
This paper considers the following nonsmooth convex optimization problem over fixed

point sets in a real Hilbert space H: given a continuous, convex function, f (i) : H → R
(i ∈ I := {1, 2, . . . , I}), and a firmly nonexpansive mapping, T (i) : H → H (i ∈ I), with
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Fix(T (i)) := {x ∈ H : T (i)(x) = x} ̸= ∅ (i ∈ I),

minimize
∑
i∈I

f (i)(x) subject to x ∈
∩
i∈I

Fix
(
T (i)

)
. (1)

The parallel proximal algorithm and the forward-backward algorithm [2, Chapters 25
and 27], [6, 8, 9, 32], which use the proximity operators of convex functions, can solve the
problem of minimizing the sum of the convex functions over the whole space. They are
based on the Douglas-Rachford algorithm [2, Chapters 25 and 27], [7, 9, 10, 24]. Since
the proximity operator of the indicator function on a nonempty, closed convex set C(i)

(i ∈ I) is the metric projection onto C(i) [9, Table 10.1, xii], the algorithms in [6, 8, 9, 32]
can work in convex optimization over

∩
i∈I C

(i) when the projection onto C(i) can be

computed efficiently, e.g., when C(i) is an affine subspace, a half-space, or a hyperslab,
onto which the projection PC(i) can be computed within a finite number of arithmetic
operations [1], [2, Chapter 28].
To deal with cases in which C(i) (i ∈ I) is more complicated (e.g., C(i) is the intersection

of half-spaces C
(i)
k (k = 1, 2, . . . ,K)), we can define a firmly nonexpansive mapping [2,

Definition 4.1(i)] (see also subsection 2.1),

T (i) : H → H satisfying Fix
(
T (i)

)
= C(i)

(e.g., T (i) := 1/2(Id +
∏K

k=1 PC
(i)
k
) is firmly nonexpansive with Fix(T (i)) =

∩K
k=1C

(i)
k =

C(i) [2, Propositions 4.2 and 4.8, (4.8)], where Id stands for the identity mapping on H).
Therefore, problem (1) enables us to discuss constrained optimization problems in which
the explicit form of the metric projection onto the constraint set is not always known;
i.e., the projection cannot be calculated explicitly.
There are many fixed point optimization algorithms presented in [5, 14, 15, 17–19, 36,

37]. However, they can work only when f (i) (i ∈ I) is differentiable and convex and the
gradient of f (i) (i ∈ I) is Lipschitz continuous. Accordingly, we cannot directly apply
them to problem (1).
In this paper, we propose a distributed algorithm for solving problem (1). Our algo-

rithm embodies two ideas: The first is the Krasnosel’skĭı-Mann algorithm [2, Subchapter
5.2], [23, 28] for finding a fixed point of a nonexpansive mapping. It can be used to
show that our algorithm converges to a point in the constraint set

∩
i∈I Fix(T

(i)). The
second is the incremental subgradient method [3, Section 8.2], [4, 20, 22, 30] which is a
distributed algorithm for nonsmooth optimization. It allows us to use the subdifferential
[2, Definition 16.1], [33, Section 23] (see also subsection 2.1) of f (i) (i ∈ I) instead of
the proximity operator of f (i). As a result, we can formulate an incremental type of
distributed optimization algorithm for solving problem (1). When user i (i ∈ I) has its
own private f (i) and T (i) in problem (1), our distributed algorithm enables user i to find
a solution to problem (1) by using only f (i), T (i), and the transmitted information from
the neighboring user of user i.
This paper has three contributions in relation to other work on nonsmooth convex

optimization. The first is that our algorithm does not use any proximity operators, in
contrast to the algorithms presented in [6, 8, 9, 32, 37]. Our algorithm can use subdiffer-
entials, which are well-defined for any nonsmooth, convex function. The second contri-
bution is that our distributed algorithm can work in optimization over fixed point sets
of nonexpansive mappings. Unfortunately, the previous incremental subgradient method
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[3, Section 8.2], [4, 20, 22, 30] can only be applied when the constraint set is simple in
the sense that the projection onto it can be easily implemented. The third contribution
is to present convergence analyses of our algorithm for different step-size rules. We show
that the sequence (xn)n∈N generated by the algorithm with a positive constant step size
λ satisfies lim infn→∞

∑
i∈I f

(i)(xn) ≤
∑

i∈I f
(i)(x⋆) + M

√
λ, where x⋆ is a solution to

problem (1) and M (> 0) is a constant (Theorem 3.1). We also show that there exists a
subsequence of (xn)n∈N generated by the algorithm with a diminishing step size (λn)n∈N
that weakly converges to a solution to problem (1) (Theorem 3.2).
This paper is organized as follows. Section 2 gives the mathematical preliminaries

and states the main problem. Section 3 devises the incremental subgradient method
for solving problem (1) and studies its convergence properties for a constant step size
(subsection 3.1) and a diminishing step size (subsection 3.2). It also gives some examples
of real applied problems which satisfy the assumptions in the convergence theorems
and shows that our algorithm outperforms the other existing algorithms on the same
problems (subsection 3.3). Section 4 provides numerical examples for our algorithm.
Section 5 concludes the paper.

2. Preliminaries

2.1 Subdifferentiability, nonexpansivity, and propositions

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. Let N
denote the set of all positive integers including zero.
The subdifferential [2, Definition 16.1], [33, Section 23] of f : H → R is the set-valued

operator,

∂f : H → 2H : x 7→ {u ∈ H : f(y) ≥ f(x) + ⟨y − x, u⟩ (y ∈ H)} .

Suppose that f : H → R is continuous and convex with dom(f) := {x ∈ H : f(x) <
∞} = H. Then, ∂f(x) ̸= ∅ (x ∈ H) [2, Proposition 16.14(ii)].

Proposition 2.1 [2, Proposition 16.14(iii)] Let f : H → R be continuous and convex
with dom(f) = H. Then, for all x ∈ H, there exists δ > 0 such that ∂f(B(x; δ)) is
bounded, where B(x; δ) stands for a closed ball with center x and radius δ.

A mapping, T : H → H, is said to be nonexpansive [2, Definition 4.1(ii)] if ∥T (x) −
T (y)∥ ≤ ∥x − y∥ (x, y ∈ H). T is said to be firmly nonexpansive [2, Definition 4.1(i)] if
∥T (x)−T (y)∥2+∥(Id−T )(x)−(Id−T )(y)∥2 ≤ ∥x−y∥2 (x, y ∈ H), where Id stands for the
identity mapping on H. It is clear that firm nonexpansivity implies nonexpansivity. The
fixed point set of T is denoted by Fix(T ) := {x ∈ H : T (x) = x}. The metric projection
[2, Subchapter 4.2, Chapter 28] onto a nonempty, closed convex set C (⊂ H) is denoted
by PC . It is defined by PC(x) ∈ C and ∥x− PC(x)∥ = infy∈C ∥x− y∥ (x ∈ H).

Proposition 2.2 Let T : H → H be nonexpansive, and let C (⊂ H) be nonempty,
closed, and convex. Then,

(i) [2, Corollary 4.15] Fix(T ) is closed and convex.
(ii) [2, Remark 4.24(iii)] (1/2)(Id + T ) is firmly nonexpansive.
(iii) [2, Proposition 4.8, (4.8)] PC is firmly nonexpansive with Fix(PC) = C.

The following is used to prove the convergence theorems in the paper.

3



April 3, 2016 Optimization Methods & Software GOMS-2015-0094R2

Proposition 2.3 [27, Lemma 2.1] Let (Γn)n∈N and suppose that (Γnj
)j∈N (⊂ (Γn)n∈N)

exists such that Γnj+1 > Γnj
for all j ∈ N. Then, there exists n0 ∈ N such that (τ(n))n≥n0

defined by τ(n) := max{k ≤ n : Γk < Γk+1} (n ≥ n0) is increasing and limn→∞ τ(n) =
∞. Moreover, Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1 for all n ≥ n0.

2.2 Assumptions, notation, and main problem

This paper deals with a networked system with I users. Let I := {1, 2, . . . , I} be the set
of users.
Throughout this paper, we assume the following.

Assumption 2.1

(A1) X(i) (⊂ H) (i ∈ I) is nonempty, bounded, closed, and convex;
(A2) T (i) : H → H (i ∈ I) is firmly nonexpansive with Fix(T (i)) ⊂ X(i) and

∩
i∈I Fix(T

(i)) ̸=
∅;

(A3) f (i) : H → R (i ∈ I) is continuous and convex with dom(f (i)) = H;
(A4) User i (i ∈ I) can use P (i) := PX(i), T (i), and ∂f (i);
(A5) User i (i ∈ I) can use the information transmitted from user (i − 1), where user 0

stands for user I.

Suppose that user (i − 1) (i ∈ I) has x(i−1) ∈ H. Assumptions (A4) and (A5) imply
user i can compute x(i) := x(i)(x(i−1), P (i), T (i), ∂f (i)) by using the information x(i−1)

transmitted from user (i− 1) and its own private information.
This paper uses the notation,

X :=
∩
i∈I

Fix
(
T (i)

)
, f :=

∑
i∈I

f (i), X⋆ :=

{
x ∈ X : f(x) = f⋆ := inf

y∈X
f (y)

}
.

The main objective of this paper is to solve the following problem.

Problem 2.1 Under Assumption 2.1, find x⋆ ∈ X⋆.

Assumptions (A1)–(A3) imply that X ∩ dom(f) = X ̸= ∅ and X is bounded. Hence,
(A3) (the continuity and convexity of f) guarantees that X⋆ ̸= ∅ [2, Proposition 11.14].
At the end of this section, we give examples of X(i) and T (i) in Assumption 2.1. User

i (i ∈ I) in an actual network [14, 25, 26, 34] has a bounded, closed convex constraint

set C(i). C(i) is defined by the intersection of simple, closed convex sets C
(i)
k (k ∈ K(i) :=

{1, 2, . . . ,K(i)}) (e.g., C(i)
k is an affine subspace, a half-space, or a hyperslab) and P

(i)
k :=

PC
(i)
k

can be easily computed within a finite number of arithmetic operations [2, Chapter

28]. Then, user i can set a bounded X(i) (⊃ C(i)) such that P (i) is easily computed (e.g.,
X(i) = Fix(P (i)) is a closed ball with a large enough radius). Accordingly, user i (i ∈ I)
can use firmly nonexpansive mappings (see Proposition 2.2(ii), (iii))

P (i) and T (i) :=
1

2

[
Id +

∏
k∈K(i)

P
(i)
k

]
with Fix

(
T (i)

)
=

∩
k∈K(j)

C
(i)
k = C(i) ⊂ X(i).
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3. Incremental Subgradient Method

This section presents an incremental subgradient method for solving Problem 2.1.

Algorithm 3.1
Step 0. User i (i ∈ I) sets α (∈ (0, 1)) and (λn)n∈N (⊂ (0,∞)). User 1 chooses x0 ∈ H

arbitrarily and defines x
(0)
0 := x0.

Step 1. User i (i ∈ I) computes x
(i)
n ∈ H cyclically as follows:

g
(i)
n ∈ ∂f (i)

(
x
(i−1)
n

)
,

y
(i)
n := T (i)

(
x
(i−1)
n − λng

(i)
n

)
,

x
(i)
n := P (i)

(
αx

(i−1)
n + (1− α) y

(i)
n

)
(i = 1, 2, . . . , I).

Step 2. User I defines xn+1 ∈ H as xn+1 := x
(I)
n =: x

(0)
n+1 and transmits it to user 1.

Put n := n+ 1, and go to Step 1.

Algorithm 3.1 combines two useful algorithms: the Krasnosel’skĭı-Mann algorithm and
the incremental subgradient method. The Krasnosel’skĭı-Mann algorithm [2, Subchapter
5.2], [23, 28] can find a fixed point of a nonexpansive mapping T , and it forms a convex
combination of xn and T (xn) in each iteration n, i.e.,

xn+1 := αxn + (1− α)T (xn) (n ∈ N) , (2)

where x0 ∈ H and α ∈ (0, 1). We can see that (x
(i)
n )n∈N (i ∈ I) in Algorithm 3.1 is

generated from the convex combination of x
(i−1)
n and y

(i)
n := T (i)(x

(i−1)
n − λng

(i)
n ), i.e.,

Algorithm 3.1 uses the idea of the Krasnosel’skĭı-Mann algorithm.
The following incremental subgradient method [3, Section 8.2], [4, 20, 22, 30] can be

applied to the problem of minimizing f :=
∑

i∈I f
(i) over a closed convex set C onto

which the projection can be easily computed.{
x
(i)
n := PC

(
x
(i−1)
n − λng

(i)
n

)
, g

(i)
n ∈ ∂f (i)

(
x
(i−1)
n

)
(i = 1, 2, . . . , I),

xn+1 := x
(I)
n ,

(3)

where x0 = x
(0)
0 ∈ RN and (λn)n∈N ⊂ [0,∞). We can also see that (y

(i)
n )n∈N (i ∈ I) in

Algorithm 3.1 is based on the idea of the incremental subgradient method (3).
The convergence analyses of algorithm (3) was presented under the bounded assump-

tion of (g
(i)
n )n∈N (i ∈ I) (see, e.g., [3, Assumption 8.2.1]). This assumption is satisfied if

f (i) (i ∈ I) is polyhedral or C is compact [3, p. 471]. In this paper, we assume the bound-
edness of X(i) (i ∈ I) (i.e., X :=

∩
i∈I Fix(T

(i)) is bounded) instead of the boundedness

of (g
(i)
n )n∈N (i ∈ I). Assumptions (A1) and (A3) ensure the boundedness of (g

(i)
n )n∈N

(i ∈ I) (see also Lemma 3.1(i)).
We first show the following.

Lemma 3.1 Suppose that Assumption 2.1 is satisfied, α ∈ (0, 1), and lim supn→∞ λn <

∞. Then, (x
(i)
n )n∈N, (y

(i)
n )n∈N (i ∈ I), and (xn)n∈N in Algorithm 3.1 have the following

properties:

5
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(i) (x
(i)
n )n∈N, (y

(i)
n )n∈N, and (g

(i)
n )n∈N (i ∈ I) are bounded.

(ii) For all x ∈ X and for all n ∈ N,

∥xn+1 − x∥2 ≤ ∥xn − x∥2 + IM1λn − (1− α)
∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2
− α

∑
i∈I

∥∥∥x(i−1)
n − x(i)n

∥∥∥2 − (1− α)
∑
i∈I

∥∥∥y(i)n − x(i)n

∥∥∥2 ,
where M1 := maxi∈I(sup{2|⟨y(i)n − x, g

(i)
n ⟩| : n ∈ N}) < ∞.

(iii) For all x ∈ X and for all n ∈ N,

∥xn+1 − x∥2 ≤ ∥xn − x∥2 + 2(1− α)λn (f(x)− f(xn)) + IM2(1− α)λ2
n

+ 2M3(1− α)λn

∑
i∈I

i−1∑
j=1

∥∥∥x(j−1)
n − x(j)n

∥∥∥ ,
where M2 := maxj∈I(sup{∥g(i)n ∥2 : n ∈ N}) < ∞ and M3 := maxi∈I(sup{∥z∥ : z ∈
∂f (i)(xn), n ∈ N}) < ∞.

Proof. (i) From the definition of x
(i)
n (n ∈ N, i ∈ I), we have that (x

(i)
n )n∈N ⊂ X(i) (i ∈

I). Hence, (A1) implies (x
(i)
n )n∈N (i ∈ I) is bounded. Accordingly, (A3) and Proposition

2.1 mean (g
(i)
n )n∈N (i ∈ I) is bounded. Moreover, we have from (A2) that, for all x ∈ X

and for all n ∈ N, ∥y(i)n − x∥ = ∥T (i)(x
(i−1)
n − λng

(i)
n )− T (i)(x)∥ ≤ ∥(x(i−1)

n − λng
(i)
n )− x∥.

Accordingly, the boundedness of (x
(i)
n )n∈N and (g

(i)
n )n∈N (i ∈ I) and lim supn→∞ λn < ∞

imply that (y
(i)
n )n∈N (i ∈ I) is also bounded.

(ii) Choose x ∈ X arbitrarily and put M1 := maxi∈I(sup{2|⟨y(i)n − x, g
(i)
n ⟩| : n ∈ N}) <

∞ (Lemma 3.1(i) leads us to M1 < ∞). Assumption (A2) ensures that, for all n ∈ N and
for all i ∈ I,∥∥∥y(i)n − x

∥∥∥2 ≤ ∥∥∥(x(i−1)
n − λng

(i)
n

)
− x

∥∥∥2 − ∥∥∥(x(i−1)
n − λng

(i)
n

)
− y(i)n

∥∥∥2 , (4)

which, together with ∥x− y∥2 = ∥x∥2 − 2⟨x, y⟩+ ∥y∥2 (x, y ∈ H), means that∥∥∥y(i)n − x
∥∥∥2 ≤ ∥∥∥x(i−1)

n − x
∥∥∥2 − 2λn

⟨
x(i−1)
n − x, g(i)n

⟩
−
∥∥∥x(i−1)

n − y(i)n

∥∥∥2 + 2λn

⟨
x(i−1)
n − y(i)n , g(i)n

⟩
≤

∥∥∥x(i−1)
n − x

∥∥∥2 − ∥∥∥x(i−1)
n − y(i)n

∥∥∥2 +M1λn.

(5)

Proposition 2.2(iii) and x = αx+ (1− α)x ∈ X(i) = Fix(P (i)) (n ∈ N, i ∈ I) imply that,
for all n ∈ N and for all i ∈ I,∥∥∥x(i)n − x

∥∥∥2 ≤ ∥∥∥α(
x(i−1)
n − x

)
+ (1− α)

(
y(i)n − x

)∥∥∥2
−
∥∥∥α(

x(i−1)
n − x(i)n

)
+ (1− α)

(
y(i)n − x(i)n

)∥∥∥2 , (6)

6
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which, together with ∥αx+(1−α)y∥2 = α∥x∥2+(1−α)∥y∥2−α(1−α)∥x−y∥2 (x, y ∈ H),
means that∥∥∥x(i)n − x

∥∥∥2 ≤ α
∥∥∥x(i−1)

n − x
∥∥∥2 + (1− α)

∥∥∥y(i)n − x
∥∥∥2 − α

∥∥∥x(i−1)
n − x(i)n

∥∥∥2
− (1− α)

∥∥∥y(i)n − x(i)n

∥∥∥2 .
Hence, from (5), we find that, for all n ∈ N and for all i ∈ I,∥∥∥x(i)n − x

∥∥∥2 ≤ ∥∥∥x(i−1)
n − x

∥∥∥2 − (1− α)
∥∥∥x(i−1)

n − y(i)n

∥∥∥2
+M1λn − α

∥∥∥x(i−1)
n − x(i)n

∥∥∥2 − (1− α)
∥∥∥y(i)n − x(i)n

∥∥∥2 .
From xn+1 = x

(I)
n and x

(0)
n = xn (n ∈ N), we find that, for all n ∈ N,

∥xn+1 − x∥2 ≤ ∥xn − x∥2 − (1− α)
∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 + IM1λn

− α
∑
i∈I

∥∥∥x(i−1)
n − x(i)n

∥∥∥2 − (1− α)
∑
i∈I

∥∥∥y(i)n − x(i)n

∥∥∥2 .
(iii) Choose x ∈ X arbitrarily. Then, (4) implies that, for all n ∈ N and for all i ∈ I,∥∥∥y(i)n − x

∥∥∥2 ≤ ∥∥∥(x(i−1)
n − x

)
− λng

(i)
n

∥∥∥2
=

∥∥∥x(i−1)
n − x

∥∥∥2 + 2λn

⟨
x− x(i−1)

n , g(i)n

⟩
+ λ2

n

∥∥∥g(i)n

∥∥∥2
≤

∥∥∥x(i−1)
n − x

∥∥∥2 + 2λn

(
f (i) (x)− f (i)

(
x(i−1)
n

))
+M2λ

2
n,

where the second inequality from g
(i)
n ∈ ∂f (i)(x

(i−1)
n ) and M2 := maxi∈I(sup{∥g(i)n ∥2 : n ∈

N}) < ∞ (M2 < ∞ is guaranteed by Lemma 3.1(i)). Accordingly, (6) and the convexity
of ∥ · ∥2 imply that, for all n ∈ N and for all i ∈ I,∥∥∥x(i)n − x

∥∥∥2 ≤ ∥∥∥α(
x(i−1)
n − x

)
+ (1− α)

(
y(i)n − x

)∥∥∥2
≤ α

∥∥∥x(i−1)
n − x

∥∥∥2 + (1− α)
∥∥∥y(i)n − x

∥∥∥2
≤

∥∥∥x(i−1)
n − x

∥∥∥2 + 2(1− α)λn

(
f (i) (x)− f (i)

(
x(i−1)
n

))
+M2(1− α)λ2

n,

7
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which, together with f :=
∑

i∈I f
(i), implies that, for all n ∈ N,

∥xn+1 − x∥2 ≤ ∥xn − x∥2 + 2(1− α)λn

∑
i∈I

(
f (i) (x)− f (i)

(
x(i−1)
n

))
+ IM2(1− α)λ2

n

= ∥xn − x∥2 + 2(1− α)λn (f (x)− f (xn)) + IM2(1− α)λ2
n

+ 2(1− α)λn

∑
i∈I

[
f (i)(xn)− f (i)

(
x(i−1)
n

)]
.

Moreover, since f (i)(xn) − f (i)(x
(i−1)
n ) ≤ ⟨xn − x

(i−1)
n , z

(i)
n ⟩ (n ∈ N, i ∈ I), where

z
(i)
n ∈ ∂f (i)(xn), the Cauchy-Schwarz inequality gives f (i)(xn) − f (i)(x

(i−1)
n ) ≤ ∥xn −

x
(i−1)
n ∥∥z(i)n ∥ (n ∈ N, i ∈ I). The boundedness of (xn)n∈N and Proposition 2.1 en-

sure that M3 := maxi∈I(sup{∥z∥ : z ∈ ∂f (i)(xn), n ∈ N}) < ∞. Therefore, we find
that, for all n ∈ N, ∥xn+1 − x∥2 ≤ ∥xn − x∥2 + 2(1 − α)λn(f(x) − f(xn)) + IM2(1 −
α)λ2

n + 2M3(1 − α)λn
∑

i∈I ∥xn − x
(i−1)
n ∥. Since the triangle inequality implies that

∥xn − x
(i−1)
n ∥ ≤

∑i−1
j=1 ∥x

(j−1)
n − x

(j)
n ∥ (i ∈ I), we have

∥xn+1 − x∥2 ≤ ∥xn − x∥2 + 2(1− α)λn (f (x)− f (xn)) + IM2(1− α)λ2
n

+ 2M3(1− α)λn

∑
i∈I

i−1∑
j=1

∥∥∥x(j−1)
n − x(j)n

∥∥∥ .
This completes the proof. ■

3.1 Constant step-size rule

The discussion in this subsection makes the following assumption.

Assumption 3.1 User i (i ∈ I) has (λn)n∈N satisfying

(C1) λn := λ (> 0) (n ∈ N).

Let us perform a convergence analysis on Algorithm 3.1 under Assumption 3.1.

Theorem 3.1 Suppose that Assumptions 2.1 and 3.1 hold. Then, the sequences (xn)n∈N

and (x
(i)
n )n∈N (i ∈ I) generated by Algorithm 3.1 have the following properties:

(i) Let M1 and M2 be constants defined as in Lemma 3.1, M4 := maxi∈I(sup{∥x(i−1)
n −

y
(i)
n ∥ : n ∈ N}) < ∞, and Mλ := M1/(1− α) + 2

√
M2M4 +M2λ. Then,

lim inf
n→∞

∑
i∈I

∥∥∥x(i−1)
n − x(i)n

∥∥∥2 ≤ IM1λ

α
,

lim inf
n→∞

∑
i∈I

∥∥∥x(i−1)
n − T (i)

(
x(i−1)
n

)∥∥∥2 ≤ IMλλ.

(ii) Let M1,M2, and M3 be constants defined as in Lemma 3.1. If limn→∞ ∥x(i−1)
n − x

(i)
n ∥2

8
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exists for all i ∈ I,

lim inf
n→∞

f (xn) ≤ f⋆ +
IM2λ

2
+

I (I − 1)M3

2

√
IM1λ

α
. (7)

Let us compare Algorithm 3.1 under Assumptions 2.1 and 3.1 with the conventional
incremental subgradient algorithm. Proposition 8.2.2 in [3] indicates that the incremental
subgradient method (3) when λn := λ > 0 (n ∈ N) satisfies

lim inf
n→∞

f (xn) ≤ f∗ +
D2λ

2
,

where {x ∈ C : f(x) = f∗ := infy∈C f(y)} ̸= ∅, D :=
∑

i∈I D(i), D(i) := supn∈N{∥g∥ : g ∈
∂f (i)(xn) ∪ ∂f (i)(x

(i−1)
n )} (i ∈ I), and one assumes that D(i) < ∞ (i ∈ I).

In contrast to algorithm (3), Algorithm 3.1 can be applied to Problem 2.1, which has

fixed point constraints. Theorem 3.1(i) says that the (x
(i)
n )n∈N (i ∈ I) in Algorithm 3.1

satisfy

lim inf
n→∞

∥∥∥x(i−1)
n − x(i)n

∥∥∥2 ≤ IM1λ

α
, lim inf

n→∞

∥∥∥x(i−1)
n − T (i)

(
x(i−1)
n

)∥∥∥2 ≤ IMλ.

Moreover, Theorem 3.1(ii) ensures that (xn)n∈N in Algorithm 3.1 satisfies (7). Therefore,
there is a possibility that Algorithm 3.1 with a small enough λ approximates a point in
X⋆. Section 4 describes the behaviors of Algorithm 3.1 for different constant step sizes.
Proof. (i) First, let us show that

lim inf
n→∞

∑
i∈I

∥∥∥x(i−1)
n − x(i)n

∥∥∥2 ≤ IM1λ

α
. (8)

Assume that (8) does not hold. Accordingly, we can choose δ (> 0) such that

lim inf
n→∞

∑
i∈I

∥∥∥x(i−1)
n − x(i)n

∥∥∥2 > IM1λ

α
+ 2δ.

The property of the limit inferior of (
∑

i∈I ∥x
(i−1)
n − x

(i)
n ∥2)n∈N guarantees that there

exists n0 ∈ N such that lim infn→∞
∑

i∈I ∥x
(i−1)
n − x

(i)
n ∥2 − δ ≤

∑
i∈I ∥x

(i−1)
n − x

(i)
n ∥2 for

all n ≥ n0. Accordingly, for all n ≥ n0,∑
i∈I

∥∥∥x(i−1)
n − x(i)n

∥∥∥2 > IM1λ

α
+ δ.

9
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Hence, Lemma 3.1(ii) implies that, for all n ≥ n0 and for all x ∈ X,

∥xn+1 − x∥2 ≤ ∥xn − x∥2 + IM1λ− α
∑
i∈I

∥∥∥x(i−1)
n − x(i)n

∥∥∥2
< ∥xn − x∥2 + IM1λ− α

(
IM1λ

α
+ δ

)
= ∥xn − x∥2 − αδ.

Therefore, induction ensures that, for all n ≥ n0 and for all x ∈ X,

0 ≤ ∥xn+1 − x∥2 < ∥xn0
− x∥2 − αδ (n+ 1− n0) .

Since the right side of the above inequality approaches minus infinity when n diverges,
we have a contradiction. Therefore, (8) holds.
A similar discussion to the one for obtaining (8) guarantees that

lim inf
n→∞

∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ≤ IM1λ

1− α
. (9)

On the other hand, from the triangle inequality we have that, for all n ∈ N and for all

i ∈ I, ∥x(i−1)
n −T (i)(x

(i−1)
n )∥ ≤ ∥x(i−1)

n −y
(i)
n ∥+∥y(i)n −T (i)(x

(i−1)
n )∥, which, together with

M4 := maxi∈I(sup{∥x(i−1)
n − y

(i)
n ∥ : n ∈ N}) < ∞ and ∥y(i)n − T (i)(x

(i−1)
n )∥ ≤ ∥(x(i−1)

n −
λg

(i)
n )− x

(i−1)
n ∥ ≤

√
M2λ (n ∈ N, i ∈ I), means that, for all n ∈ N and for all i ∈ I,∥∥∥x(i−1)

n − T (i)
(
x(i−1)
n

)∥∥∥2 ≤ ∥∥∥x(i−1)
n − y(i)n

∥∥∥2 + 2
√

M2M4λ+M2λ
2.

Thus, we find from (9) that

lim inf
n→∞

∑
i∈I

∥∥∥x(i−1)
n − T (i)

(
x(i−1)
n

)∥∥∥2
≤ lim inf

n→∞

[∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 + I
(
2
√

M2M4 +M2λ
)
λ

]

≤ I

(
M1

1− α
+ 2

√
M2M4 +M2λ

)
λ.

(ii) Let us show that, for all ϵ > 0, there exists (x
(i)
nk)k∈N (i ∈ I) such that (x

(i)
nk)k∈N ⊂

(x
(i)
n )n∈N implies

lim inf
n→∞

f (xn) ≤ f⋆ +
IM2λ

2
+M3

∑
i∈I

i−1∑
j=1

∥∥∥x(j−1)
nk

− x(j)nk

∥∥∥+ 2ϵ. (10)

Assume that the above assertion does not hold. This implies that there exists ϵ > 0

such that, for all (x
(i)
nk)k∈N (i ∈ I), (x(i)nk)k∈N ⊂ (x

(i)
n )n∈N and lim infn→∞ f(xn) > f⋆ +

IM2λ/2+M3
∑

i∈I
∑i−1

j=1 ∥x
(j−1)
nk −x

(j)
nk ∥+2ϵ. Then, since the nonempty condition of X⋆

10
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guarantees x⋆ ∈ X exists such that f(x⋆) = f⋆, we find, for all n ∈ N,

lim inf
n→∞

f (xn) > f(x⋆) +
IM2λ

2
+M3

∑
i∈I

i−1∑
j=1

∥∥∥x(j−1)
n − x(j)n

∥∥∥+ 2ϵ.

From the property of the limit inferior of (f(xn))n∈N, there exists n1 ∈ N such that
lim infn→∞ f(xn)− ϵ ≤ f(xn) for all n ≥ n1. Accordingly, for all n ≥ n1,

f (xn)− f (x⋆) >
IM2λ

2
+M3

∑
i∈I

i−1∑
j=1

∥∥∥x(j−1)
n − x(j)n

∥∥∥+ ϵ. (11)

Therefore, from Lemma 3.1(iii) and (11) we have that, for all n ≥ n1,

∥xn+1 − x⋆∥2 < ∥xn − x⋆∥2 + IM2(1− α)λ2

+ 2M3 (1− α)λ
∑
i∈I

i−1∑
j=1

∥∥∥x(j−1)
n − x(j)n

∥∥∥
+ 2(1− α)λ

−IM2λ

2
−M3

∑
i∈I

i−1∑
j=1

∥∥∥x(j−1)
n − x(j)n

∥∥∥− ϵ


= ∥xn − x⋆∥2 − 2(1− α)λϵ,

which implies, for all n ≥ n1,

∥xn+1 − x⋆∥2 < ∥xn1
− x⋆∥2 − 2(1− α)λϵ (n+ 1− n1) .

Since the above inequality does not hold for large enough n, we have arrived at a con-

tradiction. Therefore, for all ϵ > 0, there exists (x
(i)
nk)k∈N (i ∈ I) such that (x

(i)
nk)k∈N ⊂

(x
(i)
n )n∈N implies (10). Theorem 3.1(i) and the existence of limn→∞ ∥x(i−1)

n −x
(i)
n ∥2 (i ∈ I)

guarantee that, for any subsequence (x
(i)
nl )l∈N ⊂ (x

(i)
n )n∈N (i ∈ I),

lim
l→∞

∥∥∥x(j−1)
nl

− x(j)nl

∥∥∥2 = lim
n→∞

∥∥∥x(j−1)
n − x(j)n

∥∥∥2 ≤ IM1λ

α
(j ∈ I) ,

which means, for all ϵ > 0, there exists k0 ∈ N such that, for all k ≥ k0,∥∥∥x(j−1)
nk

− x(j)nk

∥∥∥ ≤
√

IM1λ

α
+ ϵ (j ∈ I) . (12)

Accordingly, from (12) and (10) we find that, for all ϵ > 0,

lim inf
n→∞

f (xn) ≤ f⋆ +
IM2λ

2
+M3

∑
i∈I

(i− 1)

√
IM1λ

α
+ ϵ+ 2ϵ.

Since ϵ > 0 is arbitrary, we have from
∑

j∈I(j−1) = I(I−1)/2 that lim infn→∞ f(xn) ≤
f⋆ + (IM2λ)/2 +M3(I(I − 1)/2)

√
IM1λ/α. This completes the proof. ■

11
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3.2 Diminishing step-size rule

The discussion in this subsection makes the following assumption.

Assumption 3.2 User i (i ∈ I) has (λn)n∈N satisfying

(C2) lim
n→∞

λn = 0 and

∞∑
n=0

λn = ∞.

Let us perform a convergence analysis on Algorithm 3.1 under Assumption 3.2.

Theorem 3.2 Suppose that Assumptions 2.1 and 3.2 hold. Then, there exists a subse-

quence of (x
(i)
n )n∈N (i ∈ I) in Algorithm 3.1 which weakly converges to a point in X⋆.

Let us compare Algorithm 3.1 under Assumptions 2.1 and 3.1 with the previous in-
cremental gradient methods. Proposition 8.2.4 in [3] says (xn)n∈N in algorithm (3) with
(C2) satisfies

lim inf
n→∞

f (xn) = f∗,

where {x ∈ C : f(x) = f∗ := infy∈C f(y)} ̸= ∅, D :=
∑

i∈I D(i), D(i) := supn∈N{∥g∥ : g ∈
∂f (i)(xn) ∪ ∂f (i)(x

(i−1)
n )} (i ∈ I), and one assumes D(i) < ∞ (i ∈ I).

The following incremental gradient method [14, Algorithm 3.1] can solve the problem
of minimizing the sum of strictly convex, smooth functionals over the intersection of fixed

point sets: given x(i) ∈ H (i ∈ I) and x
(0)
n ∈ H,

y
(i)
n := T (i)

(
x
(i−1)
n − λn∇f (i)

(
x
(i−1)
n

))
,

x
(i)
n := P (i)

(
αnx

(i) + (1− αn) y
(i)
n

)
(i = 1, 2, . . . , I),

xn+1 := x
(I)
n ,

(13)

where ∇f (i) (i ∈ I) is the Lipschitz continuous gradient of f (i), and (αn)n∈N and (λn)n∈N
are slowly diminishing sequences such as λn := 1/(n+1)a and αn := 1/(n+1)b (n ∈ N),
where a ∈ (0, 1/2), b ∈ (a, 1−a). Theorem 3.1 in [14] guarantees that (xn)n∈N in algorithm
(13) converges to the unique minimizer of f over X.
In contrast to algorithms (3) and (13), Algorithm 3.1 works even when f (i) (i ∈ I)

is convex and nondifferentiable and T (i) (i ∈ I) is firmly nonexpansive. Theorem 3.2
guarantees that a subsequence of (xn)n∈N in Algorithm 3.1 with λn := 1/(n+1)a (n ∈ N),
where a ∈ (0, 1], exists such that it weakly converges to a solution to Problem 2.1. Section
4 describes the behaviors of Algorithm 3.1 with different diminishing step sizes.
Proof. We will distinguish two cases.
Case 1: Suppose m0 ∈ N exists such that ∥xn+1 − x⋆∥ ≤ ∥xn − x⋆∥ for all n ≥ m0 and

for all x⋆ ∈ X⋆. Then, limn→∞ ∥xn − x⋆∥ exists for all x⋆ ∈ X⋆. Lemma 3.1(ii) means

12
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that, for all n ∈ N,

(1− α)
∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ≤ ∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 + IM1λn,

α
∑
i∈I

∥∥∥x(i−1)
n − x(i)n

∥∥∥2 ≤ ∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 + IM1λn,

(1− α)
∑
i∈I

∥∥∥y(i)n − x(i)n

∥∥∥2 ≤ ∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 + IM1λn.

From limn→∞ λn = 0 and the existence of limn→∞ ∥xn − x⋆∥ (x⋆ ∈ X⋆), we have
limn→∞(∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 + IM2λn) = 0. Accordingly, we find that

lim
n→∞

∥∥∥x(i−1)
n − y(i)n

∥∥∥ = 0 (i ∈ I) , (14)

lim
n→∞

∥∥∥x(i−1)
n − x(i)n

∥∥∥ = 0 (i ∈ I) , (15)

lim
n→∞

∥∥∥y(i)n − x(i)n

∥∥∥ = 0 (i ∈ I) . (16)

Since the triangle inequality ensures that ∥xn−x
(i−1)
n ∥ ≤

∑i−1
j=1 ∥x

(j−1)
n −x

(j)
n ∥ (n ∈ N, i ∈

I), (15) implies

lim
n→∞

∥∥∥xn − x(i−1)
n

∥∥∥ = 0 (i ∈ I) . (17)

Moreover, from ∥xn− y
(i)
n ∥ ≤ ∥xn−x

(i−1)
n ∥+ ∥x(i−1)

n − y
(i)
n ∥ (n ∈ N, i ∈ I), (14) and (17)

guarantee that

lim
n→∞

∥∥∥xn − y(i)n

∥∥∥ = 0 (i ∈ I) . (18)

Meanwhile, (A2) (the nonexpansivity of T (i) (i ∈ I)) guarantees that, for all n ∈ N and
i ∈ I, ∥∥∥y(i)n − T (i) (xn)

∥∥∥ ≤
∥∥∥(x(i−1)

n − λng
(i)
n

)
− xn

∥∥∥ ≤
∥∥∥x(i−1)

n − xn

∥∥∥+
√

M2λn.

Accordingly, from (17) and limn→∞ λn = 0, we find that

lim
n→∞

∥∥∥y(i)n − T (i) (xn)
∥∥∥ = 0 (i ∈ I) . (19)

Since ∥xn−T (i)(xn)∥ ≤ ∥xn−y
(i)
n ∥+∥y(i)n −T (i)(xn)∥ (n ∈ N, i ∈ I), (18) and (19) imply

that

lim
n→∞

∥∥∥xn − T (i) (xn)
∥∥∥ = 0 (i ∈ I) . (20)

13
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Let us define that, for all n ∈ N and for all x ∈ X,

Mn(x) := (1− α)

2 (f(xn)− f(x))− IM2λn − 2M3

∑
i∈I

i−1∑
j=1

∥∥∥x(j−1)
n − x(j)n

∥∥∥
 .

Lemma 3.1(iii) thus guarantees that λnMn(x) ≤ ∥xn − x∥2 − ∥xn+1 − x∥2 (n ∈ N). This
leads us to, for all m ∈ N,

∑m
n=0 λnMn(x) ≤ ∥x0 − x∥2 −∥xm+1 − x∥2 ≤ ∥x0 − x∥2 < ∞,

which means

∞∑
n=0

λnMn(x) < ∞.

Now, fix x ∈ X arbitrarily and assume that lim infn→∞Mn(x) > 0. Then, we can choose
m1 ∈ N and γ > 0 such that Mn(x) ≥ γ for all n ≥ m1. Accordingly, from

∑∞
n=0 λn = ∞,

we can produce a contradiction:

∞ = γ

∞∑
n=m1

λn ≤
∞∑

n=m1

λnMn(x) < ∞.

Therefore, we find that lim infn→∞Mn(x) ≤ 0 (x ∈ X), i.e., for all x ∈ X,

lim inf
n→∞

2 (f(xn)− f(x))− IM2λn − 2M3

∑
i∈I

i−1∑
j=1

∥∥∥x(j−1)
n − x(j)n

∥∥∥
 ≤ 0,

which, together with limn→∞ λn = 0 and (15), implies that lim infn→∞ f(xn) ≤ f(x)
(x ∈ X). Hence, there exists a subsequence, (xnl

)l∈N, of (xn)n∈N such that

lim
l→∞

f (xnl
) = lim inf

n→∞
f(xn) ≤ f(x) (x ∈ X). (21)

Since (xnl
)l∈N is bounded, there is (xnlm

)m∈N (⊂ (xnl
)l∈N) which weakly converges to

x⋆ ∈ H. Fix i ∈ I arbitrarily and assume that x⋆ /∈ Fix(T (i)). From Opial’s condition
[31, Lemma 1], (20), and the nonexpansivity of T (i), we find that

lim inf
m→∞

∥∥xnlm
− x⋆

∥∥ < lim inf
m→∞

∥∥∥xnlm
− T (i) (x⋆)

∥∥∥
= lim inf

m→∞

∥∥∥xnlm
− T (i)

(
xnlm

)
+ T (i)

(
xnlm

)
− T (i) (x⋆)

∥∥∥
= lim inf

m→∞

∥∥∥T (i)
(
xnlm

)
− T (i) (x⋆)

∥∥∥
≤ lim inf

m→∞

∥∥xnlm
− x⋆

∥∥ ,
which is a contradiction. Hence, x⋆ ∈ Fix(T (i)) (i ∈ I), i.e., x⋆ ∈ X. Moreover, since (21)
and f is weakly lower semicontinuous [2, Theorem 9.1], we find that

f (x⋆) ≤ lim inf
m→∞

f
(
xnlm

)
= lim

m→∞
f
(
xnlm

)
≤ f(x) (x ∈ X), i.e., x⋆ ∈ X⋆.

14
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Let us take another subsequence (xnlk
)k∈N (⊂ (xnl

)l∈N) which converges weakly to
x⋆⋆ ∈ H. The same discussion proving that x⋆ ∈ X implies x⋆⋆ ∈ X. Assume that
x⋆ ̸= x⋆⋆. Then, the existence of limn→∞ ∥xn − x∥ (x ∈ X) and Opial’s condition [31,
Lemma 1] lead us to a contradiction:

lim
n→∞

∥xn − x⋆∥ = lim
m→∞

∥∥xnlm
− x⋆

∥∥ < lim
m→∞

∥∥xnlm
− x⋆⋆

∥∥
= lim

n→∞
∥xn − x⋆⋆∥ = lim

k→∞

∥∥xnlk
− x⋆⋆

∥∥ < lim
k→∞

∥∥xnlk
− x⋆

∥∥
= lim

n→∞
∥xn − x⋆∥ .

Accordingly, any subsequence of (xnl
)l∈N converges weakly to x⋆ ∈ X⋆; i.e., (xnl

)l∈N con-
verges weakly to x⋆ ∈ X⋆. This means x⋆ is a weak cluster point of (xn)n∈N and belongs
to X⋆. Since a similar discussion to the one for obtaining x⋆ = x⋆⋆ guarantees there is
only one weak cluster point of (xn)n∈N, we can conclude that, in Case 1, (xn)n∈N weakly

converges to a point in X⋆. Therefore, from (17), (x
(i)
n )n∈N (i ∈ I) weakly converges to

a point in X⋆.
Case 2: Suppose that x⋆0 ∈ X⋆ and (xnj

) (⊂ (xn)n∈N) exist such that ∥xnj
− x⋆0∥ <

∥xnj+1 − x⋆0∥ for all j ∈ N. Defining Γn := ∥xn − x⋆0∥ (n ∈ N) implies that Γnj
< Γnj+1

for all j ∈ N. Accordingly, Proposition 2.3 guarantees the existence of m0 ∈ N such that
Γτ(n) ≤ Γτ(n)+1 for all n ≥ m0, where τ(n) is defined as in Proposition 2.3. Lemma 3.1(ii)
means that, for all n ≥ m0,

α
∑
i∈I

∥∥∥x(i−1)
τ(n) − x

(i)
τ(n)

∥∥∥2 ≤ Γ2
τ(n) − Γ2

τ(n)+1 + IM1λτ(n) ≤ IM1λτ(n),

which, together with limn→∞ τ(n) = ∞ and limn→∞ λτ(n) = 0, implies that

lim
n→∞

∥∥∥x(i−1)
τ(n) − x

(i)
τ(n)

∥∥∥ = 0 (i ∈ I) . (22)

The same manner of argument as in the proof of (22) leads us to

lim
n→∞

∥∥∥x(i−1)
τ(n) − y

(i)
τ(n)

∥∥∥ = 0 and lim
n→∞

∥∥∥y(i)τ(n) − x
(i)
τ(n)

∥∥∥ = 0 (i ∈ I) .

Therefore, a similar discussion to the one for obtaining (20) ensures that

lim
n→∞

∥∥∥xτ(n) − T (i)
(
xτ(n)

)∥∥∥ = 0 (i ∈ I) . (23)

Moreover, a similar discussion to the one for obtaining (17) leads to

lim
n→∞

∥∥∥xτ(n) − x
(i−1)
τ(n)

∥∥∥ = 0 (i ∈ I) . (24)

Since Lemma 3.1(iii) implies that λτ(n)Mτ(n)(x
⋆
0) ≤ Γ2

τ(n) − Γ2
τ(n)+1 ≤ 0 (j ∈ N) and

15



April 3, 2016 Optimization Methods & Software GOMS-2015-0094R2

λn > 0 (n ∈ N), we find that Mτ(n)(x
⋆
0) ≤ 0 (n ≥ m0), i.e., for all n ≥ m0,

2
(
f
(
xτ(n)

)
− f⋆

)
≤ IM2λτ(n) + 2M3

∑
i∈I

i−1∑
l=1

∥∥∥x(l−1)
τ(n) − x

(l)
τ(n)

∥∥∥ .
Accordingly, from (22) and limn→∞ λn = 0,

lim sup
n→∞

f
(
xτ(n)

)
≤ f⋆. (25)

Choose a subsequence (xτ(nk))k∈N of (xτ(n))n≥m0
arbitrarily. From (25),

lim sup
k→∞

f
(
xτ(nk)

)
≤ lim sup

n→∞
f
(
xτ(n)

)
≤ f⋆. (26)

The boundedness of (xτ(nk))k∈N ensures the existence of (xτ(nkl
))l∈N which weakly con-

verges to x∗ ∈ H. A similar discussion to the one for obtaining x⋆ ∈ X and (23) lead
us to x∗ ∈ X. Moreover, the weakly lower semicontinuity of f [2, Theorem 9.1] and (26)
guarantee that

f(x∗) ≤ lim inf
l→∞

f
(
xτ(nkl

)

)
≤ lim sup

l→∞
f
(
xτ(nkl

)

)
≤ f⋆, i.e., x∗ ∈ X⋆.

Therefore, (xτ(nk))k∈N weakly converges to a point in X⋆. Hence, (24) leads to the weak

convergence of (x
(i)
τ(nk)

)k∈N (i ∈ I) to a point in X⋆. This completes the proof. ■
Theorem 3.2 leads to the following corollary. The corollary can be proven by referring

to the proof of [16, Theorem 3.2].

Corollary 3.1 Suppose that the assumptions in Theorem 3.2 hold. If one f (i) is

strongly convex, the sequence (x
(i)
n )n∈N (i ∈ I) strongly converges to the unique solu-

tion to Problem 2.1.

Proof. Assume that there exists i0 ∈ I such that f (i0) is strongly convex. Then, f :=∑
i∈I f

(i) is strongly convex; i.e., there exists β > 0 such that, for all α ∈ (0, 1) and for
all x, y ∈ H, f(αx+(1−α)y)+ (β/2)α(1−α)∥x− y∥2 ≤ αf(x)+ (1−α)f(y). Moreover,
since f satisfies the strict convexity condition, X⋆ consists of one point, denoted by x⋆.
In Case 1 in the proof of Theorem 3.2, there exists (xnl

)l∈N (⊂ (xn)n∈N) which weakly
converges to x⋆. The strong convexity condition of f guarantees that, for all α ∈ (0, 1)
and for all l ∈ N,

β

2
α (1− α) ∥xnl

− x⋆∥2 ≤ αf (xnl
) + (1− α) f⋆ − f (αxnl

+ (1− α)x⋆) .

Accordingly, from the existence of limn→∞ ∥xn − x⋆∥ and (21), we have

β

2
α (1− α) lim

l→∞
∥xnl

− x⋆∥2 ≤ α lim
l→∞

f (xnl
) + (1− α) f⋆

+ lim sup
l→∞

(−f (αxnl
+ (1− α)x⋆))

≤ f⋆ − lim inf
l→∞

f (αxnl
+ (1− α)x⋆) ,
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which, together with the weak convergence of (xnl
)l∈N to x⋆ and the weakly lower semi-

continuity of f , implies that

β

2
α (1− α) lim

l→∞
∥xnl

− x⋆∥2 ≤ f⋆ − f (αx⋆ + (1− α)x⋆) = 0.

Hence, (xnl
)l∈N strongly converges to x⋆. Therefore, from [2, Theorem 5.11], the whole

sequence (xn)n∈N strongly converges to x⋆. From (17), we find that (x
(i)
n )n∈N (i ∈ I)

strongly converges to x⋆.
In Case 2 in the proof of Theorem 3.2, there exists (xτ(nkl

))l∈N (⊂ (xn)n∈N) which
weakly converges to x⋆. The strong convexity condition of f leads to the deduction that,
for all α ∈ (0, 1) and for all l ∈ N,

β

2
α (1− α) lim sup

l→∞

∥∥∥xτ(nkl
) − x⋆

∥∥∥2 ≤ α lim sup
l→∞

f
(
xτ(nkl

)

)
+ (1− α) f⋆

− lim inf
l→∞

f
(
αxτ(nkl

) + (1− α)x⋆
)
.

The weak convergence of (xτ(nkl
))l∈N to x⋆, the weakly lower semicontinuity of f , and

(26) imply that

β

2
α (1− α) lim sup

l→∞

∥∥∥xτ(nkl
) − x⋆

∥∥∥2 ≤ f⋆ − f (αx⋆ + (1− α)x⋆) = 0,

which in turn implies (xτ(nkl
))l∈N strongly converges to x⋆.

When another subsequence (xτ(nkm ))m∈N (⊂ (xτ(nk))k∈N) can be chosen, a discussion
similar to the one for showing the weak convergence of (xτ(nkl

))l∈N to a point in X⋆

guarantees that (xτ(nkm ))m∈N also weakly converges to a point in X⋆. Furthermore, a
discussion similar to the one for showing the strong convergence of (xτ(nkl

))l∈N to x⋆

ensures that (xτ(nkm ))m∈N strongly converges to the same x⋆. Hence, it is guaranteed
that (xτ(nk))k∈N strongly converges to x⋆. Since (xτ(nk))k∈N is an arbitrary subsequence of
(xτ(n))n≥m0

, (xτ(n))n≥m0
strongly converges to x⋆; i.e., limn→∞ Γτ(n) = limn→∞ ∥xτ(n) −

x⋆∥ = 0. Accordingly, Proposition 2.3 ensures that

lim sup
n→∞

∥xn − x⋆∥ ≤ lim sup
n→∞

Γτ(n)+1 = 0,

which implies that the whole sequence (xn)n∈N strongly converges to x⋆. Lemma 3.1(ii)

and limn→∞ ∥xn − x⋆∥ = 0 imply that limn→∞ ∥x(i−1)
n − x

(i)
n ∥ = 0 (i ∈ I). Accordingly,

the triangle inequality ensures that limn→∞ ∥xn − x
(i−1)
n ∥ = 0 (i ∈ I). Hence, we find

that (x
(i)
n )n∈N (i ∈ I) strongly converges to x⋆. This completes the proof. ■

3.3 Example applications of Algorithm 3.1

This subsection gives some examples of real problems to which Algorithm 3.1 can be
applied. First, let us consider the classifier ensemble problem with sparsity and diversity
learning [38, Subsection 2.2.3], [39, Subsection 3.2.4], which is expressed as the following
problem of minimizing the sum of the L1-norm and two smooth convex functions over

17
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the half-space [39, problem (11)]:

Minimize g(x) + α∥x∥1 + βh(x) subject to x ∈ RN
+ , (27)

where g, h : RN → R are differentiable and convex, ∇g and ∇h can be computed effi-
ciently, α and β are control parameters for the sparsity regularization and diversity cal-
culation, ∥x∥1 :=

∑N
j=1 |xj | (x := (xj)

N
j=1 ∈ RN ), and RN

+ := {x := (xj)
N
j=1 ∈ RN : xj ≥

0 (i = 1, 2, . . . , N)}.
Reference [39] used the centralized optimization method for solving problem (27).

Meanwhile, problem (27) can be also solved by using Algorithm 3.1, an incremental type
of distributed algorithm. Algorithm 3.1 is well suited for use when problem (27) cannot
be solved under centralized control.
Let us show Algorithm 3.1 can solve problem (27). We define X(i) := {x := (xj)

N
j=1 ∈

RN : xj ≤ M (i) (j = 1, 2, . . . , N)} and T (i) := (1/2)[Id + PX(i)PRN
+
] (i ∈ I := {1, 2, 3}),

where M (i) (i ∈ I) is a large enough positive constant. Then, X(i) (i ∈ I) satisfies (A1)
and T (i) is firmly nonexpansive with 0 ∈ Fix(T (i)) = X(i) ∩ RN

+ ⊂ X(i) (i ∈ I), which
means that (A2) holds. Moreover, let us define f (1) := g, f (2) := α∥ · ∥1, and f (3) := βh.
Then, f (i) (i ∈ I) satisfies (A3). Since X(i) (i ∈ I) and RN

+ are half-spaces, PX(i) (i ∈ I)
and PRN

+
can be easily computed within a finite number of arithmetic operations (see

subsection 2.2). This implies that T (i) (i ∈ I) can be computed. Moreover, f (1) and
f (3) are convex functions of which the gradients can be computed, and the subgradients
of f (2) := α∥ · ∥1 can be also computed (see also section 4). Accordingly, Theorem 3.2
guarantees that, under (A5), Algorithm 3.1 with (λn)n∈N satisfying (C2) and (C3) can
solve problem (27).
Next, let us consider utility-based bandwidth allocation [21, 29, 35]. The objective

here is to share the available bandwidth among traffic sources so as to maximize the
overall utility subject to the capacity constraints [35, Chapter 2]. Source i’s utility can
be expressed as a certain concave function U (i) : RI → R and the capacity constraint
set for each link can be represented by a certain half-space. We assume that source i
(i ∈ I) has its own private convex function f (i) := −U (i) and constraint set C(i) (⊂ RI)
wherein source i uses the capacity constraints for links [14, Section 5]. The utility-based
bandwidth allocation problem is as follows (see [14, problem (5.1)] for details on the
problem).

Minimize f(x) := −
∑
i∈I

U (i)(x) subject to x ∈ RI
+ ∩

∩
i∈I

C(i). (28)

Let us define T (i) : RI → RI (i ∈ I) by T (i) := (1/2)[Id+PRI
+

∏
l∈L(i) PDl

] (i ∈ I), where
L(i) (i ∈ I) stands for the set of links used by source i and Dl is the capacity constraint
set for link l, which can be expressed as a half-space (i.e., PDl

can be easily computed).
Then, T (i) (i ∈ I) is firmly nonexpansive and satisfies 0 ∈ Fix(T (i)) = RI

+ ∩
∩

l∈L(i) Dl =

RI
+∩C(i). Since RI

+∩
∩

i∈I C
(i) is nonempty, bounded, closed, and convex, we can choose

a closed ball X̄ (⊃ RI
+ ∩

∩
i∈I C

(i)) with a large enough radius. Accordingly, X(i) := X̄

and T (i) (i ∈ I) satisfy (A1) and (A2). It is obvious that f (i) := −U (i) (i ∈ I) satisfies
(A3).
When all f (i) are strictly convex and differentiable with Lipschitz gradients, the whole

sequence generated by the incremental gradient method [14, Algorithm 3.1] with dimin-
ishing step size sequences converges to the unique solution to problem (28) [14, Theorem
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3.1]. We should note that, if there is one source in the system such that his/her utility
function is nonsmooth, the existing method [14, Algorithm 3.1] cannot be applied to
problem (28).

Even if ī ∈ I exists such that U (̄i) is concave and nonsmooth, Theorem 3.2 guarantees

the existence of a subsequence of (x
(i)
n )n∈N (i ∈ I) generated by Algorithm 3.1 with

(λn)n∈N satisfying (C2) and (C3) that converges to a solution to problem (28) under
(A4) and (A5). However, knowing that there is one optimal cluster point would not help
the sources to identify an optimal solution when multiple cluster points are observed.
Here, let us assume that only one U (i) is strongly concave (i.e., only one f (i) is strongly

convex) and the others U (i) are concave and nonsmooth. Corollary 3.1 thus ensures that

the sequence (x
(i)
n )n∈N (i ∈ I) generated by Algorithm 3.1 with (λn)n∈N satisfying (C2)

and (C3) converges to the unique solution to problem (28) under (A4) and (A5). When
there is an operator who manages the system, it is reasonable to assume that the operator
has a strongly convex objective function so as to guarantee the convergence of the whole
sequence in Algorithm 3.1 to the desired solution that makes the system stable and
reliable.

4. Numerical Examples

Let us look at some numerical examples to see how Algorithm 3.1 works depending on

the choice of step size. Consider the following problem: given a(i) > 0, b(i) ∈ R, d(i)k ∈ R,
and c

(i)
k ∈ RI with c

(i)
k ̸= 0 (i ∈ I := {1, 2, . . . , I}, k ∈ K := {1, 2, . . . ,K}),

minimize
∑
i∈I

∣∣∣a(i)x(i) + b(i)
∣∣∣ subject to

(
x(i)

)
i∈I

∈ C ∩
∩
i∈I

C(i), (29)

where f (i)(x) := |a(i)x + b(i)| (i ∈ I, x ∈ R), C(i)
k (⊂ RI) (i ∈ I, k ∈ K) is a half-space

defined by C
(i)
k := {x ∈ RI : ⟨c(i)k , x⟩ ≤ d

(i)
k }, C(i) :=

∩
k∈K C

(i)
k ̸= ∅ (i ∈ I), C (⊂ RI) is

a closed ball, and C ∩
∩

i∈I C
(i) ̸= ∅.

We will assume that user i (i ∈ I) has X(i) := C ⊃ C ∩ C(i) = Fix(T (i)) with

T (i) :=
1

2

[
Id + PC

∏
k∈K

P
(i)
k

]
, and ∂f (i)(x) :=


−a(i)

(
−∞ < x < − b(i)

a(i)

)
,[

−a(i), a(i)
] (

x = − b(i)

a(i)

)
,

a(i)
(
− b(i)

a(i) < x < ∞
)
.

The projections PC and P
(i)
k := PC

(i)
k

(i ∈ I, k ∈ K) can be computed within a finite

number of arithmetic operations [2, Chapter 28], and hence, T (i) (i ∈ I) can also be
easily computed. User i can randomly choose ā(i) ∈ ∂f (i)(−b(i)/a(i)) = [−a(i), a(i)].
The experiment used a 15.4-inch MacBook Pro with a 2.6 GHz Intel Core i7 processor

and 16GB 1600 MHz DDR3 memory. Algorithm 3.1 was written in MATLAB 8.2. We set

I := 4 and K := 3 and used a(i), b(i), c
(i)
k , d

(i)
k , and ā(i) generated randomly by MATLAB.

We used

α :=
1

2
, λn :=

1

10
,

1

103
,

1

(n+ 1)a
(n ∈ N), where a = 0.5, 1.
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We performed 100 samplings, each starting from different random initial points given by
MATLAB, and averaged their results.
We used the following performance measures: for each n ∈ N,

Dn :=
1

100

100∑
s=1

∑
i∈I

∥∥∥xn (s)− T (i) (xn (s))
∥∥∥2 and

Fn :=
1

100

100∑
s=1

∑
i∈I

∣∣∣a(i)x(i)n (s) + b(i)
∣∣∣ ,

where (xn(s))n∈N is the sequence generated by the initial point x(s) (s = 1, 2, . . . , 100)

and Algorithm 3.1 and xn(s) := (x
(i)
n (s))i∈I (n ∈ N, s = 1, 2, . . . , 100). Dn (n ∈ N) stands

for the mean value of the sums of the squared distances between xn(s) and T (i)(xn(s))
(i ∈ I, s = 1, 2, . . . , 100). If (Dn)n∈N converges to 0, Algorithm 3.1 converges to a point
in

∩
i∈I Fix(T

(i)) = C ∩
∩

i∈I C
(i). Fn (n ∈ N) is the mean value of the objective function∑

i∈I f
(i)(x

(i)
n (s)) (s = 1, 2, . . . , 100).

Figure 1 indicates the behavior of Dn for Algorithm 3.1. We can see that the sequences
generated by Algorithm 3.1 with λn := 1/(n+1)a (a = 0.5, 1, n ∈ N) converge to a point in∩

i∈I Fix(T
(i)). Meanwhile, Figure 1 shows that Algorithm 3.1 with λn := 1/10 (n ∈ N)

does not converge in
∩

i∈I Fix(T
(i)), and (Dn)n∈N in Algorithm 3.1 with λn := 1/103

(n ∈ N) initially decreases, but then increases little by little.
Figure 2 plots the behavior of Fn for Algorithm 3.1 and shows that Algorithm 3.1 with

λn := 1/(n+1) (n ∈ N) is stable during the early iterations and converges to a solution to
problem (29), as promised by Theorem 3.2. This figure indicates that (Fn)n∈N generated
by Algorithm 3.1 with λ := 1/103 (n ∈ N) decreases slowly. Therefore, Figures 1 and 2,
and Theorem 3.2 show that Algorithm 3.1 with λn := 1/(n+ 1) (n ∈ N) converges to a
solution to problem (29).
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Figure 1. Behavior of Dn for Algorithm 3.1 when λn :=

1/10, 1/103, 1/(n+ 1)a (a = 0.5, 1)
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Figure 2. Behavior of Fn for Algorithm 3.1 when λn :=

1/10, 1/103, 1/(n+ 1)a (a = 0.5, 1)
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5. Conclusion

We considered the problem of minimizing the sum of nondifferentiable, convex objective
functions over the intersection of the fixed point sets of nonexpansive mappings, and pro-
posed an incremental subgradient method for solving it. The proposed method has the
two advantageous features in contrast with the previous algorithms for nonsmooth con-
vex optimization: the first is that it does not use the proximity operators of the objective
functions, and the second is that it can be applied to the case where the projection onto
the constraint set cannot be easily implemented. We analyzed its convergence for two
different step-size rules: a constant step size and a diminishing step size. In particular,
we showed that there exists a subsequence of the sequence generated by the proposed
algorithm with a diminishing step size which weakly converges to a solution to the prob-
lem. Moreover, we showed that the sequence generated by the proposed algorithm with
a diminishing step size strongly converges to the solution to the problem under certain
assumptions. We also gave some examples of real problems which satisfy the assump-
tions in the convergence theorems and showed that our algorithm outperforms other
existing algorithms on the same problems. Finally, we gave numerical results to support
the convergence analyses.
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[3] Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific
(2003)

[4] Blatt, D., Hero, A.O., Gauchman, H.: A convergent incremental gradient method with a constant
step size. SIAM Journal on Optimization 18, 29–51 (2007)

[5] Combettes, P.L.: A block-iterative surrogate constraint splitting method for quadratic signal recov-
ery. IEEE Transactions on Signal Processing 51, 1771–1782 (2003)

[6] Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators.
Journal of Convex Analysis 16, 727–748 (2009)

[7] Combettes, P.L., Pesquet, J.C.: A Douglas-Rachford splitting approach to nonsmooth convex vari-
ational signal recovery. IEEE Journal of Selected Topics in Signal Processing 1, 564–574 (2007)

[8] Combettes, P.L., Pesquet, J.C.: A proximal decomposition method for solving convex variational
inverse problems. Inverse Problems 24, article ID 065,014 (2008)

[9] Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: H.H. Bauschke,
R.S. Burachik, P.L. Combettes, V. Elser, D.R. Luke, H. Wolkowicz (eds.) Fixed-Point Algorithms
for Inverse Problems in Science and Engineering, pp. 185–212. Springer (2011)

[10] Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachfold splitting method and proximal point algo-
rithm for maximal monotone operators. Mathematical Programming 55, 293–318 (1992)

[11] Facchinei, F., Pang, J., Scutari, G., Lampariello, L.: VI-constrained hemivariational inequalities:
distributed algorithms and power control in ad-hoc networks. Mathematical Programming 145,
59–96 (2014)

21



April 3, 2016 Optimization Methods & Software GOMS-2015-0094R2

[12] Iiduka, H.: Iterative algorithm for solving triple-hierarchical constrained optimization problem. Jour-
nal of Optimization Theory and Applications 148, 580–592 (2011)

[13] Iiduka, H.: Iterative algorithm for triple-hierarchical constrained nonconvex optimization problem
and its application to network bandwidth allocation. SIAM Journal on Optimization 22, 862–878
(2012)

[14] Iiduka, H.: Fixed point optimization algorithms for distributed optimization in networked systems.
SIAM Journal on Optimization 23, 1–26 (2013)

[15] Iiduka, H.: Acceleration method for convex optimization over the fixed point set of a nonexpansive
mapping. Mathematical Programming 149, 131–165 (2015)

[16] Iiduka, H.: Convergence analysis of iterative methods for nonsmooth convex optimization over
fixed point sets of quasi-nonexpansive mappings. Mathematical Programming (to appear) (DOI:
10.1007/s10107-015-0967-1)

[17] Iiduka, H., Hishinuma, K.: Acceleration method combining broadcast and incremental distributed
optimization algorithms. SIAM Journal on Optimization 24, 1840–1863 (2014)

[18] Iiduka, H., Yamada, I.: A use of conjugate gradient direction for the convex optimization problem
over the fixed point set of a nonexpansive mapping. SIAM Journal on Optimization 19, 1881–1893
(2009)

[19] Iiduka, H., Yamada, I.: Computational method for solving a stochastic linear-quadratic control
problem given an unsolvable stochastic algebraic Riccati equation. SIAM Journal on Control and
Optimization 50, 2173–2192 (2012)

[20] Johansson, B., Rabi, M., Johansson, M.: A randomized incremental subgradient method for dis-
tributed optimization in networked systems. SIAM Journal on Optimization 20, 1157–1170 (2009)

[21] Kelly, F.P.: Charging and rate control for elastic traffic. European Transactions on Telecommuni-
cations 8, 33–37 (1997)

[22] Kiwiel, K.C.: Convergence of approximate and incremental subgradient methods for convex opti-
mization. SIAM Journal on Optimization 14, 807–840 (2004)
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