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Abstract This paper considers a networked system with a finite number of
users and supposes that each user tries to minimize its own private objective
function over its own private constraint set. It is assumed that each user’s con-
straint set can be expressed as a fixed point set of a certain quasi-nonexpansive
mapping. This enables us to consider the case in which the projection onto
the constraint set cannot be computed efficiently. This paper proposes two
methods for solving the problem of minimizing the sum of their nondiffer-
entiable, convex objective functions over the intersection of their fixed point
sets of quasi-nonexpansive mappings in a real Hilbert space. One method is a
parallel subgradient method that can be implemented under the assumption
that each user can communicate with other users. The other is an incremental
subgradient method that can be implemented under the assumption that each
user can communicate with its neighbors. Investigation of the two methods’
convergence properties for a constant step size reveals that, with a small con-
stant step size, they approximate a solution to the problem. Consideration
of the case in which the step-size sequence is diminishing demonstrates that
the sequence generated by each of the two methods strongly converges to the
solution to the problem under certain assumptions. Convergence rate analysis
of the two methods under certain situations is provided to illustrate the two
methods’ efficiency. This paper also discusses nonsmooth convex optimization
over sublevel sets of convex functions and provides numerical comparisons that
demonstrate the effectiveness of the proposed methods.
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1 Introduction

This paper focuses on a networked system consisting of a finite number of
participating users and considers the problem of minimizing the sum of their
nondifferentiable, convex functions over the intersection of their fixed point
constraint sets of quasi-nonexpansive mappings in a real Hilbert space. Opti-
mization problems with a fixed point constraint (see, e.g., [6,15,18,37]) enable
consideration of constrained optimization problems in which the explicit form
of the metric projection onto the constraint set is not always known; i.e., the
constraint set is not simple in the sense that the projection cannot be easily
calculated.

The motivations for considering this problem are to devise optimization
algorithms that have a wider range of application than previous algorithms
for convex optimization over fixed point sets of nonexpansive mappings [6,15,
18,37] and to solve the problem by using parallel and incremental optimization
techniques [3, Chapter 27], [4, Section 8.2], [13,34], [40, PART II].

Many optimization algorithms have been presented for smooth or nons-
mooth optimization. The parallel proximal algorithms [3, Proposition 27.8],
[10, Algorithm 10.27], [31] are useful for minimizing the sum of nondiffer-
entiable, convex functions over the whole space. They use the ideas of the
Douglas-Rachford algorithm [3, Chapters 25 and 27], [8,10,11,22] and the
forward-backward algorithm [3, Chapters 25 and 27], [7,9,10], which use the
proximity operators [3, Definition 12.23] of nondifferentiable, convex functions.
The incremental subgradient method [4, Section 8.2], [5,13,19,20,26,34] and
projected multi-agent algorithms [23,27–29] can minimize the sum of nondiffer-
entiable, convex functions over certain constraint sets by using the subgradients
[33, Section 23] of the nondifferentiable, convex functions instead of the prox-
imity operators. The random projection algorithms [25,36] and the distributed
random projection algorithm [21] are useful for constrained convex optimiza-
tion when the constraint set is not known in advance or the projection onto
the whole constraint set cannot be computed efficiently. The incremental sub-
gradient algorithm [13, Sections 3.2 and 3.3] and the asynchronous distributed
proximal algorithm [32, Section 6] can work on nonsmooth convex optimization
over sublevel sets of convex functions onto which the projections cannot be
easily calculated. The incremental and parallel gradient methods [14,17] and
an algorithm to accelerate the search for fixed points [15] can perform smooth
convex optimization over the fixed point sets of nonexpansive mappings. There
have been no reports, however, on optimization algorithms for nonsmooth con-
vex optimization with fixed point constraints of quasi-nonexpansive mappings.

This paper describes two methods for solving the main problem considered
in the paper. One is a parallel subgradient method that can be implemented
under the assumption that each user can communicate with other users. The
other is an incremental subgradient method that can be implemented under
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the assumption that each user can communicate with its neighbors. The pro-
posed methods do not use proximity operators, in contrast to conventional
asynchronous distributed or parallel proximal algorithms. Moreover, they can
optimize over fixed point sets of quasi-nonexpansive mappings, in contrast to
conventional incremental subgradient algorithms.

The intellectual contribution of this paper is to enable one to deal with
nonsmooth convex optimization over the fixed point sets of quasi-nonexpansive
mappings, especially in contrast to recent papers [14,15] that discussed smooth
convex optimization over the fixed point sets of nonexpansive mappings.

To clarify this contribution, let us consider the case where each user in
the networked system tries to minimize its own private objective function
over a sublevel set of a nonsmooth convex function, where one assumes each
user can use the subgradients of the nonsmooth convex function. Although
the projection onto the sublevel set cannot be easily computed within a fi-
nite number of arithmetic operations, each user can compute the subgradient
projection [2, Proposition 2.3], [35, Subchapter 4.3] that satisfies the quasi
nonexpansivity condition, not the nonexpansivity condition (see Section 5 for
the definition of the subgradient projection). Since the sublevel set coincides
with the fixed point set of the subgradient projection, the problem consid-
ered in the whole system can be expressed as the problem of minimizing the
sum of all users’ objective functions over the intersection of the fixed point
sets of quasi-nonexpansive mappings (see [38] for applications of the problem
and the relaxation method for the problem). The proposed methods can thus
be applied to nonsmooth convex optimization over sublevel constraint sets of
nonsmooth convex functions.

The previously reported algorithms [14,15] cannot work on nonsmooth
convex optimization over sublevel sets of nonsmooth convex functions. This is
because they can be applied only when the constraint sets can be represented
by fixed point sets of nonexpansive mappings and can work under the restricted
situation such that all users’ objective functions are smooth and the gradients
of their objective functions are Lipschitz continuous and strongly or strictly
monotone. The numerical examples section (Section 5) considers a concrete
nonsmooth convex problem over the intersection of sublevel sets of nonsmooth
convex functions and describes how the proposed methods can solve it.

Another contribution of this paper is analysis of the proposed methods’
convergence for different step-size rules. A small constant step size is shown to
result in an approximate solution to the main problem. It is also shown that
the sequence generated by each proposed method with a diminishing step size
strongly converges to the solution to the problem under certain assumptions. In
contrast to the convergence analyses of the previously reported algorithms [14,
15], we cannot directly apply smooth convex analysis and fixed point theory
for nonexpansive mappings to convergence analysis of the proposed methods.
However, this problem is solved by using the subgradients of nonsmooth convex
objective functions and by modifying the algorithms presented in [14] to make
fixed point theory for quasi-nonexpansive mappings applicable. The rates of
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convergence of the two methods under certain situations are also provided to
illustrate the two methods’ efficiency.

This paper is organized as follows. Section 2 gives the mathematical prelim-
inaries and states the main problem. Section 3 presents the proposed parallel
subgradient method for solving the main problem and describes its convergence
properties for a constant step size and for a diminishing step size and the rates
of convergence under certain situations. Section 4 presents the proposed in-
cremental subgradient method for solving the main problem and describes its
convergence properties for a constant step size and for a diminishing step size
and the rates of convergence under certain situations. Section 5 considers a
nonsmooth convex optimization problem over the intersection of sublevel sets
of convex functions and compares numerically the behaviors of the two meth-
ods with that of a previous method. Section 6 concludes the paper with a brief
summary and mentions future directions for improving the proposed methods.

2 Mathematical Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and its induced norm
∥ · ∥. Let N denote the set of all positive integers including zero. The identity
mapping on H is denoted by Id; i.e., Id(x) := x (x ∈ H).

2.1 Nonexpansivity, demiclosedness, convexity, and subdifferentiability

The fixed point set of a mapping Q : H → H is denoted by Fix(Q) := {x ∈
H : Q(x) = x}. Q : H → H is said to be quasi-nonexpansive [3, Definition
4.1(iii)] if ∥Q(x)− y∥ ≤ ∥x− y∥ for all x ∈ H and for all y ∈ Fix(Q). When a
quasi-nonexpansive mapping has one fixed point, its fixed point set is closed
and convex [2, Proposition 2.6]. Q : H → H is said to be quasi-firmly non-
expansive [1, Section 3] if ∥Q(x) − y∥2 + ∥(Id − Q)(x)∥2 ≤ ∥x − y∥2 for all
x ∈ H and for all y ∈ Fix(Q). It is observed that any quasi-firmly nonexpan-
sive mapping satisfies the quasi-nonexpansivity condition. It is proven from [3,
Proposition 4.2] that Q is quasi-firmly nonexpansive if and only if R := 2Q−Id
is quasi-nonexpansive. This means that (1/2)(Id + R) is quasi-firmly nonex-
pansive when R is quasi-nonexpansive.

Q : H → H is said to be nonexpansive [3, Definition 4.1(ii)] if ∥Q(x) −
Q(y)∥ ≤ ∥x−y∥ for all x, y ∈ H. It is obvious that any nonexpansive mapping
satisfies the quasi-nonexpansivity condition. The metric projection [3, Sub-
chapter 4.2, Chapter 28] onto a nonempty, closed convex set C (⊂ H), denoted
by PC , is defined for all x ∈ H by PC(x) ∈ C and ∥x−PC(x)∥ = infy∈C ∥x−y∥.
PC is nonexpansive with Fix(PC) = C [3, Proposition 4.8, (4.8)].

T : H → H is referred to as a demiclosed mapping [12, p.108], [3, Theorem
4.17] if, for any (xn)n∈N (⊂ H), the following implication holds: the weak
convergence of (xn)n∈N to x ∈ H and limn→∞ ∥T (xn) − w∥ = 0 (w ∈ H)
imply T (x) = w. Section 5 will provide an example of mappings satisfying
both quasi-firm nonexpansivity and demiclosedness conditions.
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The following proposition indicates the properties of quasi-firmly nonex-
pansive mappings.

Proposition 2.1 Suppose that Q : H → H is quasi-firmly nonexpansive with
Fix(Q) ̸= ∅ and α ∈ [0, 1) and that Qα := αId+ (1−α)Q. Then, the following
hold:

(i) Fix(Q) = Fix(Qα).
(ii) Qα is quasi-nonexpansive.
(iii) ⟨x−Qα(x), x− y⟩ ≥ (1− α)∥x−Q(x)∥2 (x ∈ H, y ∈ Fix(Q)).1

Proof Remarks 2.1(i0) and (i1) in [24] imply Proposition 2.1(i) and (ii). From
∥x− y∥2 = ∥x∥2−2⟨x, y⟩+∥y∥2 (x, y ∈ H), it is found that, for all x ∈ H and
for all y ∈ Fix(Q), ⟨x−Q(x), x−y⟩ = (1/2)(∥x−Q(x)∥2+∥x−y∥2−∥Q(x)−
y∥2), which, together with the quasi-firm nonexpansivity of Q, implies that
⟨x−Q(x), x− y⟩ ≥ ∥x−Q(x)∥2. Hence, for all x ∈ H and for all y ∈ Fix(Q),
⟨x−Qα(x), x− y⟩ = (1− α)⟨x−Q(x), x− y⟩ ≥ (1− α)∥x−Q(x)∥2. ⊓⊔

A function f : H → R is said to be strictly convex [3, Definition 8.6] if,
for all x, y ∈ H and for all α ∈ (0, 1), x ̸= y implies f(αx + (1 − α)y) <
αf(x) + (1− α)f(y). f is strongly convex with constant β [3, Definition 10.5]
if there exists β > 0 such that, for all x, y ∈ H and for all α ∈ (0, 1), f(αx+
(1− α)y) + (β/2)α(1− α)∥x− y∥2 ≤ αf(x) + (1− α)f(y).

The subdifferential [3, Definition 16.1], [33, Section 23] of f : H → R is
defined for all x ∈ H by

∂f(x) := {u ∈ H : f(y) ≥ f(x) + ⟨y − x, u⟩ (y ∈ H)} .

We call u (∈ ∂f(x)) the subgradient of f at x ∈ H. If f is strictly convex,
∂f is strictly monotone; i.e., ⟨x − y, u − v⟩ > 0 (x, y ∈ H with x ̸= y, u ∈
∂f(x), v ∈ ∂f(y)) [3, Example 22.3(ii)]. If f is strongly convex with constant
β, ∂f is strongly monotone; i.e., ⟨x − y, u − v⟩ ≥ β∥x − y∥2 (x, y ∈ H,u ∈
∂f(x), v ∈ ∂f(y)) [3, Example 22.3(iv)].

Proposition 2.2 [3, Propositions 16.14(ii), (iii)] Let f : H → R be continuous
and convex with dom(f) := {x ∈ H : f(x) < ∞} = H. Then, ∂f(x) ̸= ∅ for
all x ∈ H. Moreover, for all x ∈ H, there exists δ > 0 such that ∂f(B(x; δ))
is bounded, where B(x; δ) stands for a closed ball with center x and radius δ.

The following proposition is used to prove the main results in the paper.

Proposition 2.3 [24, Lemma 2.1] Let (Γn)n∈N ⊂ R and suppose that (Γnj )j∈N
(⊂ (Γn)n∈N) exists such that Γnj < Γnj+1 for all j ∈ N. Define (τ(n))n≥n0 ⊂ N
by τ(n) := max{k ≤ n : Γk < Γk+1} for some n0 ∈ N. Then, (τ(n))n≥n0 is in-
creasing and limn→∞ τ(n) = ∞. Moreover, Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1

for all n ≥ n0.

1 If Q is quasi-nonexpansive, ⟨x−Q(x), x− y⟩ ≥ (1/2)∥x−Q(x)∥2 (x ∈ H, y ∈ Fix(Q)).
Hence, ⟨x−Qα(x), x−y⟩ ≥ ((1−α)/2)∥x−Q(x)∥2 (x ∈ H, y ∈ Fix(Q)). We need to use the
property in Proposition 2.1(iii) to prove Lemma 3.1. Accordingly, it is assumed that each
user has a quasi-firmly nonexpansive mapping (see (A1)).
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2.2 Main problem

The focus here is a networked system with I users. Let

I := {1, 2, . . . , I}.

Suppose that user i (i ∈ I) has its own private objective function, denoted by
f (i) : H → R, and its own mapping, denoted by Q(i) : H → H. The following
notation is used.

Q(i)
α := α(i)Id +

(
1− α(i)

)
Q(i)

(
α(i) ∈ (0, 1)

)
, X :=

∩
i∈I

Fix
(
Q(i)

)
,

f :=
∑
i∈I

f (i), X⋆ :=

{
x ∈ X : f(x) = f⋆ := inf

y∈X
f (y)

}
.

The following problem is discussed in this paper.

Problem 2.1 Suppose that the following (A1)–(A4) hold.

(A1) Q(i) : H → H (i ∈ I) is quasi-firmly nonexpansive.
(A2) f (i) : H → R (i ∈ I) is continuous and convex with dom(f (i)) = H.2

(A3) User i (i ∈ I) can use its own private Q(i) and ∂f (i).
(A4) X⋆ ̸= ∅.

Then, find x⋆ ∈ X⋆.

3 Parallel Subgradient Method

The section presents a method for solving Problem 2.1 under the assumption
that

(A5) each user can communicate with other users.

Algorithm 3.1
Step 0. User i (i ∈ I) sets α(i), (λn)n∈N ⊂ (0,∞), and x0 ∈ H.

Step 1. User i (i ∈ I) computes x
(i)
n ∈ H using

x(i)
n := Q(i)

α (xn)− λng
(i)
n , where g(i)n ∈ ∂f (i)

(
Q(i)

α (xn)
)
.

User i (i ∈ I) transmits x
(i)
n to all users.

Step 2. User i (i ∈ I) computes xn+1 ∈ H as

xn+1 :=
1

I

∑
i∈I

x(i)
n .

The algorithm sets n := n+ 1 and returns to Step 1.

2 When H = RN , a convex function f (i) satisfies the continuity condition [3, Corollary
8.31]. Therefore, (A2) can be replaced by the convexity condition of f (i) with dom(f (i)) =
RN .
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Algorithm 3.1 requires that all users set the same step-size sequence (λn)n∈N
before algorithm execution and that they synchronize at each iteration. See
[32, Section 6] for the asynchronous distributed proximal algorithm that was
used for solving nonsmooth convex optimization. Assumption (A5) ensures

that each user has access to all x
(i)
n and can compute xn+1 = (1/I)

∑
i∈I x

(i)
n .

This means that a common variable xn (n ∈ N) is shared by all users. To illus-
trate this situation, let us assume that there exists an operator who manages
the system. Even in a situation where (A5) is not satisfied, the operator can
still communicate with all users. Accordingly, if the operator sets an initial
point x0 and transmits xn to all users at each iteration n, user i can compute

x
(i)
n by using its own private information. Since the operator has access to all

x
(i)
n , the operator can compute xn+1 and transmit it to all users. Therefore,

assuming the existence of an operator guarantees that all users can share xn

(n ∈ N) in Algorithm 3.1.
The convergence of Algorithm 3.1 depends on two assumptions.

Assumption 3.1 For all i ∈ I, there exist M
(i)
1 ,M

(i)
2 ∈ R such that

sup
{
∥g∥ : g ∈ ∂f (i)

(
Q(i)

α (xn)
)
, n ∈ N

}
≤ M

(i)
1 ,

sup
{
∥g∥ : g ∈ ∂f (i) (xn) , n ∈ N

}
≤ M

(i)
2 .

Assumption 3.2 The sequence (x
(i)
n )n∈N (i ∈ I) is bounded.

Assumption 3.2 implies Assumption 3.1. Indeed, the definition of xn (n ∈
N) and the boundedness of (x

(i)
n )n∈N (i ∈ I) ensure that (xn)n∈N is bounded.

From the quasi-nonexpansivity of Q
(i)
α (i ∈ I), we have ∥Q(i)

α (xn) − x∥ ≤
∥xn − x∥ (x ∈ X), which, together with the boundedness of (xn)n∈N, means

that (Q
(i)
α (xn))n∈N (i ∈ I) is bounded. Hence, Proposition 2.2 implies that

Assumption 3.1 holds.
A convergence analysis of Algorithm 3.1 with a constant step size when

Assumption 3.1 holds is given in Subsection 3.1. The discussion in Subsection
3.2 needs to satisfy Assumption 3.2, which is stronger than Assumption 3.1, to
enable the convergence property of Algorithm 3.1 with a diminishing step-size
sequence to be studied. This is because, in the case where Assumption 3.2 does
not hold and (∥xn − x∥)n∈N (x ∈ X) is not monotone decreasing (see Case 2
in the proof of Theorem 3.2), a weak convergent subsequence of (xn)n∈N does
not exist; i.e., we cannot discuss weak convergence of Algorithm 3.1 to a point
in X⋆.

Here we provide an example satisfying Assumption 3.2 and (A4). Let us
assume that user i (i ∈ I) can choose in advance a simple, bounded, closed
convex set X(i) (e.g.,X(i) is a closed ball with a large enough radius) satisfying
X(i) ⊃ Fix(Q(i)). Then, user i can compute P (i) := PX(i) and

x(i)
n := P (i)

(
Q(i)

α (xn)− λng
(i)
n

)
(1)



8 Hideaki Iiduka

instead of x
(i)
n in Algorithm 3.1. Since (x

(i)
n )n∈N ⊂ X(i) and X(i) is bounded,

(x
(i)
n )n∈N is bounded. Since X(i) is bounded and X ⊂ X(i) (i ∈ I), X is also

bounded. Hence, the continuity and convexity of f ensure that X⋆ ̸= ∅; i.e.,
(A4) holds [3, Proposition 11.14]. We can show that Algorithm 3.1 with (1)
satisfies the convergence properties in the main theorems in this paper by
referring to the proofs of the theorems.

The following is an important lemma that will be used to prove the main
theorems.

Lemma 3.1 Suppose that (xn)n∈N is the sequence generated by Algorithm 3.1
and that Assumptions (A1)–(A5) and 3.1 hold. The following properties then
hold:

(i) For all n ∈ N and for all x ∈ X,

∥xn+1 − x∥2 ≤ ∥xn − x∥2 − 2

I

∑
i∈I

α(i)
(
1− α(i)

)∥∥∥xn −Q(i) (xn)
∥∥∥2

+ 2M1λ
2
n − 2λn

I

∑
i∈I

⟨
xn − x, g(i)n

⟩
,

where M1 := maxi∈I M
(i)2

1 < ∞.
(ii) For all n ∈ N and for all x ∈ X,

∥xn+1 − x∥2 ≤ ∥xn − x∥2 + 2M1λ
2
n +

2λn

I
(f(x)− f(xn))

+
2λn

I

(√
M1 +M2

)∑
i∈I

∥∥∥xn −Q(i)
α (xn)

∥∥∥ ,
where M2 := maxi∈I M

(i)
2 < ∞.

Proof (i) Choose x ∈ X ⊂ Fix(Q(i)) (i ∈ I) and n ∈ N arbitrarily. From
−2⟨x, y⟩ = ∥x − y∥2 − ∥x∥2 − ∥y∥2 (x, y ∈ H), we find that, for all i ∈ I,
2⟨x(i)

n − xn + λng
(i)
n , xn − x⟩ = −2⟨xn − x

(i)
n , xn − x⟩ + 2λn⟨xn − x, g

(i)
n ⟩ =

∥x(i)
n −x∥2−∥xn−x

(i)
n ∥2−∥xn−x∥2+2λn⟨xn−x, g

(i)
n ⟩. Moreover, Proposition

2.1(iii) ensures that, for all i ∈ I, 2⟨Q(i)
α (xn)−xn, xn−x⟩ ≤ −2(1−α(i))∥xn−

Q(i)(xn)∥2. Accordingly, from x
(i)
n := Q

(i)
α (xn)− λng

(i)
n (i ∈ I), 2⟨x(i)

n − xn +

λng
(i)
n , xn − x⟩ = 2⟨Q(i)

α (xn) − xn, xn − x⟩ ≤ −2(1 − α(i))∥xn − Q(i)(xn)∥2.
Therefore, for all i ∈ I,∥∥∥x(i)

n − x
∥∥∥2 ≤ ∥xn − x∥2 +

∥∥∥xn − x(i)
n

∥∥∥2 − 2λn

⟨
xn − x, g(i)n

⟩
− 2

(
1− α(i)

)∥∥∥xn −Q(i)(xn)
∥∥∥2 .

Moreover, from ∥x − y∥2 ≤ 2∥x∥2 + 2∥y∥2 (x, y ∈ H), ∥xn − x
(i)
n ∥2 = ∥(xn −

Q
(i)
α (xn)) + λng

(i)
n ∥2 ≤ 2∥xn − Q

(i)
α (xn)∥2 + 2λ2

n∥g
(i)
n ∥2 ≤ 2(1 − α(i))2∥xn −
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Q(i)(xn)∥2+2M1λ
2
n, where M1 := maxi∈I M

(i)2

1 < ∞ holds from Assumption
3.1. Hence, for all i ∈ I,∥∥∥x(i)

n − x
∥∥∥2 ≤ ∥xn − x∥2 − 2α(i)

(
1− α(i)

)∥∥∥xn −Q(i)(xn)
∥∥∥2 + 2M1λ

2
n

− 2λn

⟨
xn − x, g(i)n

⟩
,

which, together with the convexity of ∥ · ∥2, implies that Lemma 3.1(i) holds.

(ii) Choose x ∈ X ⊂ Fix(Q(i)) (i ∈ I) and n ∈ N arbitrarily. From g
(i)
n ∈

∂f (i)(Q
(i)
α (xn)) (i ∈ I), ⟨x −Q

(i)
α (xn), g

(i)
n ⟩ ≤ f (i)(x) − f (i)(Q

(i)
α (xn)). Hence,

the Cauchy-Schwarz inequality ensures that, for all i ∈ I, ⟨x−xn, g
(i)
n ⟩ = ⟨x−

Q
(i)
α (xn), g

(i)
n ⟩+⟨Q(i)

α (xn)−xn, g
(i)
n ⟩ ≤ f (i)(x)−f (i)(Q

(i)
α (xn))+

√
M1∥Q(i)

α (xn)−
xn∥, which, together with f :=

∑
i∈I f (i), implies that

∑
i∈I⟨x − xn, g

(i)
n ⟩ ≤

f(x)− f(xn) +
∑

i∈I(f
(i)(xn)− f (i)(Q

(i)
α (xn))) +

√
M1

∑
i∈I ∥Q(i)

α (xn)− xn∥.
Set M2 := maxi∈I M

(i)
2 . Then, Assumption 3.1 ensures that M2 < ∞. Since

g ∈ ∂f (i)(xn) implies that, for all i ∈ I, f (i)(xn) − f (i)(Q
(i)
α (xn)) ≤ ⟨xn −

Q
(i)
α (xn), g⟩ ≤ M2∥xn −Q

(i)
α (xn)∥, it is found that∑

i∈I

⟨
x− xn, g

(i)
n

⟩
≤ f(x)− f(xn) +

(√
M1 +M2

)∑
i∈I

∥∥∥Q(i)
α (xn)− xn

∥∥∥ .
Accordingly, Lemma 3.1(i) leads to Lemma 3.1(ii). This completes the proof.

⊓⊔

3.1 Constant step-size rule

The discussion in this subsection is based on the following assumption.

Assumption 3.3 User i (i ∈ I) has (λn)n∈N satisfying

(C1) λn := λ ∈ (0,∞) (n ∈ N).

Let us perform a convergence analysis of Algorithm 3.1 under Assumption 3.3.
We omit the details due to lack of space. See the extended version of this work
[16] for the proof of the following theorem.

Theorem 3.1 Suppose that Assumptions (A1)–(A5), 3.1, and 3.3 hold. Then,
(xn)n∈N in Algorithm 3.1 satisfies the relations

lim inf
n→∞

∥∥∥xn −Q(i) (xn)
∥∥∥2 ≤ IMλλ

α(i)
(
1− α(i)

) (i ∈ I) ,

lim inf
n→∞

f (xn) ≤ f⋆ + IM1λ+
(√

M1 +M2

)∑
i∈I

√(
1− α(i)

)
IMλλ

α(i)
,

where M1 and M2 are as in Lemma 3.1 and, for some x ∈ X, Mλ :=

supn∈N(M1λ+ (1/I)|
∑

i∈I⟨x− xn, g
(i)
n ⟩|).

Theorem 3.1 implies that Algorithm 3.1 with a small enough λ may approxi-
mate a solution to Problem 2.1.
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3.2 Diminishing step-size rule

The discussion in this subsection is based on the following assumption.

Assumption 3.4 User i (i ∈ I) has (λn)n∈N satisfying

(C2) lim
n→∞

λn = 0 and (C3)
∞∑

n=0

λn = ∞.

Moreover,

(A6) Id−Q(i) (i ∈ I) is demiclosed.

An example of (λn)n∈N satisfying (C2) and (C3) is λn := 1/(n+1)a (n ∈ N),
where a ∈ (0, 1]. Section 5 will provide an example of Q(i) (i ∈ I) satisfying
(A1) and (A6).

Let us perform a convergence analysis of Algorithm 3.1 under Assumption
3.4.

Theorem 3.2 Suppose that Assumptions (A1)–(A5), 3.2, and 3.4 hold. Then
there exists a subsequence of (xn)n∈N generated by Algorithm 3.1 that weakly
converges to a point in X⋆. Moreover, the whole sequence (xn)n∈N strongly
converges to a unique point in X⋆ if one of the following holds:3

(i) One f (i) (i ∈ I) is strongly convex.
(ii) H is finite-dimensional, and one f (i) (i ∈ I) is strictly convex.

Proof We consider two cases.
Case 1: Suppose that there existsm0 ∈ N such that ∥xn+1−x⋆∥ ≤ ∥xn−x⋆∥

for all n ≥ m0 and for all x⋆ ∈ X⋆. The existence of limn→∞ ∥xn − x⋆∥
is thus guaranteed for all x⋆ ∈ X⋆. Hence, (xn)n∈N is bounded. The quasi-

nonexpansivity of Q
(i)
α (i ∈ I) thus ensures that (Q

(i)
α (xn))n∈N (i ∈ I) is

bounded. Accordingly, Proposition 2.2 guarantees that M1 and M2 defined
as in Lemma 3.1 are finite. From Lemma 3.1(i), for all n ≥ m0 and for all
x⋆ ∈ X⋆,∑

i∈I

2α(i)
(
1− α(i)

)
I

∥∥∥xn −Q(i) (xn)
∥∥∥2

≤ ∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 + 2M1λ
2
n − 2λn

I

∑
i∈I

⟨
xn − x⋆, g(i)n

⟩
,

which, together with (C2) and the boundedness of (g
(i)
n )n∈N (i ∈ I), implies

that limn→∞(1/I)
∑

i∈I 2α(i)(1− α(i))∥xn −Q(i)(xn)∥2 = 0; i.e.,

lim
n→∞

∥∥∥xn −Q(i)
α (xn)

∥∥∥ = lim
n→∞

∥∥∥xn −Q(i) (xn)
∥∥∥ = 0 (i ∈ I) . (2)

3 Under (A4), the strict convexity of f guarantees the uniqueness of the solution to Prob-
lem 2.1 [39, Corollary 25.15]. If there exists an operator who manages the system, it is
reasonable to assume that the operator has a strongly convex objective function so as to
guarantee the convergence of (xn)n∈N in Algorithm 3.1 to the desired solution, i.e., one that
makes the system stable and reliable.
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Let us define, for all n ∈ N and for all x ∈ X,

Mn(x) := f(xn)− f(x)−
(√

M1 +M2

)∑
i∈I

∥∥∥xn −Q(i)
α (xn)

∥∥∥− IM1λn. (3)

Then, Lemma 3.1(ii) leads to the finding that, for all n ∈ N and for all x ∈ X,

2λn

I
Mn(x) ≤ ∥xn − x∥2 − ∥xn+1 − x∥2 . (4)

Summing up this inequality from n = 0 to n = m (m ∈ N) implies that
(2/I)

∑m
n=0 λnMn(x) ≤ ∥x0 − x∥2 − ∥xm+1 − x∥2 ≤ ∥x0 − x∥2 < ∞, so

∞∑
n=0

λnMn(x) < ∞ (x ∈ X) .

Let us fix x ∈ X arbitrarily. Now, under the assumption that lim infn→∞ Mn(x) >
0, m1 ∈ N and γ > 0 can be chosen such that Mn(x) ≥ γ for all n ≥ m1.
Accordingly, (C3) means that ∞ = γ

∑∞
n=m1

λn ≤
∑∞

n=m1
λnMn(x) < ∞,

which is a contradiction. Therefore, for all x ∈ X, lim infn→∞ Mn(x) ≤ 0, i.e.,

lim inf
n→∞

{
f(xn)− f(x)−

(√
M1 +M2

)∑
i∈I

∥∥∥xn −Q(i)
α (xn)

∥∥∥− IM1λn

}
≤ 0,

which, together with (C2) and (2), implies that

lim inf
n→∞

f (xn) ≤ f(x) (x ∈ X) .

Accordingly, there exists a subsequence (xnl
)l∈N of (xn)n∈N such that

lim
l→∞

f (xnl
) = lim inf

n→∞
f (xn) ≤ f(x) (x ∈ X) . (5)

Since (xnl
)l∈N is bounded, there exists (xnlm

)m∈N (⊂ (xnl
)l∈N) such that

(xnlm
)m∈N weakly converges to x∗ ∈ H. Hence, (A6) and (2) ensure that

x∗ ∈ Fix(Q(i)) (i ∈ I), i.e., x∗ ∈ X. Furthermore, the continuity and convex-
ity of f (see (A2)) imply that f is weakly lower semicontinuous [3, Theorem
9.1], which means that f(x∗) ≤ lim infm→∞ f(xnlm

). Therefore, (5) leads to
the finding that

f (x∗) ≤ lim inf
m→∞

f
(
xnlm

)
= lim

m→∞
f
(
xnlm

)
≤ f(x) (x ∈ X) , i.e., x∗ ∈ X⋆.

Let us take another subsequence (xnlk
)k∈N (⊂ (xnl

)l∈N) such that (xnlk
)k∈N

weakly converges to x∗∗ ∈ H. A discussion similar to the one for obtaining
x∗ ∈ X⋆ guarantees that x∗∗ ∈ X⋆. Here, it is proven that x∗ = x∗∗. Now, let
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us assume that x∗ ̸= x∗∗. Then, the existence of limn→∞ ∥xn − x⋆∥ (x⋆ ∈ X⋆)
and Opial’s condition [30, Lemma 1] imply that

lim
n→∞

∥xn − x∗∥ = lim
m→∞

∥∥xnlm
− x∗

∥∥ < lim
m→∞

∥∥xnlm
− x∗∗

∥∥
= lim

n→∞
∥xn − x∗∗∥ = lim

k→∞

∥∥∥xnlk
− x∗∗

∥∥∥ < lim
k→∞

∥∥∥xnlk
− x∗

∥∥∥
= lim

n→∞
∥xn − x∗∥ ,

which is a contradiction. Hence, x∗ = x∗∗. Accordingly, any subsequence of
(xnl

)l∈N converges weakly to x∗ ∈ X⋆; i.e., (xnl
)l∈N converges weakly to x∗ ∈

X⋆. This means that x∗ is a weak cluster point of (xn)n∈N and belongs to X⋆.
A discussion similar to the one for obtaining x∗ = x∗∗ guarantees that there
is only one weak cluster point of (xn)n∈N, so we can conclude that, in Case 1,
(xn)n∈N weakly converges to a point in X⋆.

Case 2: Suppose that x⋆
0 ∈ X⋆ and (xnj )j∈N (⊂ (xn)n∈N) exist such that

∥xnj − x⋆
0∥ < ∥xnj+1 − x⋆

0∥ for all j ∈ N. Then, defining Γn := ∥xn − x⋆
0∥

(n ∈ N) implies that Γnj < Γnj+1 for all j ∈ N. Assumption 3.2 and the
definition of xn (n ∈ N) guarantee the boundedness of (xn)n∈N. Moreover,

from the quasi-nonexpansivity of Q
(i)
α (i ∈ I), (Q(i)

α (xn))n∈N (i ∈ I) is also
bounded. Accordingly, Proposition 2.2 ensures that M1,M2 < ∞. Proposition
2.3 ensures the existence of m1 ∈ N such that Γτ(n) ≤ Γτ(n)+1 for all n ≥ m1,
where τ(n) is defined as in Proposition 2.3. Lemma 3.1(i) means that, for all
n ≥ m1, ∑

i∈I

2α(i)
(
1− α(i)

)
I

∥∥∥xτ(n) −Q(i)
(
xτ(n)

)∥∥∥2
≤ Γ 2

τ(n) − Γ 2
τ(n)+1 + 2M1λ

2
τ(n) −

2λτ(n)

I

∑
i∈I

⟨
xτ(n) − x⋆

0, g
(i)
τ(n)

⟩
≤

(
2M1λτ(n) −

2

I

∑
i∈I

⟨
xτ(n) − x⋆

0, g
(i)
τ(n)

⟩)
λτ(n).

Hence, the condition limn→∞ τ(n) = ∞ and (C2) imply that

lim
n→∞

∥∥∥xτ(n) −Q(i)
α

(
xτ(n)

)∥∥∥ = lim
n→∞

∥∥∥xτ(n) −Q(i)
(
xτ(n)

)∥∥∥ = 0 (i ∈ I) . (6)

Since (4) implies (2λτ(n)/I)Mτ(n)(x
⋆
0) ≤ Γ 2

τ(n) − Γ 2
τ(n)+1 ≤ 0 (n ≥ m1) and

λτ(n) > 0 (n ≥ m1), Mτ(n)(x
⋆
0) ≤ 0 (n ≥ m1) holds; i.e., for all n ≥ m1,

f
(
xτ(n)

)
− f⋆ ≤

(√
M1 +M2

)∑
i∈I

∥∥∥xτ(n) −Q(i)
α

(
xτ(n)

)∥∥∥+ IM1λτ(n). (7)

Accordingly, (C2) and (6) imply that

lim sup
n→∞

f
(
xτ(n)

)
≤ f⋆. (8)
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Choose a subsequence (xτ(nk))k∈N of (xτ(n))n≥m1 arbitrarily. The property
of the limit superior of (f(xτ(n)))n≥m1 and (8) guarantee that

lim sup
k→∞

f
(
xτ(nk)

)
≤ lim sup

n→∞
f
(
xτ(n)

)
≤ f⋆. (9)

The boundedness of (xτ(nk))k∈N ensures that there exists (xτ(nkl
))l∈N (⊂ (xτ(nk))k∈N)

such that (xτ(nkl
))l∈N weakly converges to x⋆ ∈ H. Then, (A6) and (6) en-

sure that x⋆ ∈ X. Moreover, the weakly lower semicontinuity of f and (9)
guarantee that

f (x⋆) ≤ lim inf
l→∞

f
(
xτ(nkl)

)
≤ lim sup

l→∞
f
(
xτ(nkl)

)
≤ f⋆; i.e., x⋆ ∈ X⋆.

Therefore, (xτ(nkl
))l∈N weakly converges to x⋆ ∈ X⋆. From Cases 1 and 2,

there exists a subsequence of (xn)n∈N that weakly converges to a point in X⋆.
Suppose that assumption (i) in Theorem 3.2 holds. Since f :=

∑
i∈I f (i) is

strongly convex, X⋆ consists of one point, denoted by x⋆. In Case 1, the strong
convexity of f guarantees that there exists β > 0 such that, for all α ∈ (0, 1)
and for all l ∈ N, (β/2)α(1−α)∥xnl

− x⋆∥2 ≤ αf(xnl
)+ (1−α)f⋆ − f(αxnl

+
(1− α)x⋆). Accordingly, from the existence of limn→∞ ∥xn − x⋆∥ and (5),

β

2
α (1− α) lim

l→∞
∥xnl

− x⋆∥2 ≤ lim
l→∞

(αf (xnl
) + (1− α) f⋆)

+ lim sup
l→∞

(−f (αxnl
+ (1− α)x⋆))

≤ f⋆ − lim inf
l→∞

f (αxnl
+ (1− α)x⋆) ,

which, together with the weak convergence of (xnl
)l∈N to x⋆ and the weakly

lower semicontinuity of f , implies that

β

2
α (1− α) lim

l→∞
∥xnl

− x⋆∥2 ≤ f⋆ − f (αx⋆ + (1− α)x⋆) = 0.

That is, (xnl
)l∈N strongly converges to x⋆. Therefore, from [3, Theorem 5.11],

the whole sequence (xn)n∈N strongly converges to x⋆.
In Case 2, the strong convexity of f leads to the deduction that, for all

α ∈ (0, 1) and for all l ∈ N,

β

2
α (1− α) lim sup

l→∞

∥∥∥xτ(nkl
) − x⋆

∥∥∥2 ≤ α lim sup
l→∞

f
(
xτ(nkl

)

)
+ (1− α) f⋆

− lim inf
l→∞

f
(
αxτ(nkl

) + (1− α)x⋆
)
.

The weak convergence of (xτ(nkl
))l∈N to x⋆, the weakly lower semicontinuity

of f , and (9) imply that

β

2
α (1− α) lim sup

l→∞

∥∥∥xτ(nkl
) − x⋆

∥∥∥2 ≤ f⋆ − f (αx⋆ + (1− α)x⋆) = 0,
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which implies that (xτ(nkl
))l∈N strongly converges to x⋆.

When another subsequence (xτ(nkm ))m∈N (⊂ (xτ(nk))k∈N) can be chosen, a
discussion similar to the one for showing the weak convergence of (xτ(nkl

))l∈N
to a point in X⋆ guarantees that (xτ(nkm ))m∈N also weakly converges to a
point in X⋆. Furthermore, a discussion similar to the one for showing the
strong convergence of (xτ(nkl

))l∈N to x⋆ ensures that (xτ(nkm ))m∈N strongly

converges to the same x⋆. Hence, it is guaranteed that (xτ(nk))k∈N strongly
converges to x⋆. Since (xτ(nk))k∈N is an arbitrary subsequence of (xτ(n))n≥m1 ,
(xτ(n))n≥m1 strongly converges to x⋆; i.e., limn→∞ Γτ(n) = limn→∞ ∥xτ(n) −
x⋆∥ = 0. Accordingly, Proposition 2.3 ensures that

lim sup
n→∞

∥xn − x⋆∥ ≤ lim sup
n→∞

Γτ(n)+1 = 0,

which implies that, in Case 2, the whole sequence (xn)n∈N converges to x⋆.
Suppose that assumption (ii) in Theorem 3.2 holds. Let x⋆ ∈ X⋆ be the

unique solution to Problem 2.1. In Case 1, it is guaranteed that (xn)n∈N con-
verges to x⋆ ∈ X⋆. In Case 2, the convergence of (xτ(nkl

))l∈N to x⋆ is guar-
anteed. A discussion similar to the one for showing the strong convergence of
(xτ(n))n≥m1 to x⋆ (see the above paragraph) ensures that (xτ(n))n≥m1 con-
verges to x⋆ ∈ X⋆. Proposition 2.3 thus leads to the convergence of the whole
sequence (xn)n∈N to x⋆. This completes the proof. ⊓⊔

3.3 Convergence rate analysis of Algorithm 3.1 with diminishing step size

The following corollary establishes the rate of convergence of Algorithm 3.1
for unconstrained nonsmooth convex optimization.

Corollary 3.1 Consider Problem 2.1 when Q(i) = Id (i ∈ I) and suppose
that the assumptions in Theorem 3.2 hold. Then, for a large enough n ∈ N,

f(xn)− f⋆ ≤ IM1λn,

where M1 := maxi∈I M
(i)2

1 < ∞ and M
(i)
1 (i ∈ I) is defined as in Assumption

3.1.

The larger the number of users I, the greater theM1 := maxi∈I M
(i)2

1 . Accord-
ingly, Corollary 3.1 implies that, when the same step size sequence is used, the
efficiency of Algorithm 3.1 with Q(i) = Id (i ∈ I) may decrease as the number
of users I increases.

Proof In Case 1 in the proof of Theorem 3.2, lim infn→∞ Mn(x
⋆) ≤ 0 holds,

where Mn(x) (n ∈ N, x ∈ H) is defined by (3) and {x⋆} = X⋆. Let us prove
that there exists k1 ∈ N such that, for all n ≥ k1, Mn(x

⋆) ≤ 0. If this as-
sertion does not hold, there exist γ > 0 and a subsequence (Mnj (x

⋆))j∈N
(⊂ (Mn(x

⋆))n∈N) such that γ < Mnj (x
⋆) for all j ∈ N. Since Theorem 3.2

implies that (xn)n∈N strongly converges to x⋆, 0 < γ ≤ limj→∞ Mnj (x
⋆) ≤ 0,
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which is a contradiction. Hence, Mn(x
⋆) ≤ 0 (n ≥ k1). Since Q(i) = Id (i ∈ I)

implies that ∥xn −Q
(i)
α (xn)∥ = 0 (i ∈ I, n ∈ N), we have that, for all n ≥ k1,

Mn(x
⋆) = f(xn)− f⋆ − IM1λn ≤ 0.

In Case 2 in the proof of Theorem 3.2, the condition Q(i) = Id (i ∈ I) and
(7) lead to the existence of k2 ∈ N such that, for all n ≥ k2, f(xτ(n)) − f⋆ <
IM1λτ(n). This completes the proof. ⊓⊔

The following provides the rate of convergence of Algorithm 3.1 for con-
strained nonsmooth convex optimization under specific conditions.

Corollary 3.2 Suppose that the assumptions in Theorem 3.2 hold. If there
exists β(i) > 0 (i ∈ I) such that α(i) > β(i)2/(β(i)2 + 2) and d(xn, X) :=

∥xn−PX(xn)∥ ≤ β(i)∥xn−Q
(i)
α (xn)∥ (i ∈ I, n ∈ N) and if (∥xn−Q(i)(xn)∥)n∈N

(i ∈ I) is monotone decreasing, then, for all i ∈ I and for all n ∈ N,

∥∥∥xn −Q(i)(xn)
∥∥∥2 ≤

I
(
d (x0, X)

2
+ 3M1

∑n
k=0 λ

2
k

)
(
1− α(i)

) {(
β(i)2 + 2

)
α(i) − β(i)2

}
(n+ 1)

,

where (λn)n∈N satisfies
∑∞

n=0 λ
2
n < ∞, M1 := maxi∈I M

(i)2

1 < ∞, and M
(i)
1

(i ∈ I) is defined as in Assumption 3.1. Moreover, for a large enough n ∈ N,

f(xn)− f⋆ ≤ I

{(√
M1 +M2

)√ IM3

n+ 1
+M1λn

}
,

where M2 := maxi∈I M
(i)
2 < ∞, M

(i)
2 (i ∈ I) is defined as in Assumption

3.1, M3 := maxi∈I M
(i)
3 < ∞, and M

(i)
3 := (d(x0, X)2 + 3M1

∑∞
k=0 λ

2
k)/((1−

α(i)){(β(i)2 + 2)α(i) − β(i)2}) (i ∈ I).

Consider the case where α(i) := 1/2 and Q(i) := (1/(1 − α(i)))(PX −
α(i)Id) (i ∈ I); i.e., Q(i)

α = PX (i ∈ I). Then, Q(i) (i ∈ I) is nonexpansive
[3, Proposition 4.25]. Moreover, β(i) = 1 (i ∈ I) can be chosen such that

α(i) = 1/2 > β(i)2/(β(i)2 + 2) = 1/3 and d(xn, X) = β(i)∥xn − Q
(i)
α (xn)∥

(i ∈ I, n ∈ N). Corollary 3.2 thus implies that, if (∥xn − PX(xn)∥)n∈N is
monotone decreasing, Algorithm 3.1 with λn := 1/(n + 1) (n ∈ N) satisfies
f(xn)− f⋆ ≤ I{(

√
M1 +M2)

√
IM3/(n+ 1) +M1/(n+ 1)}.

The rate of convergence of Algorithm 3.1 depends on the number of users
I and the step size sequence (λn)n∈N. Since the larger the I, the greater the

M1 := maxi∈I M
(i)2

1 and the M2 := maxi∈I M
(i)
2 , Corollary 3.2 implies that,

when the same step size sequence is used, the efficiency of Algorithm 3.1 may
decrease as the number of users I increases, as seen in Corollary 3.1. Section
5 presents examples such that (∥xn − Q(i)(xn)∥)n∈N generated by Algorithm
3.1 is monotone decreasing.



16 Hideaki Iiduka

Proof Set zn := PX(xn) (n ∈ N). Then, d(xn+1, X) := infy∈X ∥xn+1 − y∥ ≤
∥xn+1−zn∥ (n ∈ N). Accordingly, Lemma 3.1(i) guarantees that, for all n ∈ N,

d (xn+1, X)
2 ≤ d (xn, X)

2 − 2

I

∑
i∈I

α(i)
(
1− α(i)

)∥∥∥xn −Q(i)(xn)
∥∥∥2 + 2M1λ

2
n

+
2λn

I

∑
i∈I

⟨
zn − xn, g

(i)
n

⟩
,

which implies that, for all N ∈ N,

2

I

N∑
n=0

∑
i∈I

α(i)
(
1− α(i)

)∥∥∥xn −Q(i)(xn)
∥∥∥2

≤ d (x0, X)
2 − d (xN+1, X)

2
+ 2M1

N∑
n=0

λ2
n +

2

I

N∑
n=0

λn

∑
i∈I

⟨
zn − xn, g

(i)
n

⟩
.

From 2∥x∥∥y∥ ≤ ∥x∥2 + ∥y∥2 (x, y ∈ H) and the Cauchy-Schwarz inequality,

(2/I)
∑N

n=0

∑
i∈I⟨zn−xn, λng

(i)
n ⟩ ≤ (1/I)

∑N
n=0

∑
i∈I(∥zn−xn∥2+λ2

n∥g
(i)
n ∥2),

which, together with the definition of M1 and ∥xn−zn∥ ≤ β(i)∥xn−Q
(i)
α (xn)∥

(i ∈ I, n ∈ N), implies that

2

I

N∑
n=0

∑
i∈I

⟨
zn − xn, λng

(i)
n

⟩
≤ 1

I

N∑
n=0

∑
i∈I

β(i)2
∥∥∥xn −Q(i)

α (xn)
∥∥∥2 +M1

N∑
n=0

λ2
n.

Accordingly, for all N ∈ N,

1

I

N∑
n=0

∑
i∈I

(
1− α(i)

){(
β(i)2 + 2

)
α(i) − β(i)2

}∥∥∥xn −Q(i)(xn)
∥∥∥2

≤ d (x0, X)
2
+ 3M1

N∑
n=0

λ2
n.

From the monotone decreasing property of (∥xn − Q(i)(xn)∥)n∈N (i ∈ I), for
all j ∈ I and for all N ∈ N,

(N + 1)

I

(
1− α(j)

){(
β(j)2 + 2

)
α(j) − β(j)2

}∥∥∥xN −Q(j) (xN )
∥∥∥2

≤ (N + 1)

I

∑
i∈I

(
1− α(i)

){(
β(i)2 + 2

)
α(i) − β(i)2

}∥∥∥xN −Q(i) (xN )
∥∥∥2

≤ d (x0, X)
2
+ 3M1

N∑
n=0

λ2
n,

which implies that, for all j ∈ I and for all N ∈ N,

∥∥∥xN −Q(j) (xN )
∥∥∥2 ≤

I
(
d (x0, X)

2
+ 3M1

∑N
n=0 λ

2
n

)
(
1− α(j)

) {(
β(j)2 + 2

)
α(j) − β(j)2

}
(N + 1)

.
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In Case 1 in the proof of Theorem 3.2, lim infn→∞ Mn(x
⋆) ≤ 0, where

{x⋆} = X⋆. A discussion similar to the one for obtaining Mn(x
⋆) ≤ 0 (n ≥ k1)

in the proof of Corollary 3.1 implies that there exists k3 ∈ N such that, for all

n ≥ k3,Mn(x
⋆) = f(xn)−f⋆−(

√
M1+M2)

∑
i∈I ∥xn−Q

(i)
α (xn)∥−IM1λn ≤ 0.

In Case 2 in the proof of Theorem 3.2, (7) leads to the existence of k4 ∈ N such

that, for all n ≥ k4, f(xτ(n))−f⋆ < (
√
M1+M2)

∑
i∈I ∥xτ(n)−Q

(i)
α (xτ(n))∥+

IM1λτ(n). Accordingly, for a large enough n ∈ N,

f(xn)− f⋆ ≤
(√

M1 +M2

)∑
i∈I

(
1− α(i)

)∥∥∥xn −Q(i)(xn)
∥∥∥+ IM1λn

≤
(√

M1 +M2

)∑
i∈I

(
1− α(i)

)√ IM3

n+ 1
+ IM1λn

≤ I
(√

M1 +M2

)√ IM3

n+ 1
+ IM1λn.

This completes the proof. ⊓⊔

4 Incremental Subgradient Method

The section presents a method for solving Problem 2.1 under the assumption
that

(A7) each user can communicate with his/her neighbors,

where user i’s neighbors are users (i− 1) and (i+ 1) (i ∈ I) and user 0 (resp.
user (I+1)) stands for user I (resp. user 1). This assumption implies that the
network considered here is a ring-shaped network in which the users form a
circle and pass along messages in cyclic order.

Algorithm 4.1

Step 0. User i (i ∈ I) sets α(i) and (λn)n∈N ⊂ (0,∞). User 1 sets x0 :=

x
(0)
0 ∈ H.

Step 1. User i (i ∈ I) computes x
(i)
n ∈ H using

x(i)
n := Q(i)

α

(
x(i−1)
n

)
− λng

(i)
n , where g(i)n ∈ ∂f (i)

(
Q(i)

α

(
x(i−1)
n

))
.

Step 2. User I sets

xn+1 = x
(0)
n+1 := x(I)

n

and transmits it to user 1. The algorithm sets n := n+ 1 and returns to Step
1.
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From (A3) and (A7), user i (i ∈ I) can compute x
(i)
n := Q

(i)
α (x

(i−1)
n ) −

λng
(i)
n , where g

(i)
n ∈ ∂f (i)(Q

(i)
α (x

(i−1)
n )), by using information x

(i−1)
n transmit-

ted from user (i− 1) and its own private information.

Now, let us consider the differences between Algorithms 3.1 and 4.1. In

Algorithm 3.1, user i computes x
(i)
n by using xn ∈ H, λn ∈ (0,∞), and its

own private information ∂f (i) and Q
(i)
α , and each point x

(i)
n is broadcast to all

users. As a result, all users have (xn+1 := (1/I)
∑

i∈I x
(i)
n )n∈N, which strongly

converges to a point in X⋆ (Theorem 3.2). In Algorithm 4.1, user i computes

x
(i)
n by using λn ∈ (0,∞), ∂f (i), Q

(i)
α , and the point x

(i−1)
n transmitted from

user (i− 1), and point x
(i)
n is transmitted to user (i+ 1). User i in Algorithm

4.1 has (x
(i)
n )n∈N, which strongly converges to a point in X⋆ (Theorem 4.2).

The following assumptions are made here.

Assumption 4.1 For all i ∈ I, there exist N
(i)
1 , N

(i)
2 ∈ R such that

sup
{
∥g∥ : g ∈ ∂f (i)

(
Q(i)

α

(
x(i−1)
n

))
, n ∈ N

}
≤ N

(i)
1 ,

sup
{
∥g∥ : g ∈ ∂f (i) (xn) , n ∈ N

}
≤ N

(i)
2 .

Assumption 4.2 The sequence (x
(i)
n )n∈N (i ∈ I) is bounded.

From a discussion similar to the one for obtaining the relationship between
Assumptions 3.1 and 3.2, Assumption 4.2 implies Assumption 4.1. Assumption
4.1 is used to perform a convergence analysis of Algorithm 4.1 with a constant
step-size rule (Subsection 4.1) while Assumption 4.2 is used to analyze Algo-
rithm 4.1 with a diminishing step-size rule for the same reason described in
Section 3. The same discussion as for (1) describing the existence of a simple,
bounded, closed convex set X(i) (i ∈ I) satisfying X(i) ⊃ Fix(Q(i)) leads to

x(i)
n := P (i)

(
Q(i)

α

(
x(i−1)
n

)
− λng

(i)
n

)
instead of x

(i)
n for Algorithm 4.1. The boundedness of X(i) guarantees that

Assumption 4.2 holds (see also (1)).

4.1 Constant step-size rule

Let us perform a convergence analysis of Algorithm 4.1 with a constant step
size. We omit the details due to lack of space. See the extended version of this
work [16] for the proof of the following theorem.
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Theorem 4.1 Suppose that Assumptions (A1)–(A4), (A7), 3.3, and 4.1 hold.
Then, (xn)n∈N in Algorithm 4.1 satisfies the relations

lim inf
n→∞

∥∥∥x(i−1)
n −Q(i)

(
x(i−1)
n

)∥∥∥2 ≤ Nλλ

α(i)
(
1− α(i)

) (i ∈ I) ,

lim inf
n→∞

f (xn) ≤ f⋆ + I

(
I
√
N1N2

2
+N1

)
λ+N2

∑
i∈I

i−1∑
j=1

√(
1− α(j)

)
Nλλ

α(j)

+
(√

N1 +N2

)∑
i∈I

√(
1− α(j)

)
Nλλ

α(i)
,

where N1 := maxi∈I N
(i)2

1 < ∞ and N2 := maxi∈I N
(i)
2 < ∞ and, for some

x ∈ X, Nλ := supn∈N(IN1λ+ |
∑

i∈I⟨x− x
(i−1)
n , g

(i)
n ⟩|).

4.2 Diminishing step-size rule

Let us perform a convergence analysis of Algorithm 4.1 with a diminishing
step size. We omit the details due to lack of space. Theorem 4.2 can be proved
by referring to the proof of Theorem 3.2. The proof of Theorem 4.2 is given
in the extended version of this work [16].

Theorem 4.2 Suppose that Assumptions (A1)–(A4), (A7), 3.4, and 4.2 hold.

Then there exists a subsequence of (x
(i)
n )n∈N (i ∈ I) generated by Algorithm

4.1 that weakly converges to a point in X⋆. If either (i) or (ii) in Theorem 3.2

holds, (x
(i)
n )n∈N (i ∈ I) strongly converges to a unique point in X⋆.4

Regarding the relationship between the proposed algorithms (Algorithms
3.1 and 4.1) and the distributed random projection method [21], we have the
following remark.

Remark 4.1 Suppose that user i’s objective function f (i) is convex and dif-
ferentiable and that user i’s constraint set C(i) is defined as the intersection
of finitely many simple closed convex constraints; i.e.,

C(i) :=
∩

k∈J (i)

C
(i)
k ,

where J (i) is finite and C
(i)
k (k ∈ J (i)) is a nonempty, closed convex set of

RN such that P
C

(i)
k

can be computed efficiently. At iteration n of the method

[21], user i calculates the weighted average of the x
(j)
n received from its local

4 Figure 6 shows the existence of a subsequence of (xn)n∈N generated by Algorithm 4.1
that converges to a solution to Problem 5.1 when all f (i) are convex while Figure 8 indicates
the convergence of (xn)n∈N generated by Algorithm 4.1 to the solution to Problem 5.1 when
only f (1) is strongly convex.
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neighbors j and determines the iteration value by using the gradient informa-
tion of its own objective function and the metric projection onto a constraint

C
(i)

Ω
(i)
n

(Ω
(i)
n ∈ J (i)) selected randomly from its constraint set C(i); i.e.,

v(i)n :=
∑

j∈N
(i)
n

wij,nx
(j)
n ,

x
(i)
n+1 := P

C
(i)

Ω
(i)
n

(
v(i)n − αn∇f (i)

(
v(i)n

))
,

(10)

where N
(i)
n stands for the set of user i and the users that send information

to user i, wij,n ≥ 0 (j ∈ N
(i)
n ) with

∑
j∈N

(i)
n

wij,n = 1 (i ∈ I), and αn > 0.

Proposition 1 in [21] indicates that, under certain assumptions, the sequence

(x
(i)
n )n∈N (i ∈ I) generated by Algorithm (10) converges almost surely to the

minimizer of
∑

i∈I f (i) over
∩

i∈I C(i).
Algorithm 3.1 (resp. Algorithm 4.1) can be applied to the problem con-

sidered in [21] under Assumption (A5) (resp. Assumption (A7)) and the as-
sumption that user i can use all P

C
(i)
k

(k ∈ J (i)) at each iteration. Since the

product of metric projections or the weighted average of metric projections is
a special case of a quasi-nonexpansive mapping, Q(i) in Algorithms 3.1 and
4.1 can be given, for example, by

Q(i) :=
∏

k∈J (i)

P
C

(i)
k

or Q(i) :=
∑

k∈J (i)

w
(i)
k P

C
(i)
k

,

where (w
(i)
k )k∈J (i) (i ∈ I) satisfies

∑
k∈J (i) w

(i)
k = 1.

4.3 Convergence rate analysis of Algorithm 4.1 with diminishing step size

Here we discuss the rates of convergence of Algorithm 4.1 but omit the details
due to lack of space. Corollaries 4.1 and 4.2 can be proved by using the proof
of Corollaries 3.1 and 3.2. The proofs of Corollaries 4.1 and 4.2 are in the
extended version of this work [16].

Corollary 4.1 Consider Problem 2.1 when Q(i) = Id (i ∈ I) and suppose
that the assumptions in Theorem 4.2 hold. Then, for a large enough n ∈ N,

f(xn)− f⋆ ≤ I

{
(I − 1)

2

√
N1N2 +N1

}
λn,

where N1 := maxi∈I N
(i)2

1 < ∞, N2 := maxi∈I N
(i)
2 < ∞, and N

(i)
1 and N

(i)
2

(i ∈ I) are defined as in Assumption 4.1.

Corollary 4.2 Suppose that the assumptions in Theorem 4.2 hold. If there

exists β(i) > 0 (i ∈ I) such that α(i) > β(i)2/(β(i)2 + 2) and d(x
(i−1)
n , X) :=

∥x(i−1)
n − PX(x

(i−1)
n )∥ ≤ β(i)∥x(i−1)

n − Q
(i)
α (x

(i−1)
n )∥ (i ∈ I, n ∈ N) and if
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(∥x(i−1)
n −Q(i)(x

(i−1)
n )∥)n∈N (i ∈ I) is monotone decreasing, then, for all i ∈ I

and for all n ∈ N,∥∥∥x(i−1)
n −Q(i)

(
x(i−1)
n

)∥∥∥2 ≤
d (x0, X)

2
+ 3IN1

∑n
k=0 λ

2
k(

1− α(i)
) {(

β(i)2 + 2
)
α(i) − β(i)2

}
(n+ 1)

,

where (λn)n∈N satisfies
∑∞

n=0 λ
2
n < ∞, N1 := maxi∈I N

(i)2

1 < ∞, and N
(i)
1

(i ∈ I) is defined as in Assumption 4.1. Moreover, for a large enough n ∈ N,

f(xn)− f⋆ ≤ I

{(√
N1 +

(I + 1)N2

2

)√
N3

n+ 1
+

(
(I − 1)

√
N1N2

2
+N1

)
λn

}
,

where N2 := maxi∈I N
(i)
2 < ∞, N

(i)
2 (i ∈ I) is defined as in Assumption

4.1, N3 := maxi∈I N
(i)
3 < ∞, and N

(i)
3 := (d(x0, X)2 + 3IN1

∑∞
k=0 λ

2
k)/((1−

α(i)){(β(i)2 + 2)α(i) − β(i)2}) (i ∈ I).

5 Numerical Examples

This section considers the following problem over the intersection of sublevel
sets of convex functions [13, Section 3.2] and numerically compares Algorithms
3.1 and 4.1 with the method in [13, (2.1), (3.1), (3.14), (4.3)].

Problem 5.1 Let f (i) : RN → R and g(i) : RN → R (i ∈ I) be convex.

Minimize f(x) :=
∑
i∈I

f (i)(x) subject to x ∈ X :=
∩
i∈I

lev≤0g
(i) ̸= ∅,

where lev≤0g
(i) := {x ∈ RN : g(i)(x) ≤ 0}.

Let us define the subgradient projection [2, Proposition 2.3], [35, Subchapter
4.3] relative to g(i) (i ∈ I) for all x ∈ RN by

Q(i)
sp (x) :=

x− g(i)(x)∥∥z(i)(x)∥∥2 z(i)(x) if g(i)(x) > 0,

x otherwise,

where z(i)(x) ∈ ∂g(i)(x) (i ∈ I, x ∈ RN ). The mapping Q
(i)
sp (i ∈ I) is quasi-

firmly nonexpansive, and Id−Q
(i)
sp (i ∈ I) is demiclosed in the sense of the Eu-

clidean space setting [1, Lemma 3.1]. Moreover, Fix(Q
(i)
sp ) = lev≤0g

(i). Hence,
Problem 5.1 is an example of Problem 2.1 that can be solved by Algorithms
3.1 and 4.1 (see Theorems 3.1, 3.2, 4.1, and 4.2).

Here it is assumed that lev≤0g
(p) is bounded for some p ∈ I (see also [13,

Proposition 3.4]). Accordingly, a closed ball Y with a large enough radius can
be chosen so that Y ⊃ lev≤0g

(p) ⊃ X. Hence, setting X(i) := Y (i ∈ I) in (1)
satisfies Assumptions 3.2 and 4.2.
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The following is the incremental subgradient method (ISM) [13, (2.1), (3.1),
(3.14), (4.3)] used for solving Problem 5.1 given x0 ∈ RN and (λn)n∈N (⊂
(0,∞)):

x
(0)
n := xn,

x
(i)
n := PY

(
x
(i−1)
n − λng

(i)
n

)
, g

(i)
n ∈ ∂f (i)

(
x
(i−1)
n

)
(i ∈ I) ,

y
(0)
n := x

(I)
n ,

y
(i)
n := Q

(i)
sp

(
y
(i−1)
n

)
(i ∈ I) ,

xn+1 := y
(I)
n .

(11)

Theorem 2.5 in [13] guarantees that, if (∥xn − PX(xn)∥)n∈N is bounded and
if limn→∞ max{0, f(PX(xn)) − f(xn)} = 0, (xn)n∈N generated by (11) with
(C2) and (C3) satisfies limn→∞ ∥xn − PX(xn)∥ = 0 and limn→∞ f(xn) = f⋆.

In an experiment, we define that, for all i ∈ I, f (i)(x) := |a(i)x+ b(i)| (x ∈
R) and g(i)(x) := ⟨c(i), x⟩+d(i) (⟨c(i), x⟩ > −d(i)) or 0 (⟨c(i), x⟩ ≤ −d(i)), where
a(i) > 0, b(i), d(i) ∈ R, and c(i) ∈ {x := (x1, x2, . . . , xI) ∈ RI : xi > 0 (i ∈ I)}.
We modified g(1)(x) := ∥x∥ − 2C, where C > 0, to satisfy lev≤0g

(1) ⊂ Y :=
{x ∈ RI : ∥x∥ ≤ 2C}. The experiment was one using a 27-inch iMac with a
3.20 GHz Intel(R) Core(TM) i5-4570 CPU processor, 24 GB, 1600 MHz DDR3
memory, and Mac OSX Yosemite (Version 10.10.3) operating system. ISM
(Algorithm (11)), Algorithm 3.1, and Algorithm 4.1 were written in Python
3.4.3, and gnuplot 5.0 (patchlevel 0) was used to graph the results. We set
I := 2, 8, 16, 64, 256 and α(i) := 1/2 (i ∈ I) and used a(i) ∈ (0, 100], b(i) ∈
[−100, 100], c(i) with ∥c(i)∥ = 1, d(i) ∈ [− I

√
C, I

√
C], ā(i) ∈ ∂f (i)(−b(i)/a(i)),

and c̄(i) ∈ ∂g(i)(x) (⟨c(i), x⟩ = −d(i)) generated randomly by numpy.random5

(a Mersenne Twister pseudo-random number generator).
To see how the choice of step size affects the convergence rate of the algo-

rithms, we used

Constant step sizes: λn := 10−3 (n ∈ N) ,

Diminishing step sizes: λn :=
10−3

(n+ 1)a
(a := 1, 0.01, n ∈ N) .

(12)

From Theorems 3.1 and 4.1, it can be expected that Algorithms 3.1 and 4.1
with small enough constant step sizes approximate solutions to Problem 5.1.
Numerical results in [14,18] indicate that the existing fixed point optimiza-
tion algorithms with small step sizes (e.g., λn := 10−2/(n + 1)a, 10−3/(n +
1)a, 10−5/(n + 1)a (a := 0.1, 0.01, n ∈ N)) have fast convergence. Accord-
ingly, the experiment described in this section used the step sizes in (12).
We also found that, under the same conditions as in the above paragraph,
ISM, Algorithm 3.1, and Algorithm 4.1 when λn := 10−3/(n+ 1)a and λn :=
10−5/(n+1)a (a := 0.1, 0.01, n ∈ N) perform better than when λn := 1/(n+1)a

(a = 0.1, 0.01, n ∈ N). Only the results for the step sizes in (12) are given

5 http://docs.scipy.org/doc/numpy/reference/routines.random.html
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due to lack of space.6 The step size λn := 10−3/(n + 1) (n ∈ N) satisfying∑∞
n=0 λ

2
n < ∞ was used to illustrate the proposed methods’ efficiency and

support the convergence rate analysis of the methods (Corollaries 3.1, 3.2, 4.1,
and 4.2).

We used two performance measures for each n ∈ N:

Dn :=
1

100

100∑
s=1

∑
i∈I

∥∥∥xn (s)−Q(i)
sp (xn (s))

∥∥∥ , Fn :=
1

100

100∑
s=1

∑
i∈I

f (i)
(
x(i)
n (s)

)
,

where (xn(s))n∈N defined by xn(s) := (x
(i)
n (s)) (n ∈ N, s = 1, 2, . . . , 100) is

the sequence generated by the initial point x(s) (s = 1, 2, . . . , 100) and each
of ISM, Algorithm 3.1, and Algorithm 4.1. If (Dn)n∈N converges to 0, they

converge to some point in
∩

i∈I Fix(Q
(i)
sp ) = X.

First, let us consider the case where I := 64 and λn := 10−3 (n ∈ N).
Figures 1 and 2 illustrate the results for ISM, Algorithm 3.1, and Algorithm
4.1. The y-axes in Figure 1 represent the value of Dn while the y-axes in Figure
2 represent the value of Fn. The x-axes in Figures 1(a) and 2(a) represent the
number of iterations while the x-axes in Figures 1(b) and 2(b) represent elapsed
time. Figure 1 shows that (Dn)n∈N generated by Algorithm 3.1 was stable and
monotone decreasing while those generated by ISM and Algorithm 4.1 were
unstable and approximately zero during the early iterations. Figure 2 shows
that ISM, Algorithm 3.1, and Algorithm 4.1 minimized Fn.

Next, let us consider the case where I := 64 and λn := 10−3/(n+1)0.01 (n ∈
N). Figure 3 shows that (Dn)n∈N generated by Algorithm 3.1 was stable while
those generated by ISM and Algorithm 4.1 were unstable and approximately
zero during the early iterations, as in the case with λn := 10−3 (Figure 1).
Figure 4 shows that Fn decreased faster with ISM and Algorithm 4.1 than
with Algorithm 3.1.

Let us fix the step size λn := 10−3/(n + 1)0.01 (n ∈ N) and see how the
number of users affects the efficiency of Algorithms 3.1 and 4.1. The behaviors
of Dn and Fn for Algorithm 3.1 when I := 16, 64, 256 are illustrated in Figure
5. Although (Dn)n∈N and (Fn)n∈N were stable, the larger the I, the greater
the number of iterations that were required (Figure 5(a), (c)) and the longer
the elapsed time (Figure 5(b), (d)). That is, the efficiency of Algorithm 3.1
decreases as the number of users increases. The behaviors of Dn and Fn for
Algorithm 4.1 when I := 16, 64, 256 are illustrated in Figure 6. Although
(Dn)n≥40 were unstable, D10 ≈ 10−5 held for the three cases (Figure 6(a),
(b)), and (Fn)n∈N for the three cases converged in the early stages (Figure
6(c), (d)).

Finally, let us consider the case when λn := 10−3/(n + 1) (n ∈ N) and
f (1) replaced by f (1)(x) := a(1)∥x+ b(1)∥2 (x ∈ RI), where a(1) ∈ (0, 100] and
b(1) ∈ [−100, 100]I were chosen randomly, to support the convergence analysis
of Algorithms 3.1 and 4.1 discussed in Subsections 3.2, 3.3, 4.2, and 4.3 (see

6 See Figures 3–6 in Section 5 of the extended version of this work [16] for the results for
λn := 10−5, 10−3/(n+ 1)0.1 (n ∈ N).
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also assumption (i) in Theorems 3.2 and 4.2 and condition
∑∞

n=0 λ
2
n < ∞

in Corollaries 3.2 and 4.2). Since f (1) is strongly convex, Theorems 3.2 and
4.2 guarantee that Algorithms 3.1 and 4.1 converge to the solution to Problem
5.1. Moreover, Corollaries 3.2 and 4.2 indicate that, under certain assumptions,
Algorithm 3.1 satisfies inequality

∑
i∈I

∥∥∥xn −Q(i)
sp (xn)

∥∥∥ ≤ I
√
IM3√
n+ 1

,

f(xn)− f⋆ ≤
I
{(√

M1 +M2

)√
IM3 +M1

}
√
n+ 1

,

(13)

while Algorithm 4.1 satisfies inequality

∑
i∈I

∥∥∥x(i−1)
n −Q(i)

sp

(
x(i−1)
n

)∥∥∥ ≤ I
√
N3√

n+ 1
,

f(xn)− f⋆ ≤
I
{(

2
√
N1 + (I + 1)N2

)√
N3 +

(
(I − 1)

√
N1N2 + 2N1

)}
2
√
n+ 1

.

(14)

Inequalities (13) and (14) imply that the efficiencies of Algorithms 3.1 and 4.1
may decrease as the number of users I increases. Figure 7 shows that (Dn)n∈N
generated by Algorithm 3.1 was monotone decreasing and that, the larger the
I, the greater the number of iterations that were required (Figure 7(a), (c))
and the longer the elapsed time (Figure 7(b), (d)), as seen in Figure 5. This
can be seen in (13). Figure 8 illustrates the behaviors of Dn and Fn for Al-
gorithm 4.1. It shows that the behaviors of Algorithm 4.1 when one f (i) was
strongly convex were more stable than when all f (i) were convex (Figures 3, 4,
and 6). The strong convexity condition of f (1) (i.e., the uniqueness of the solu-
tion to Problem 5.1) apparently affects the stability of Algorithm 4.1. This is
consistent with Theorem 4.2 and indicates that the whole sequence (xn)n∈N in
Algorithm 4.1 converges when one f (i) is strongly convex while a subsequence
of (xn)n∈N converges when all f (i) are convex. Although (14) and Figure 8
show that the efficiency of Algorithm 4.1 decreases as I increases, Algorithm
4.1 has fast convergence regardless of the number of users. Furthermore, as
shown by Figures 7 and 8, when I := 2, Algorithm 3.1 performed better than
Algorithm 4.1 in the early stages. This means that Algorithm 3.1 is well suited
for use when the number of users is small.

From the above discussion, we conclude that Algorithm 3.1 is robust in
terms of stability regardless of the number of users and is well suited for small-
scale convex optimization problems over fixed point sets of quasi-nonexpansive
mappings. We also conclude that Algorithm 4.1 has fast convergence regard-
less of the number of users and is well suited for solving large-scale convex
optimization problems over fixed point sets of quasi-nonexpansive mappings.
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6 Conclusion and Future Work

This paper described parallel and incremental subgradient methods for min-
imizing the sum of nondifferentiable, convex functions over the intersection
of fixed point sets of quasi-nonexpansive mappings in a real Hilbert space.
Investigation of the convergence properties for a constant step-size rule and
a diminishing step-size rule showed that, with a small constant step size, the
two methods give an approximate solution to the minimization problem and
that, with a diminishing sequence, the sequence generated by each of the two
methods strongly converges to the solution to the minimization problem under
certain assumptions. The convergence rate of the two methods was analyzed
under certain situations.

This paper also numerically compared the proposed methods with an ex-
isting method for nonsmooth convex optimization over sublevel sets of convex
functions. Numerical examples demonstrated that, for concrete convex opti-
mization problems when the number of users is fixed, the parallel subgradi-
ent method with a constant or diminishing step size is more stable than the
incremental subgradient method with the same step size while the incremen-
tal subgradient method has faster convergence. The numerical examples also
demonstrated that the efficiency of the parallel subgradient method decreased
as the number of users increased while the incremental subgradient method
was robust even with a large number of users.

The proposed methods work well only when each user makes the best use
of its own private information while the distributed random projection method
[21] works well even when each user randomly sets one projection selected from
many projections. This means that consideration should be given to developing
distributed random fixed point algorithms that work when one user randomly
chooses one quasi-nonexpansive mapping at a time. Consideration should also
be given to devising nonsmooth convex optimization algorithms that combine
stability and fast convergence, in contrast to the proposed methods. For exam-
ple, an algorithm combining the parallel and incremental subgradient methods
could be devised on the basis of the ideas in [17]. Such an algorithm should be
numerically evaluated to see whether it performs better than the two proposed
methods.
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