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Abstract The existing algorithms for solving the convex minimization prob-
lem over the fixed point set of a nonexpansive mapping on a Hilbert space
are based on algorithmic methods, such as the steepest descent method and
conjugate gradient methods, for finding a minimizer of the objective func-
tion over the whole space, and attach importance to minimizing the objective
function as quickly as possible. Meanwhile, it is of practical importance to
devise algorithms which converge in the fixed point set quickly because the
fixed point set is the set with the constraint conditions that must be satisfied
in the problem. This paper proposes an algorithm which not only minimizes
the objective function quickly but also converges in the fixed point set much
faster than the existing algorithms and proves that the algorithm with di-
minishing step-size sequences strongly converges to the solution to the convex
minimization problem. We also analyze the proposed algorithm with each of
the Fletcher–Reeves, Polak–Ribiére–Polyak, Hestenes–Stiefel, and Dai–Yuan
formulas used in the conventional conjugate gradient methods, and show that
there is an inconvenient possibility that their algorithms may not converge
to the solution to the convex minimization problem. We numerically compare
the proposed algorithm with the existing algorithms and show its effectiveness
and fast convergence.
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1 Introduction

This paper discusses the following convex optimization problem over the fixed
point set of a nonexpansive mapping [31]: given a convex, continuously Fréchet
differentiable functional, f , on a real Hilbert space, H, and a nonexpansive
mapping, N , from H into itself, which has its fixed point (i.e., Fix(N) := {x ∈
H : N(x) = x} ̸= ∅),

minimize f(x) subject to x ∈ Fix(N). (1)

Problem (1) includes practical problems such as signal recovery [8], beamform-
ing [27], and bandwidth allocation [17,19]. In particular, it plays an important
role when the constraint set composed of the absolute set and the subsidiary
sets is not feasible [17,19]. When we consider an optimization problem, includ-
ing the problem in [17,19], it would be reasonable to deal with a constraint
set in the problem as a subset [9, Section I, Framework 2], [31, Definition 4.1]
of the absolute set with the elements closest to the subsidiary sets in terms of
the norm. Here, we formulate a compromise solution to the problem by using
the minimizer of the objective function over this subset. Since the subset can
be expressed as the fixed point set of a certain nonexpansive mapping [31,
Proposition 4.2], the minimization problem over the subset can be formulated
as Problem (1).

We shall review the existing algorithms, called fixed point optimization al-
gorithms, for solving Problem (1) when the gradient of f , denoted by∇f : H →
H, is strongly monotone and Lipschitz continuous. The first algorithm devel-
oped for solving Problem (1) is the hybrid steepest descent method (HSDM)

[31,32]: x0 ∈ H, df0 := −∇f(x0),

xn+1 := N
(
xn + µαnd

f
n

)
, (2)

dfn+1 := −∇f (xn+1) ,

for each n ∈ N, where µ > 0 and (αn)n∈N is a sequence with limn→∞ αn = 0
and

∑∞
n=0 αn = ∞. HSDM strongly converges to the unique solution to Prob-

lem (1) [32, Theorem 2.15, Remark 2.17 (a)]. Reference [8] proposed an effec-
tive algorithm, called the block-iterative surrogate constraint splitting method,
to accelerate HSDM. The method in [8] converges strongly to the solution to
Problem (1) without using diminishing sequences.

The conjugate gradient methods [25, Chapter 5] and three-term conjugate
gradient methods [7,23,34–36] are the most popular methods that can acceler-
ate the steepest descent method (i.e., xn+1 := xn −αn∇f(xn)) for large-scale
unconstrained optimization problems. The search directions of the conjugate
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gradient method and three-term conjugate gradient method are as follows: for
each n ∈ N,

dfn+1 := −∇f (xn+1) + δ(1)n dfn, (3)

dfn+1 := −∇f (xn+1) + δ(1)n dfn − δ(2)n zn, (4)

where (δ
(i)
n )n∈N ⊂ [0,∞) (i = 1, 2) and zn ∈ H (n ∈ N) is an arbitrary point.

In general, the conjugate gradient method (i.e, xn+1 := xn+αnd
f
n with dfn de-

fined by Equation (3)) does not generate the descent search direction,1 which
means that it does not always decrease f at each iteration. We need to set

δ
(1)
n appropriately to ensure that (dfn)n∈N defined by Equation (3) is the de-
scent search direction. Meanwhile, the three-term conjugate gradient method
(i.e., xn+1 := xn + αnd

f
n with dfn defined by Equation (4)) generates the de-

scent search direction [23, Subsection 2.1] without depending on the choice

of δ
(1)
n (see Footnote 2 for the well-known formulas of δ

(1)
n ). This is because

the third term δ
(2)
n zn in Equation (4) plays a role in generating the descent

search direction (see [23, Subsection 2.1] and Subsection 3.1). On the basis
of such acceleration methods for the steepest descent method, references [20]
and [15] presented algorithms that respectively use Equation (2) and Equa-
tions (3) and (4) to solve Problem (1). The algorithm with Equations (2) and
(3) and the algorithm with Equations (2) and (4) are referred to here as the
hybrid conjugate gradient method (HCGM) and the hybrid three-term conju-
gate gradient method (HTCGM), respectively. HCGM and HTCGM converge

strongly to the solution to Problem (1) when limn→∞ δ
(i)
n = 0 (i = 1, 2) and

(zn)n∈N is bounded [20, Theorem 4.1], [15, Theorem 7]. Here, we remark that
the conjugate gradient methods with the well-known formulas, such as the
Fletcher–Reeves (FR), Polak–Ribiére–Polyak (PRP), Hestenes–Stiefel (HS),
and Dai–Yuan (DY) formulas2, can solve unconstrained optimization problems
without assuming limn→∞ δn = 0. To distinguish between the conventional
conjugate gradient directions with the four formulas and the directions defined

by Equations (3) and (4) with limn→∞ δ
(i)
n = 0, we call the latter the conjugate

gradient-like directions. The numerical examples in [15,20] show that HCGM

and HTCGM with slowly diminishing sequences δ
(i)
n s (e.g., δ

(i)
n := 1/(n+1)0.01

(i = 1, 2)) converge to the solution faster than HSDM, and that, in particular,
HTCGM converges fastest.

The main advantage of fixed point optimization algorithms, such as HCGM
and HTCGM, with conjugate gradient-like directions is to enable f to be de-
creased much faster than HSDM with the steepest descent direction. Mean-
while, the rates of convergence of the distance d(xn,Fix(N)) := infx∈Fix(N) ∥xn−
x∥ to 0 are the same for all three algorithms because these algorithms each
iterate as xn+1 := N(xn + µαnd

f
n) (n ∈ N). Here, we shall discuss Problem

1 (dfn)n∈N is referred to as a descent search direction if ⟨dfn,∇f(xn)⟩ < 0 for all n ∈ N.
2 These are defined as follows: δFR

n := ∥∇f(xn+1)∥2/∥∇f(xn)∥2, δPRP
n :=

vn/∥∇f(xn)∥2, δHS
n := vn/un, δDY

n := ∥∇f(xn+1)∥2/un, where un := ⟨dfn,∇f(xn+1) −
∇f(xn)⟩ and vn := ⟨∇f(xn+1),∇f(xn+1)−∇f(xn)⟩.
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(1) when Fix(N) is the set of all minimizers of a convex, continuously Fréchet
differentiable functional, g, over H and see that xn+1 := N(xn + µαnd

f
n)

(n ∈ N) is based on the steepest descent method to minimize g over H. Sup-
pose that ∇g : H → H is Lipschitz continuous with a constant l > 0 and define
Ng : H → H by Ng := I − α∇g, where α ∈ (0, 2/l] and I : H → H stands for
the identity mapping. Accordingly, Ng satisfies the nonexpansivity condition
and Fix(Ng) = Argminx∈H g(x) (see, e.g., [14, Proposition 2.3]). Therefore,
Equation (2) with Ng := I − α∇g is as follows:

yn := xn + µαnd
f
n,

xn+1 := Ng

(
xn + µαnd

f
n

)
= [I − α∇g] (yn) = yn + α [−∇g(yn)]

= yn + α

[
Ng(yn)− yn

α

]
.

(5)

Hence, Algorithm (5) has the steepest descent direction,

d
Ng

n+1 := −∇g(yn) =
Ng(yn)− yn

α
,

which implies it converges slowly in the constraint set, Fix(Ng). From such a
viewpoint, one can expect that an algorithm with the three-term conjugate
gradient direction,

d
Ng

n+1 :=
Ng(yn)− yn

α
+ β(1)

n dNg
n + β(2)

n wn, (6)

where β
(i)
n ∈ R (i = 1, 2) and wn ∈ H, would converge in the constraint set

faster than Algorithm (5).
In this paper, we present an algorithm with both Direction (4) to accelerate

the objective function minimization and Direction (6) to accelerate the search
for a fixed point of a nonexpansive mapping. We also present its convergence
analysis.

This paper is organized as follows. Section 2 gives mathematical preliminar-
ies. Section 3 presents the fixed point optimization algorithm with Directions
(4) and (6) to accelerate the existing algorithms and proves that the algo-

rithm with limn→∞ δ
(i)
n = 0 and limn→∞ β

(i)
n = 0 (i = 1, 2) strongly converges

to the solution to Problem 3.1. It also proves that HCGM with each of the
FR, PRP, HS, and DY formulas (i.e., the algorithm with Equations (2) and

(3) when δ
(1)
n is defined by one of δFRn , δPRP

n , δHS
n , and δDY

n ) does not satisfy

limn→∞ δ
(1)
n = 0 when the unique minimizer of the objective function over

the whole space is not in the fixed point set of a nonexpansive mapping. This
implies that there is an inconvenient possibility that HCGMs with the four
formulas may not converge strongly to the unique minimizer of the objective
function over the fixed point set that is not equal to the unique minimizer
of the objective function over the whole space. Section 4 provides numerical
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comparisons of the proposed algorithm with the existing fixed point optimiza-
tion algorithms and shows its effectiveness. It also describes examples such
that HCGMs with the four formulas do not always converge to the solution.
Section 5 concludes the paper by summarizing its key points and mentions
future subjects for development of the proposed algorithm.

2 Mathematical Preliminaries

Let H be a real Hilbert space with inner product, ⟨·, ·⟩, and its induced norm,
∥·∥, and let N be the set of zero and all positive integers; i.e., N := {0, 1, 2, . . .}.
We denote the identity mapping on H by I; i.e., I(x) := x for all x ∈ H.

2.1 Convexity, monotonicity, and nonexpansivity

A function, f : H → R, is said to be convex if, for any x, y ∈ H and for any
λ ∈ [0, 1], f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). In particular, a convex
function, f : H → R, is said to be strongly convex with c > 0 (c-strongly
convex) if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− (cλ(1− λ)/2)∥x− y∥2 for
all x, y ∈ H and for all λ ∈ [0, 1].

A : H → H is referred to as a monotone operator if ⟨x−y,A(x)−A(y)⟩ ≥ 0
for all x, y ∈ H. A : H → H is said to be strongly monotone with c > 0 (c-
strongly monotone) if ⟨x − y,A(x) − A(y)⟩ ≥ c∥x − y∥2 for all x, y ∈ H. Let
f : H → R be a Fréchet differentiable function. If f is convex (resp. c-strongly
convex), ∇f is monotone (resp. c-strongly monotone) [4, Example 22.3].

A mapping, A : H → H, is said to be Lipschitz continuous with L > 0
(L-Lipschitz continuous) if ∥A(x)−A(y)∥ ≤ L∥x− y∥ for all x, y ∈ H. When
N : H → H is 1-Lipschitz continuous, N is referred to as a nonexpansive
mapping [3,12,13,29]. In particular, N is said to be firmly nonexpansive if
∥N(x)−N(y)∥2 ≤ ⟨x−y,N(x)−N(y)⟩ for all x, y ∈ H. The Cauchy-Schwarz
inequality guarantees that any firmly nonexpansive mapping satisfies the non-
expansivity condition. We denote the fixed point set of N : H → H by

Fix(N) := {x ∈ H : N(x) = x} .

Fix(N) satisfies closedness and convexity properties when N is nonexpansive
[13, Proposition 5.3].

Given a nonempty, closed convex set, C (⊂ H), the mapping that assigns
every point, x ∈ H, to its unique nearest point in C is called the metric pro-
jection onto C and is denoted by PC ; i.e., PC(x) ∈ C and ∥x − PC(x)∥ =
infy∈C ∥x − y∥. The metric projection, PC , satisfies the firm nonexpansivity
condition with Fix(PC) = C [3, Facts 1.5], [28, Theorem 2.4-1 (ii)], [4, Propo-
sition 4.8, Equation (4.8)]. Some closed convex set, C, for example, a linear
variety, a closed ball, a closed cone, or a closed polytope, is simple in the sense
that the explicit form of PC is known, which implies that PC can be computed
within a finite number of arithmetic operations [4, Subchapter 28.3], [30].

The following lemmas will be used to prove the main theorem.
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Lemma 2.1 (Lemma 3.1 in [31]) Suppose that f : H → R is c-strongly
convex and Fréchet differentiable, ∇f : H → H is L-Lipschitz continuous,
and µ ∈ (0, 2c/L2). Define T : H → H by T (x) := x − µα∇f(x) (x ∈ H),
where α ∈ [0, 1]. Then, for all x, y ∈ H, ∥T (x) − T (y)∥ ≤ (1 − τα)∥x − y∥,
where τ := 1−

√
1− µ (2c− µL2) ∈ (0, 1].

Lemma 2.2 (Theorems 3.7 and 3.9 in [1]) Suppose that N1 : H → H is
firmly nonexpansive and N2 : H → H is nonexpansive with Fix(N1)∩Fix(N2) ̸=
∅, and (xn)n∈N (⊂ H) is bounded. Then, limn→∞ ∥xn − N1(N2(xn))∥ = 0 if
and only if limn→∞ ∥xn −N1(xn)∥ = 0 and limn→∞ ∥xn −N2(xn)∥ = 0.

2.2 Monotone variational inequality

The variational inequality problem [11,22] for a monotone operator, A : H →
H, over a closed convex set, C (⊂ H), is to find a point in

VI(C,A) := {x⋆ ∈ C : ⟨x− x⋆, A (x⋆)⟩ ≥ 0 for all x ∈ C} .

Suppose that f : H → R is c-strongly convex and Fréchet differentiable, and
∇f : H → H is L-Lipschitz continuous. Then, VI(C,∇f) can be characterized
as the set of all minimizers of f over C, which coincides with the fixed point
set of PC(I − α∇f) [6, Subsection 8.3], [11, Proposition 2.1], [33, Theorem
46.C (1) and (2)]:

VI(C,∇f) = Argmin
x∈C

f(x) :=

{
x⋆ ∈ C : f(x⋆) = min

x∈C
f(x)

}
= Fix (PC (I − α∇f)) := {x⋆ ∈ C : PC (x⋆ − α∇f(x⋆)) = x⋆} ,

where α is an arbitrary positive real number. Since PC(I − α̂∇f) is a contrac-
tion mapping when α̂ ∈ (0, 2c/L2), PC(I − α̂∇f) has a unique fixed point [12,
Theorem 2.1]. Therefore, the solution to the variational inequality consists of
one point.

3 Optimization over the Fixed Point Set

This section discusses the following problem:

Problem 3.1 Under the assumptions that
(A1) N : H → H is a nonexpansive mapping with Fix(N) ̸= ∅,
(A2) K (⊂ H) is a nonempty, bounded, closed convex set onto which the

metric projection is computable, and Fix(N) ⊂ K,3

3 For example, when there is a bound on Fix(N), we can choose K as a closed ball with a
large radius containing Fix(N). The metric projection onto such a K is easily computed (see
also Subsection 2.1). See the final paragraph in Subsection 3.1 for a discussion of Problem
3.1 when a bound on Fix(N) either does not exist or is not known.
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(A3) f : H → R is c-strongly convex and Fréchet differentiable, and ∇f : H →
H is L-Lipschitz continuous,

minimize f(x) subject to x ∈ Fix(N).

From the closedness and convexity of Fix(N) and the discussion in Subsection
2.2, we get the following:

Proposition 3.1 The existence and uniqueness of the solution to Problem 3.1
is guaranteed.

3.1 Acceleration method for the convex optimization problem over the fixed
point set

We present the following algorithm for solving Problem 3.1:

Algorithm 3.1

Step 0. Take (αn)n∈N, (β
(i)
n )n∈N, (δ

(i)
n )n∈N ⊂ (0, 1] (i = 1, 2), γ ∈ (0, 1], and

µ > 0, choose x0 ∈ H arbitrarily, and let df0 := −∇f(x0), y0 := x0 + µα0d
f
0 ,

dN0 := N(y0)− y0, and n := 0.
Step 1. Given xn, d

f
n ∈ H, compute yn ∈ H as

yn := PK

(
xn + µαnd

f
n

)
.

Compute dNn+1 ∈ H as

dNn+1 := N(yn)− yn + β(1)
n dNn + β(2)

n wn, (7)

where wn ∈ H is an arbitrary point.
Step 2. Compute xn+1 ∈ H as

xn+1 := PK

(
yn + γdNn+1

)
and update dfn+1 ∈ H by

dfn+1 := −∇f(xn+1) + δ(1)n dfn − δ(2)n zn, (8)

where zn ∈ H is an arbitrary point. Put n := n+ 1, and go to Step 1.

In unconstrained optimization problems, it is desirable to use iterative
methods which generate descent search directions. This is because such meth-
ods can decrease strictly the objective function at each iteration. Generally,
it is not guaranteed that the conjugate gradient method defined by xn+1 :=

xn+αnd
f
n and Equation (8) with δ

(2)
n zn := 0 generates the descent search direc-

tion.4 The three-term conjugate gradient method defined by xn+1 := xn+αnd
f
n

4 The conjugate gradient method with the DY formula (i.e., δ
(1)
n := δDY

n ) generates the
descent search direction under the Wolfe conditions [10]. Whether or not the conjugate

gradient methods generate descent search directions depends on the choices of δ
(1)
n and αn.



8 Hideaki Iiduka

and Equation (8) with δ
(2)
n zn ̸= 0 generates the descent search direction with-

out depending on the choices of δ
(1)
n and αn [23, Subsection 2.1]. 5 Therefore,

it would be useful in Problem 3.1 to use an accelerated algorithm with Di-

rection (8) when δ
(2)
n zn ̸= 0. On the other hand, the discussion on Equation

(5) describes that N(yn) − yn is expressed as the steepest descent direction
at yn of a certain convex function of which a minimizer is a fixed point of
N . Accordingly, Direction (7) is the three-term conjugate gradient direction
for finding a fixed point of N . Hence, one can expect that an algorithm with

Direction (7) when β
(2)
n wn ̸= 0 would converge in Fix(N) quickly (see also

Section 1).
Let us compare Algorithm 3.1 with the existing algorithms, such as HSDM

[32, Theorem 2.15, Remark 2.17 (a)], HCGM [20, Algorithm 3.4], and HTCGM
[15, Algorithm 6], for solving Problem 3.1. HTCGM is as follows (see also

Equations (2) and (4)): x0 ∈ H, df0 := −∇f(x0), and{
xn+1 := N

(
xn + µαnd

f
n

)
,

dfn+1 := −∇f(xn+1) + δ
(1)
n dfn − δ

(2)
n zn (n ∈ N).

(9)

Algorithm (9) with δ
(i)
n := 0 (i = 1, 2, n ∈ N) coincides with HSDM, and

Algorithm (9) with δ
(2)
n := 0 (n ∈ N) coincides with HCGM. Hence, the

existing algorithms can be expressed as Algorithm (9). Algorithm 3.1 with

K := H, γ := 1, and β
(i)
n := 0 (i = 1, 2) has xn+1 = yn + dNn+1 = N(yn) =

N(xn + µαnd
f
n), which means that Algorithm 3.1 in this case coincides with

Algorithm (9). Algorithm 3.1 uses dNn+1 := N(yn) − yn + β
(1)
n dNn + β

(2)
n wn to

converge in Fix(N) faster than Algorithm (9), as discussed in Section 1.
The following theorem constitutes the convergence analysis of Algorithm

3.1. The proof of the theorem is given in Subsection 3.3.

Theorem 3.1 Suppose that (I) µ ∈ (0, 2c/L2), (II) (wn)n∈N and (zn)n∈N are

bounded,6 and (III) (αn)n∈N, (β
(i)
n )n∈N, and (δ

(i)
n )n∈N (i = 1, 2) are sequences

in (0, 1] satisfying (i) limn→∞ αn = 0, (ii)
∑∞

n=0 αn = ∞, (iii)
∑∞

n=0 |αn+1 −
αn| < ∞, (iv) β

(i)
n ≤ α2

n (i = 1, 2, n ∈ N), and (v) limn→∞ δ
(i)
n = 0 (i = 1, 2).

Then, (xn)n∈N in Algorithm 3.1 strongly converges to the unique solution to
Problem 3.1.

Let us compare Theorem 3.1 with the previously reported results in [32,
Theorem 2.15, Remark 2.17 (a)], [20, Theorem 4.1], and [15, Theorem 7].

HSDM (i.e., Algorithm (9) with δ
(i)
n := 0 (i = 1, 2)) with Conditions (I), (i),

(ii), and (iii) in Theorem 3.1 converges strongly to the solution to Problem 3.1

5 Reference [23, Subsection 2.1] showed that xn+1 := xn + αnd
f
n and dfn+1 :=

−∇f(xn+1) + δ
(1)
n dfn − δ

(2)
n zn, where αn, δ

(1)
n (> 0) are arbitrary, zn (∈ RN ) is any vec-

tor, and δ
(2)
n := δ

(1)
n (⟨∇f(xn+1), dn⟩/⟨∇f(xn+1), zn⟩), satisfy ⟨dfn,∇f(xn)⟩ = −∥∇f(xn)∥2

(n ∈ N).
6 We can choose, for example, wn := N(yn)−yn and zn := ∇f(xn+1) (n ∈ N) by referring

to [35] and [15, Section 3]. Lemma 3.1 ensures that they are bounded.
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[32, Theorem 2.15, Remark 2.17 (a)]. HCGM (i.e., Algorithm (9) with δ
(2)
n :=

0) with the conditions in Theorem 3.1 converges strongly to the solution if
(∇f(xn))n∈N is bounded [20, Theorem 4.1]. Theorem 7 in [15] guarantees that,
if (∇f(xn))n∈N is bounded, then HTCGM with the conditions in Theorem 3.1
converges strongly to the solution. The results in [20, Theorem 4.1] and [15,
Theorem 7] and the proof of Theorem 3.1 lead us to a strong convergence
of Algorithm 3.1 to the solution without assuming the boundedness of K if
(∇f(xn))n∈N and (N(yn)−yn)n∈N are bounded. However, it would be difficult
to verify whether (∇f(xn))n∈N and (N(yn) − yn)n∈N are bounded or not in
advance. Hence, we assume the existence of a bounded K satisfying Fix(N) ⊂
K in place of the boundedness of (∇f(xn))n∈N and (N(yn) − yn)n∈N (see
Footnote 3 for the choice of K).

Let us consider the case where a bound on Fix(N) either does not ex-
ist or is not known. In this case, we cannot choose a bounded K satisfy-
ing Fix(N) ⊂ K.7 Even in the case, we can execute Algorithm 3.1 with
K = H. However, we need to verify the boundedness of (∇f(xn))n∈N and
(N(yn) − yn)n∈N to guarantee that Algorithm 3.1 converges to the solution
(see the above paragraph). When we try to apply HCGM and HTCGM to
this case, we also need to verify whether or not (∇f(xn))n∈N is bounded [20,
Theorem 4.1], [15, Theorem 7]. Meanwhile, we can apply HSDM to this case
without any problem [32, Theorem 2.15, Remark 2.17 (a)]. Therefore, when
a bound on Fix(N) either does not exist or is not known, we should execute
HSDM. However, HSDM converges slowly. Hence, it would be desirable to
execute HSDM, HCGM, HTCGM, and Algorithm 3.1 and verify whether the
convergent point of HSDM that is the minimizer of f over Fix(N) is equal to
the convergent points of HCGM, HTCGM, and Algorithm 3.1.

3.2 Analysis of Algorithm 3.1 with the conventional formulas of conjugate
gradient directions

In this subsection, we analyze Algorithm 3.1 when δ
(1)
n is one of the well-

known formulas, such as the Fletcher–Reeves (FR), Dai–Yuan (DY), Polak–
Ribiére–Polyak (PRP), and Hestenes–Stiefel (HS) formulas, that are used to
solve large-scale unconstrained optimization problems. Let us define the FR,
DY, PRP, and HS formulas, which can be applied to constrained optimization

7 Given a halfspace S := {x ∈ H : ⟨a, x⟩ ≤ b}, where a (̸= 0) ∈ H and b ∈ R, N(x) :=
PS(x) = x− [max{0, ⟨a, x⟩ − b}/∥a∥2]a (x ∈ H) is nonexpansive with Fix(N) = Fix(PS) =
S ̸= ∅ [3, p. 406], [4, Subchapter 28.3]. However, we cannot define a bounded K satisfying
Fix(N) = S ⊂ K.
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problems, as follows: for each n ∈ N,

δFRn :=


∥∇f(xn+1)∥2

∥∇f(xn)∥2
if ∥∇f(xn)∥ > 0,

0 otherwise,

δDY
n :=


∥∇f(xn+1)∥2

⟨dfn,∇f(xn+1)− (1 + η)∇f(xn)⟩
if un ̸= 0,

0 otherwise,

δPRP
n :=


⟨∇f(xn+1),∇f(xn+1)− (1 + κ)∇f(xn)⟩

∥∇f(xn)∥2
if ∥∇f(xn)∥ > 0,

0 otherwise,

δHS
n :=


⟨∇f(xn+1),∇f(xn+1)− (1 + κ)∇f(xn)⟩

⟨dfn,∇f(xn+1)− (1 + η)∇f(xn)⟩
if un ̸= 0,

0 otherwise,

(10)

where η, κ ≥ 0, and un := ⟨dfn,∇f(xn+1) − (1 + η)∇f(xn)⟩ (n ∈ N). For
simplicity, we assume that δ

(2)
n := 0 (n ∈ N), i.e., dfn (n ∈ N) in Algorithm 3.1

is defined by the conventional conjugate gradient direction:

dfn+1 := −∇f(xn+1) + δnd
f
n (n ∈ N),

where δn ∈ R is defined as one of Formulas (10).
The following proposition is satisfied for Algorithm 3.1 with the conven-

tional FR, DY, PRP, and HS Formulas (10):

Proposition 3.2 Suppose that Conditions (I), (II), and (i)–(iv) in Theorem
3.1 are satisfied. Then, the following hold:

(i) If limn→∞ δFRn = 0, then the unique minimizer of f over H belongs to
Fix(N) (i.e., Fix(N) ∩ Argminx∈H f(x) ̸= ∅). In this case, (xn)n∈N in
Algorithm 3.1 strongly converges to the unique minimizer of f over H.

(ii) If limn→∞ δDY
n = 0 and if η ̸= 0, then the unique minimizer of f over H

belongs to Fix(N). In this case, (xn)n∈N in Algorithm 3.1 strongly converges
to the unique minimizer of f over H.

(iii) If limn→∞ δPRP
n = 0 and if κ ̸= 0, then the unique minimizer of f over H

belongs to Fix(N). In this case, (xn)n∈N in Algorithm 3.1 strongly converges
to the unique minimizer of f over H.

(iv) If limn→∞ δHS
n = 0 and if η, κ ̸= 0, then the unique minimizer of f over H

belongs to Fix(N). In this case, (xn)n∈N in Algorithm 3.1 strongly converges
to the unique minimizer of f over H.

Let us discuss Proposition 3.2 for Algorithm 3.1 with γ := 1, β
(i)
n := 0

(i = 1, 2), and δn := δ
(1)
n defined by one of Formulas (10), i.e.,{

xn+1 := PK

[
N
(
PK

(
xn + µαnd

f
n

))]
,

dfn+1 := −∇f(xn+1) + δnd
f
n (n ∈ N).

(11)
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Proposition 3.2 says that, in the case of η, κ ̸= 0, if Algorithm (11) with δn
defined by one of Formulas (10) satisfies limn→∞ δn = 0, then the unique min-
imizer of f over H is always in Fix(N), and the algorithm strongly converges
to the unique minimizer of f over H belonging to Fix(N).

Proposition 3.2 describes that Algorithm (11) satisfies limn→∞ δn ̸= 0 in
the case where η, κ ̸= 0 and the unique minimizer of f over H is not in Fix(N).
According to Theorem 3.1 (or [20, Theorem 4.1]), Algorithm (11) in this case
might not converge to the unique minimizer of f over Fix(N) that is not
equal to the unique minimizer of f over H. To guarantee that Algorithm (11)
converges in this case to the unique minimizer of f over Fix(N), for example,
we need to reset δn := 0 when n exceeds a certain number of iterations.
Algorithm (11) with the steepest descent direction (δn := 0), i.e., xn+1 :=
PK [N(PK(xn − µαn∇f(xn)))] (n ∈ N) (HSDM [32]), strongly converges to
the unique minimizer of f over Fix(N) [32, Theorem 2.15, Remark 2.17 (a)],
however, it converges slowly. The above observation suggests that Algorithm
(11) with each of the conventional formulas would not be an efficient way
to solve constrained convex optimization problems. Numerical examples in
Section 4 show that the algorithms with the conventional formulas do not
always converge to the unique minimizer of f over Fix(N).

Meanwhile, Algorithm (11) with limn→∞ δn = 0 (e.g., δn := 1/(n + 1)a

(a > 0)) always converges to the unique minimizer of f over Fix(N) [20,
Theorem 4.1], which means there is no need to verify whether the unique
minimizer of f over H is in Fix(N) or not in advance, and converges faster
than HSDM (see [20] for details on the fast convergence of Algorithm (11)
with limn→∞ δn = 0).

In the case that the unique minimizer of f over H is not in Fix(N) and
limn→∞ δDY

n = 0 (or limn→∞ δHS
n = 0 and κ ̸= 0), we get η = 0 from Proposi-

tion 3.2 (ii) and (iv). Hence, Inequality (14) (see the proof of Proposition 3.2
(ii) and (iv) and Remark 3.1) imply that

∥∇f (xn+1)∥ ≥ ∥∇f (xn)∥ for large enough n.

Since ∥∇f(xn)∥ tends to be smaller at the unique minimizer of f over Fix(N),
Algorithm (11) with δn := δDY

n (or δHS
n ) will not converge to the unique min-

imizer of f over Fix(N) when the unique minimizer of f over H is not in
Fix(N).

Proof of Proposition 3.2. Let x⋆ ∈ H be the unique minimizer of f over H.
(i) The boundedness of K ensures that (xn)n∈N is bounded. The Lipschitz

continuity of ∇f guarantees that ∥∇f(xn) − ∇f(x⋆)∥ ≤ L∥xn − x⋆∥ for all
n ∈ N, which implies that (∇f(xn))n∈N is bounded. Hence, B1 > 0 exists such
that

∥∇f(xn)∥ ≤ B1 for all n ∈ N. (12)

Assume that x⋆ /∈ Fix(N). We then can choose ε1, ε2 > 0 such that

d (x⋆,Fix(N)) := inf {∥x⋆ − y∥ : y ∈ Fix(N)} ≥ ε1 + ε2.
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Theorem 3.1 and limn→∞ δFRn = 0 guarantee that (xn)n∈N strongly converges
to the unique minimizer of f over Fix(N), denoted by x∗ ∈ Fix(N). Hence,
for ε1 > 0, there exists N0 ∈ N such that, for all n ≥ N0,

d (xn,Fix(N)) := inf {∥xn − y∥ : y ∈ Fix(N)} ≤ ∥xn − x∗∥ ≤ ε1.

Fix n ≥ N0 arbitrarily. Then, y(n) ∈ Fix(N) exists such that ∥xn − y(n)∥ =
d(xn,Fix(N)). Hence,

ε2 ≤ d (x⋆,Fix(N))− ε1 ≤ d (x⋆,Fix(N))− d (xn,Fix(N))

= inf {∥x⋆ − y∥ : y ∈ Fix(N)} − ∥xn − y(n)∥
≤ ∥x⋆ − y(n)∥ − ∥xn − y(n)∥ ≤ ∥x⋆ − xn∥ .

Since the c-strong monotonicity of ∇f implies (∇f)−1 is 1/c-Lipschitz contin-
uous, we find that, for all x ∈ H, ∥(∇f)−1(0) − (∇f)−1(x)∥ ≤ (1/c)∥x∥, and
hence,

ε2 ≤ ∥x⋆ − xn∥ =
∥∥∥(∇f)

−1
(0)− (∇f)

−1
(∇f(xn))

∥∥∥ ≤ 1

c
∥∇f(xn)∥.

Therefore, we have

∥∇f(xn)∥ ≥ cε2 =: B2 for all n ≥ N0. (13)

Inequalities (12) and (13) ensure that, for all n ≥ N0,

δFRn =
∥∇f(xn+1)∥2

∥∇f(xn)∥2
≥
(
B2

B1

)2

> 0.

This contradicts limn→∞ δFRn = 0. Hence, we find that {x⋆} = Argminx∈H f(x) ⊂
Fix(N). Moreover, since x⋆ is the solution to Problem 3.1, Theorem 3.1 guar-
antees that (xn)n∈N strongly converges to x⋆.

(ii) Assume that x⋆ /∈ Fix(N). Proposition 3.2 (i) guarantees that Inequal-
ities (12) and (13) hold for all n ≥ N0. Since limn→∞ δDY

n = 0, there exists

N1 ∈ N such that δDY
n ≤ 1/2 for all n ≥ N1. Put B := max{B1, ∥dfN1

∥} < ∞.

Then, ∥dfN1
∥ ≤ 2B. Suppose that ∥dfm∥ ≤ 2B for some m ≥ N1. From

dfn+1 := −∇f(xn+1) + δDY
n dfn (n ∈ N), we find that∥∥∥dfm+1

∥∥∥ ≤ ∥∇f(xm+1)∥+ δDY
m

∥∥dfm∥∥ ≤ B +
1

2
(2B) = 2B.

Induction shows that ∥dfn∥ ≤ 2B for all n ≥ N1. Hence, the boundedness of
(dfn)n∈N and (∇f(xn))n∈N imply that, for all n ≥ N1,

un ≤ |⟨dfn,∇f(xn+1)− (1 + η)∇f(xn)⟩| ≤
∥∥dfn∥∥ ∥∇f(xn+1)− (1 + η)∇f(xn)∥

≤
∥∥dfn∥∥ (∥∇f(xn+1)∥+ (1 + η) ∥∇f(xn)∥) ≤ 2(2 + η)BB1.



Convex Optimization over Fixed Point Set 13

If un := ⟨dfn,∇f(xn+1)− (1 + η)∇f(xn)⟩ ̸= 0 for all n ≥ max{N0, N1}, then

δDY
n =

∥∇f(xn+1)∥2

un
≥ B2

2

2(2 + η)BB1
> 0,

which implies limn→∞ δDY
n > 0. Therefore, we find that un = 0 for all n ≥

max{N0, N1}, i.e., δDY
n = 0 for all n ≥ max{N0, N1}. This implies that

dfn+1 = −∇f(xn+1) for all n ≥ max{N0, N1}. From un = 0 for all n ≥ N2 :=
max{N0, N1}+1, we have ⟨dfn,∇f(xn+1)⟩ = (1+η)⟨dfn,∇f(xn)⟩, which means
⟨∇f(xn),∇f(xn+1)⟩ = (1 + η)∥∇f(xn)∥2, and hence,

∥∇f(xn+1)∥ ≥ (1 + η) ∥∇f(xn)∥ ≥ (1 + η)n−N2 ∥∇f(xN2)∥ ≥ (1 + η)n−N2B2.
(14)

In the case of η > 0, the right hand side of the above inequality diverges
when n diverges. This contradicts the boundedness property of (∇f(xn))n∈N.
Accordingly, {x⋆} = Argminx∈H f(x) ⊂ Fix(N). Theorem 3.1 guarantees that
(xn)n∈N strongly converges to x⋆.

(iii) Assume that x⋆ /∈ Fix(N). Put vn := ⟨∇f(xn+1),∇f(xn+1) − (1 +
κ)∇f(xn)⟩ (n ∈ N). From limn→∞ δPRP

n = limn→∞(vn/∥∇f(xn)∥2) = 0 and
Inequalities (12) and (13), we have limn→∞ vn = 0. Moreover, the strong
convergence of (xn)n∈N to x∗ ∈ Fix(N) (Theorem 3.1) and the continuity of
∇f ensure

0 = lim
n→∞

vn = lim
n→∞

(
∥∇f(xn+1)∥2 − (1 + κ) ⟨∇f(xn+1),∇f(xn)⟩

)
= ∥∇f(x∗)∥2 − (1 + κ) ∥∇f(x∗)∥2 = −κ∥∇f(x∗)∥2,

which implies from ∥∇f(x∗)∥ ̸= 0 that κ = 0. Therefore, assuming κ ̸= 0 and
limn→∞ δPRP

n = 0 implies that {x⋆} = Argminx∈H f(x) ⊂ Fix(N). Theorem
3.1 guarantees that (xn)n∈N strongly converges to x⋆.

(iv) Assume that x⋆ /∈ Fix(N). A similar discussion to that of the proof
of Proposition 3.2 (ii) leads us to Inequalities (12) and (13) and the bound-
edness of (dfn)n∈N and (un)n∈N. The strong convergence of (xn)n∈N to x∗ ∈
Fix(N) (Theorem 3.1), the continuity of ∇f , the boundedness of (dfn)n∈N, and
limn→∞ δHS

n = 0 imply that

0 ≤ lim sup
n→∞

∥∥∥dfn+1 +∇f(x∗)
∥∥∥ = lim sup

n→∞

∥∥−∇f(xn+1) + δHS
n dfn +∇f(x∗)

∥∥
≤ lim sup

n→∞

(
∥∇f(x∗)−∇f(xn+1)∥+ δHS

n

∥∥dfn∥∥) ≤ 0,

which implies that limn→∞ ∥dfn+1 + ∇f(x∗)∥ = 0. Meanwhile, we have that,
for all n ∈ N,

un − η ∥∇f(x∗)∥2

=
⟨
dfn,∇f(xn+1)− (1 + η)∇f(xn)

⟩
+ ⟨∇f(x∗),∇f(x∗)− (1 + η)∇f(x∗)⟩

=
⟨
dfn,∇f(xn+1)

⟩
+ ⟨∇f(x∗),∇f(x∗)⟩

− (1 + η)
(⟨
dfn,∇f(xn)

⟩
+ ⟨∇f(x∗),∇f(x∗)⟩

)
.
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So, the triangle inequality ensures that, for all n ∈ N,∣∣∣un − η ∥∇f(x∗)∥2
∣∣∣ ≤ ∣∣⟨dfn,∇f(xn+1)

⟩
+ ⟨∇f(x∗),∇f(x∗)⟩

∣∣
+ (1 + η)

∣∣⟨dfn,∇f(xn)
⟩
+ ⟨∇f(x∗),∇f(x∗)⟩

∣∣ .
Moreover, we find that, for all n ∈ N,∣∣⟨dfn,∇f(xn+1)

⟩
+ ⟨∇f(x∗),∇f(x∗)⟩

∣∣
=
∣∣⟨dfn +∇f(x∗),∇f(xn+1)

⟩
− ⟨∇f(x∗),∇f(xn+1)⟩+ ⟨∇f(x∗),∇f(x∗)⟩

∣∣
=
∣∣⟨dfn +∇f(x∗),∇f(xn+1)

⟩
+ ⟨∇f(x∗),∇f(x∗)−∇f(xn+1)⟩

∣∣
≤
∣∣⟨dfn +∇f(x∗),∇f(xn+1)

⟩∣∣+ |⟨∇f(x∗),∇f(x∗)−∇f(xn+1)⟩| ,

which means that∣∣⟨dfn,∇f(xn+1)
⟩
+ ⟨∇f(x∗),∇f(x∗)⟩

∣∣
≤
∥∥dfn +∇f(x∗)

∥∥ ∥∇f(xn+1)∥+ ∥∇f(x∗)∥ ∥∇f(x∗)−∇f(xn+1)∥ .

We also have that, for all n ∈ N,∣∣⟨dfn,∇f(xn)
⟩
+ ⟨∇f(x∗),∇f(x∗)⟩

∣∣
=
∣∣⟨dfn +∇f(x∗),∇f(xn)

⟩
− ⟨∇f(x∗),∇f(xn)⟩+ ⟨∇f(x∗),∇f(x∗)⟩

∣∣
=
∣∣⟨dfn +∇f(x∗),∇f(xn)

⟩
+ ⟨∇f(x∗),∇f(x∗)−∇f(xn)⟩

∣∣
≤
∣∣⟨dfn +∇f(x∗),∇f(xn)

⟩∣∣+ |⟨∇f(x∗),∇f(x∗)−∇f(xn)⟩|
≤
∥∥dfn +∇f(x∗)

∥∥ ∥∇f(xn)∥+ ∥∇f(x∗)∥ ∥∇f(x∗)−∇f(xn)∥ .

From limn→∞ ∥dfn + ∇f(x∗)∥ = 0, limn→∞ ∥∇f(xn) − ∇f(x∗)∥ = 0, and
the boundedness of (∇f(xn))n∈N, we have that limn→∞ |⟨dfn,∇f(xn+1)⟩ +
⟨∇f(x∗),∇f(x∗)⟩| = 0 and limn→∞ |⟨dfn,∇f(xn)⟩ + ⟨∇f(x∗),∇f(x∗)⟩| = 0.
Therefore, limn→∞ |un − η∥∇f(x∗)∥2| = 0, i.e.,

lim
n→∞

un = η ∥∇f(x∗)∥2 . (15)

In the case of η > 0, we find from Equation (15) and ∥∇f(x∗)∥ ̸= 0 that
limn→∞ un > 0. Therefore, we have from limn→∞ δHS

n = limn→∞(vn/un) = 0
that limn→∞ vn = 0. A discussion similar to the proof of Proposition 3.2
(iii) leads us to κ = 0, which is a contradiction. Hence, we find that {x⋆} =
Argminx∈H f(x) ⊂ Fix(N). □

Remark 3.1 Consider the case in which the minimizer of f over H is not
in Fix(N), limn→∞ δHS

n = 0, and κ ̸= 0. Then, Proposition 3.2 (iv) leads to
η = 0. In the case of η = 0, Equation (15) implies that limn→∞ un = 0.
From limn→∞ δHS

n = limn→∞(vn/un) = 0, we have the following cases: (A)
vn = o(un), or (B) un = 0 for large enough n (i.e., δHS

n = 0 for large enough
n). We have that limn→∞ vn = −κ∥∇f(x∗)∥2 ̸= 0 because κ ̸= 0 and x∗

is the minimizer of f over Fix(N) when the minimizer of f over H is not in
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Fix(N) (see the proof of Proposition 3.2 (iii)). This implies that Case (A) does
not hold. In Case (B), from a discussion similar to Proposition 3.2 (ii) (see
Inequality (14)) and η = 0, we find that ∥∇f(xn+1)∥ ≥ ∥∇f(xn)∥ for large
enough n.

3.3 Proof of Theorem 3.1

We first prove the boundedness of (xn)n∈N, (yn)n∈N, (d
N
n )n∈N, and (dfn)n∈N.

Lemma 3.1 Suppose that Conditions (II), (i), (iv), and (v) in Theorem 3.1
are satisfied. Then, (xn)n∈N, (yn)n∈N, (d

N
n )n∈N, and (dfn)n∈N in Algorithm 3.1

are bounded.

Proof The boundedness of K and the definitions of (xn)n∈N and (yn)n∈N guar-
antee the boundedness of (xn)n∈N and (yn)n∈N. The nonexpansivity of N
guarantees that ∥N(yn)− y∥ ≤ ∥yn − y∥ for all y ∈ Fix(N). Thus, the bound-
edness of (yn)n∈N implies that (N(yn))n∈N is bounded, i.e., (N(yn) − yn)n∈N
is bounded. Moreover, the Lipschitz continuity of ∇f ensures that ∥∇f(xn)−
∇f(x)∥ ≤ L∥xn−x∥ for all x ∈ H. Hence, the boundedness of (xn)n∈N means
that (∇f(xn))n∈N is bounded.

We shall prove that (dNn )n∈N is bounded. Since limn→∞ β
(i)
n = 0 (i = 1, 2)

from Conditions (i) and (iv), there exists n0 ∈ N such that β
(1)
n ≤ 1/3 and

β
(2)
n ≤ 1 for all n ≥ n0. Condition (II) ensures that K1 := max{sup{∥N(yn)−

yn∥ : n ∈ N}, sup{∥wn∥ : n ∈ N}} < ∞ and K2 := max{K1, ∥dNn0
∥} < ∞.

Obviously, ∥dNn0
∥ ≤ 3K2. We assume that ∥dNn ∥ ≤ 3K2 for some n ≥ n0. The

definition of (dNn )n∈N guarantees that∥∥dNn+1

∥∥ ≤ ∥N(yn)− yn∥+ β(1)
n

∥∥dNn ∥∥+ β(2)
n ∥wn∥ ≤ K2 +

1

3
(3K2) +K2 = 3K2.

Induction shows that ∥dNn ∥ ≤ 3K2 for all n ≥ n0; i.e., (d
N
n )n∈N is bounded.

Next, we shall prove that (dfn)n∈N is bounded. The boundedness of (∇f(xn))n∈N
and Condition (II) imply thatK3 := max{sup{∥∇f(xn)∥ : n ∈ N}, sup{∥zn∥ : n ∈
N}} < ∞. Condition (v) ensures the existence of n1 ∈ N such that δ

(1)
n ≤ 1/3

and δ
(2)
n ≤ 1 for all n ≥ n1. Put K4 := max{K3, ∥dfn1

∥} < ∞. Then,
∥dfn1

∥ ≤ 3K4. Suppose that ∥dfn∥ ≤ 3K4 for some n ≥ n1. The definition
of (dfn)n∈N means that∥∥∥dfn+1

∥∥∥ ≤ ∥∇f(xn+1)∥+ δ(1)n

∥∥dfn∥∥+ δ(2)n ∥zn∥ ≤ K4 +
1

3
(3K4) +K4 = 3K4.

Induction shows that ∥dfn∥ ≤ 3K4 for all n ≥ n1; i.e., (d
f
n)n∈N is bounded. □

Next, we prove the following:

Lemma 3.2 Suppose that the assumptions in Theorem 3.1 are satisfied. Then,

(i) limn→∞ ∥xn+1 − PK(N̂(xn))∥ = 0, where N̂ := (1− γ)I + γN ;
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(ii) limn→∞ ∥xn+1 − xn∥ = 0 and limn→∞ ∥xn − N̂(xn)∥ = 0;
(iii) lim supn→∞⟨x⋆ − xn,∇f(x⋆)⟩ ≤ 0, where x⋆ ∈ Fix(N) is the solution to

Problem 3.1.

Proof (i) xn+1 (n ∈ N) in Algorithm 3.1 can be rewritten as follows:

xn+1 = PK

(
yn + γdNn+1

)
= PK

(
yn + γ

(
N(yn)− yn + β(1)

n dNn + β(2)
n wn

))
= PK

(
((1− γ)I + γN) (yn) + γ

(
β(1)
n dNn + β(2)

n wn

))
=: PK

(
N̂(yn) + γtn

)
,

where N̂ := (1 − γ)I + γN and tn := β
(1)
n dNn + β

(2)
n wn (n ∈ N). Since N is

nonexpansive, N̂ := (1− γ)I + γN satisfies the nonexpansivity condition with
Fix(N) = Fix(N̂). The nonexpansivity of PK guarantees that, for all n ∈ N,∥∥∥xn+1 − PK

(
N̂(xn)

)∥∥∥ =
∥∥∥PK

(
N̂ (yn) + γtn

)
− PK

(
N̂(xn)

)∥∥∥
≤
∥∥∥(N̂ (yn) + γtn

)
− N̂(xn)

∥∥∥ ≤
∥∥∥N̂ (yn)− N̂(xn)

∥∥∥+ γ ∥tn∥ ,

which from the nonexpansivity of N̂ means that, for all n ∈ N,∥∥∥xn+1 − PK

(
N̂(xn)

)∥∥∥ ≤ ∥yn − xn∥+ γ ∥tn∥ .

Since yn := PK(xn + µαnd
f
n) and xn = PK(xn) (from xn+1 = PK(N̂(yn) +

γtn) ∈ K (n ∈ N)), the nonexpansivity of PK ensures that

∥yn − xn∥ =
∥∥PK

(
xn + µαnd

f
n

)
− PK (xn)

∥∥ ≤
∥∥(xn + µαnd

f
n

)
− xn

∥∥
= µαn

∥∥dfn∥∥ .
Moreover, from Condition (iv) and α2

n ≤ αn ≤ 1 (n ∈ N) we have

∥tn∥ =
∥∥∥β(1)

n dNn + β(2)
n wn

∥∥∥ ≤ β(1)
n

∥∥dNn ∥∥+ β(2)
n ∥wn∥ ≤ α2

n

∥∥dNn ∥∥+ α2
n ∥wn∥

≤ αn

(∥∥dNn ∥∥+ ∥wn∥
)
.

Therefore, we find that, for all n ∈ N,∥∥∥xn+1 − PK

(
N̂(xn)

)∥∥∥ ≤µαn

∥∥dfn∥∥+ γαn

(∥∥dNn ∥∥+ ∥wn∥
)
≤ 2K5αn,

where K5 := max{sup{µ∥dfn∥ : n ∈ N}, sup{γ(∥dNn ∥ + ∥wn∥) : n ∈ N}} < ∞.
Hence, Condition (i) implies that limn→∞ ∥xn+1 − PK(N̂(xn))∥ = 0.

(ii) Let τ := 1−
√
1− µ (2c− µL2) ∈ (0, 1] (see also Lemma 2.1). Put sn :=

(xn+µαnd
f
n)−(xn−1+µαn−1d

f
n−1) (n ≥ 1),M1 := sup{2µ|⟨sn,∇f(xn−1)⟩| : n ≥

1}, M2 := sup{|⟨sn, dfn−1⟩|/τ : n ≥ 1}, M3 := sup{|⟨sn, zn−1⟩|/τ : n ≥ 1},
M4 := sup{|⟨sn, dfn−2⟩|/τ : n ≥ 2}, and M5 := sup{|⟨sn, zn−2⟩|/τ : n ≥ 2}.
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Lemma 3.1 ensures that M6 := max{Mi : i = 1, 2, . . . , 5} < ∞. The definition
of (dfn)n∈N means that, for all n ≥ 2,

∥sn∥2 =
∥∥∥(xn + µαnd

f
n

)
−
(
xn−1 + µαn−1d

f
n−1

)∥∥∥2
=
∥∥∥(xn + µαn

(
−∇f(xn) + δ

(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1

))
− (xn−1 − µαn∇f(xn−1))− µαn∇f(xn−1)− µαn−1d

f
n−1

∥∥∥2,
which implies that

∥sn∥2 =
∥∥∥(xn − µαn∇f(xn))− (xn−1 − µαn∇f(xn−1))

+ µ
(
αnδ

(1)
n−1d

f
n−1 − αnδ

(2)
n−1zn−1 − αn∇f(xn−1)− αn−1d

f
n−1

)∥∥∥2.
From the inequality, ∥x + y∥2 ≤ ∥x∥2 + 2⟨x + y, y⟩ (x, y ∈ H), we find that,
for all n ≥ 2,

∥sn∥2 ≤ ∥(xn − µαn∇f(xn))− (xn−1 − µαn∇f(xn−1))∥2

+ 2µ
⟨
αnδ

(1)
n−1d

f
n−1 − αnδ

(2)
n−1zn−1 − αn∇f(xn−1)− αn−1d

f
n−1, sn

⟩
.

Moreover, Lemma 2.1 guarantees that, for all n ≥ 2,

∥(xn − µαn∇f(xn))− (xn−1 − µαn∇f(xn−1))∥2

≤(1− ταn)
2∥xn − xn−1∥2 ≤ (1− ταn)∥xn − xn−1∥2.

The definition of (dfn)n∈N means that, for all n ≥ 2,

2µ
⟨
αnδ

(1)
n−1d

f
n−1 − αnδ

(2)
n−1zn−1 − αn∇f(xn−1)− αn−1d

f
n−1, sn

⟩
= 2µ

⟨
αnδ

(1)
n−1d

f
n−1 − αnδ

(2)
n−1zn−1 − αn∇f(xn−1)

− αn−1

(
−∇f(xn−1) + δ

(1)
n−2d

f
n−2 − δ

(2)
n−2zn−2

)
, sn

⟩
= 2µ(αn−1 − αn) ⟨sn,∇f(xn−1)⟩

+ 2µαnδ
(1)
n−1

⟨
sn, d

f
n−1

⟩
+ 2µαnδ

(2)
n−1 ⟨sn,−zn−1⟩

+ 2µαn−1δ
(1)
n−2

⟨
sn,−dfn−2

⟩
+ 2µαn−1δ

(2)
n−2 ⟨sn, zn−2⟩

≤ 2µ |αn−1 − αn| |⟨sn,∇f(xn−1)⟩|

+ 2µαnδ
(1)
n−1

∣∣∣⟨sn, dfn−1

⟩∣∣∣+ 2µαnδ
(2)
n−1 |⟨sn, zn−1⟩|

+ 2µαn−1δ
(1)
n−2

∣∣∣⟨sn, dfn−2

⟩∣∣∣+ 2µαn−1δ
(2)
n−2 |⟨sn, zn−2⟩| .
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The definition of M6 leads one to deduce that, for all n ≥ 2,

2µ
⟨
αnδ

(1)
n−1d

f
n−1 − αnδ

(2)
n−1zn−1 − αn∇f(xn−1)− αn−1d

f
n−1, sn

⟩
≤ M6 |αn−1 − αn|+ 2µαnδ

(1)
n−1 (τM6) + 2µαnδ

(2)
n−1 (τM6)

+ 2µαn−1δ
(1)
n−2 (τM6) + 2µαn−1δ

(2)
n−2 (τM6) .

From αn−1 ≤ αn + |αn − αn−1| (n ∈ N), the right hand side of the above
inequality means that

M6 |αn−1 − αn|+ 2µαnδ
(1)
n−1 (τM6) + 2µαnδ

(2)
n−1 (τM6)

+ 2µαn−1δ
(1)
n−2 (τM6) + 2µαn−1δ

(2)
n−2 (τM6)

≤M6 |αn−1 − αn|+ 2µαnδ
(1)
n−1 (τM6) + 2µαnδ

(2)
n−1 (τM6)

+ 2µ {αn + |αn − αn−1|} δ(1)n−2 (τM6) + 2µ {αn + |αn − αn−1|} δ(2)n−2 (τM6)

=
(
M6 + 2µδ

(1)
n−2 (τM6) + 2µδ

(2)
n−2 (τM6)

)
|αn−1 − αn|

+ 2µM6ταnδ
(1)
n−1 + 2µM6ταnδ

(2)
n−1 + 2µM6ταnδ

(1)
n−2 + 2µM6ταnδ

(2)
n−2.

Therefore, combining all the above inequalities means that, for all n ≥ 2,

∥sn∥2 ≤ (1− ταn)∥xn − xn−1∥2 +M7|αn−1 − αn|

+ 2µM6ταnδ
(1)
n−1 + 2µM6ταnδ

(2)
n−1 + 2µM6ταnδ

(1)
n−2 + 2µM6ταnδ

(2)
n−2,

(16)

where M7 := sup{M6 + 2µδ
(1)
n−2(τM6) + 2µδ

(2)
n−2(τM6) : n ≥ 2} < ∞.

Put rn := (N̂(yn) + γtn) − (N̂(yn−1) + γtn−1) (n ∈ N) and M8 :=
max{sup{2γ∥rn∥(∥dNn ∥+∥wn∥) : n ∈ N : n ≥ 1}, sup{2γ∥rn∥(∥dNn−1∥+∥wn−1∥) : n ∈
N : n ≥ 2}} < ∞. From xn+1 = PK(N̂(yn) + γtn) (n ∈ N) and the nonexpa-
sivity of PK , we have that, for all n ≥ 1,

∥xn+1 − xn∥2 =
∥∥∥PK

(
N̂ (yn) + γtn

)
− PK

(
N̂ (yn−1) + γtn−1

)∥∥∥2
≤
∥∥∥(N̂ (yn) + γtn

)
−
(
N̂ (yn−1) + γtn−1

)∥∥∥2 = ∥rn∥2 .

So, from the inequality, ∥x+ y∥2 ≤ ∥x∥2+2⟨x+ y, y⟩ (x, y ∈ H), we find that,
for all n ≥ 1,

∥xn+1 − xn∥2 ≤ ∥rn∥2 =
∥∥∥N̂ (yn)− N̂ (yn−1) + γ (tn − tn−1)

∥∥∥2
≤
∥∥∥N̂ (yn)− N̂ (yn−1)

∥∥∥2 + 2γ ⟨rn, tn − tn−1⟩ .
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The nonexpasivity of N̂ and PK and the Cauchy-Schwarz inequality mean
that

∥xn+1 − xn∥2

≤ ∥yn − yn−1∥2 + 2γ ∥rn∥ ∥tn − tn−1∥

=
∥∥∥PK

(
xn + µαnd

f
n

)
− PK

(
xn−1 + µαn−1d

f
n−1

)∥∥∥2 + 2γ ∥rn∥ ∥tn − tn−1∥

≤
∥∥∥(xn + µαnd

f
n

)
−
(
xn−1 + µαn−1d

f
n−1

)∥∥∥2 + 2γ ∥rn∥ ∥tn − tn−1∥

≤ ∥sn∥2 + 2γ ∥rn∥ {∥tn∥+ ∥tn−1∥} ,

where yn := PK(xn + µαnd
f
n) and sn := (xn + µαnd

f
n)− (xn−1 + µαn−1d

f
n−1)

(n ≥ 1). From tn := β
(1)
n dNn +β

(2)
n wn (n ∈ N) and Condition (iv), we find that

∥xn+1 − xn∥2

≤∥sn∥2 + 2γ∥rn∥
{
β(1)
n

∥∥dNn ∥∥+ β(2)
n ∥wn∥+ β

(1)
n−1

∥∥dNn−1

∥∥+ β
(2)
n−1 ∥wn−1∥

}
≤∥sn∥2 + 2γ∥rn∥

{
α2
n

(∥∥dNn ∥∥+ ∥wn∥
)
+ α2

n−1

(∥∥dNn−1

∥∥+ ∥wn−1∥
)}

≤∥sn∥2 +M8

(
α2
n + α2

n−1

)
.

Moreover, from αn−1 ≤ αn + |αn −αn−1| (n ∈ N), we have that, for all n ≥ 1,

∥xn+1 − xn∥2 ≤ ∥sn∥2 +
M8

τ
ταnαn +M8αn−1 (αn + |αn − αn−1|)

≤ ∥sn∥2 +
M8

τ
ταn (αn + αn−1) +M8|αn − αn−1|.

Accordingly, Inequality (16) guarantees that, for all n ≥ 2,

∥xn+1 − xn∥2

≤ (1− ταn)∥xn − xn−1∥2 + (M7 +M8) |αn−1 − αn|+ 2µM6ταnδ
(1)
n−1

+ 2µM6ταnδ
(2)
n−1 + 2µM6ταnδ

(1)
n−2 + 2µM6ταnδ

(2)
n−2 +

M8

τ
ταn (αn + αn−1) .

On the other hand, Conditions (i) and (v) guarantee that, for all ε > 0, there

exists m0 ∈ N such that (M8/τ)αn ≤ ε/10, (M8/τ)αn−1 ≤ ε/10, µM6δ
(i)
n−1 ≤

ε/10, and µM6δ
(i)
n−2 ≤ ε/10 (i = 1, 2) for all n ≥ m0. Therefore, we find that,

for all n ≥ m0,

∥xn+1 − xn∥2

≤ (1− ταn)∥xn − xn−1∥2 + (M7 +M8) |αn−1 − αn|+ ταnε

= (1− ταn)∥xn − xn−1∥2 + (M7 +M8) |αn − αn−1|+ (1− (1− ταn)) ε.
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Hence, for all m,n ≥ m0,

∥xn+m+1 − xn+m∥2

≤ (1− ταn+m)∥xn+m − xn+m−1∥2 + (M7 +M8) |αn+m − αn+m−1|
+ ε (1− (1− ταn+m))

≤ (1− ταn+m)
{
(1− ταn+m−1)∥xn+m−1 − xn+m−2∥2

+ (M7 +M8) |αn+m−1 − αn+m−2|+ ε (1− (1− ταn+m−1))
}

+ (M7 +M8) |αn+m − αn+m−1|+ ε (1− (1− ταn+m))

≤ (1− ταn+m)(1− ταn+m−1)∥xn+m−1 − xn+m−2∥2

+ (M7 +M8) (|αn+m − αn+m−1|+ |αn+m−1 − αn+m−2|)
+ ε (1− (1− ταn+m)(1− ταn+m−1))

≤
n+m−1∏
k=m

(1− ταk+1)∥xm+1 − xm∥2 + (M7 +M8)
n+m−1∑
k=m

|αk+1 − αk|

+ ε

(
1−

n+m−1∏
k=m

(1− ταk+1)

)
.

Since
∏∞

k=m(1− ταk+1) = 0 from Condition (ii), we find that, for every m ≥
m0,

lim sup
n→∞

∥xn+1 − xn∥2 = lim sup
n→∞

∥xn+m+1 − xn+m∥2

≤
∞∏

k=m

(1− ταk+1)∥xm+1 − xm∥2 + (M7 +M8)
∞∑

k=m

|αk+1 − αk|

+ ε

(
1−

∞∏
k=m

(1− ταk+1)

)

≤ (M7 +M8)
∞∑

k=m

|αk+1 − αk|+ ε.

Moreover, since limm→∞
∑∞

k=m |αk+1 − αk| = 0 from Condition (iii), we find
that lim supn→∞ ∥xn+1 − xn∥2 ≤ ε for all ε > 0. The arbitrary property of ε
ensures that

lim
n→∞

∥xn+1 − xn∥ = 0.

From ∥xn−PK(N̂(xn))∥ ≤ ∥xn−xn+1∥+∥xn+1−PK(N̂(xn))∥, limn→∞ ∥xn+1−
PK(N̂(xn))∥ = 0, and limn→∞ ∥xn+1 − xn∥ = 0, we find that

lim
n→∞

∥∥∥xn − PK

(
N̂(xn)

)∥∥∥ = 0.
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Therefore, the firm nonexpansivity of PK , the nonexpansivity of N̂ , Fix(N) =
Fix(N̂) ⊂ K = Fix(PK), and Lemma 2.2 ensure that

lim
n→∞

∥∥∥xn − N̂ (xn)
∥∥∥ = 0. (17)

(iii) Suppose that x⋆ ∈ Fix(N) is the unique solution to Problem 3.1.
Choose a subsequence, (xni)i∈N, of (xn)n∈N such that

lim sup
n→∞

⟨x⋆ − xn,∇f(x⋆)⟩ = lim
i→∞

⟨x⋆ − xni ,∇f(x⋆)⟩ .

The boundedness of (xni)i∈N guarantees the existence of a subsequence, (xnij
)j∈N,

of (xni
)i∈N and a point, x∗ ∈ H, such that (xnij

)j∈N weakly converges to x∗.

From the closedness of K and (xn)n∈N ⊂ K, we find that x∗ ∈ K. We may
assume without loss of generality that (xni)i∈N weakly converges to x∗. We
shall prove that x∗ ∈ K is a fixed point of N . Assume that x∗ ̸= N̂(x∗).
Opial’s condition8, Equation (17), and the nonexpansivity of N̂ produce a
contradiction:

lim inf
i→∞

∥xni
− x∗∥ < lim inf

i→∞

∥∥∥xni
− N̂(x∗)

∥∥∥
= lim inf

i→∞

∥∥∥xni − N̂(xni) + N̂(xni)− N̂(x∗)
∥∥∥ = lim inf

i→∞

∥∥∥N̂(xni)− N̂(x∗)
∥∥∥

≤ lim inf
i→∞

∥xni − x∗∥.

Accordingly, we find that x∗ ∈ Fix(N̂) = Fix(N). Since x⋆ ∈ Fix(N) is the
solution to Problem 3.1, ⟨x∗ − x⋆,∇f(x⋆)⟩ ≥ 0 holds (see Subsection 2.2).
Therefore,

lim sup
n→∞

⟨x⋆ − xn,∇f(x⋆)⟩ = lim
i→∞

⟨x⋆ − xni ,∇f(x⋆)⟩ = ⟨x⋆ − x∗,∇f(x⋆)⟩ ≤ 0.

This completes the proof.

Regarding Lemma 3.2(ii), we can make the following remark.

Remark 3.2 From ∥xn − N̂(xn)∥ = ∥xn − (1 − γ)xn − γN(xn)∥ = γ∥xn −
N(xn)∥ (n ∈ N), Lemma 3.2(ii) guarantees that limn→∞ ∥xn−N(xn)∥ = 0. Let
us see whether (∥xn −N(xn)∥)n∈N in Algorithm 3.1 monotonically decreases
or not. For simplicity, we assume that xn + µαnd

f
n, yn + γdNn+1 ∈ K (n ∈ N)

and γ := 1, i.e., yn := xn + µαnd
f
n, xn+1 := yn + dNn+1 (n ∈ N). The definition

of (dNn )n∈N means that, for all n ∈ N,

∥xn+1 −N (xn+1)∥ =
∥∥(yn + dNn+1

)
−N (xn+1)

∥∥
=
∥∥∥N (yn) + β(1)

n dNn + β(2)
n wn −N (xn+1)

∥∥∥
≤ ∥N (yn)−N (xn+1)∥+

∥∥∥β(1)
n dNn + β(2)

n wn

∥∥∥ ,
8 Suppose that (xn)n∈N (⊂ H) weakly converges to x̂ ∈ H and x̄ ̸= x̂. Then, the

following condition, called Opial’s condition [26], is satisfied: lim infn→∞ ∥xn − x̂∥ <
lim infn→∞ ∥xn − x̄∥. In the above situation, Opial’s condition leads to lim infi→∞ ∥xni −
x∗∥ < lim infi→∞ ∥xni − N̂(x∗)∥.
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which from the nonexpansivity of N implies that, for all n ∈ N,

∥xn+1 −N (xn+1)∥ ≤ ∥yn − xn+1∥+
∥∥∥β(1)

n dNn + β(2)
n wn

∥∥∥ .
From the definition of yn and the triangle inequality, we also have that, for all
n ∈ N,

∥yn − xn+1∥ =
∥∥xn + µαnd

f
n − xn+1

∥∥
≤ ∥xn − xn+1∥+ µαn

∥∥dfn∥∥
≤ ∥xn −N (xn)∥+ ∥N (xn)− xn+1∥+ µαn

∥∥dfn∥∥ .
Since the the triangle inequality and the nonexpansivity of N guarantee that,
for all n ∈ N,

∥N (xn)− xn+1∥ =
∥∥N (xn)−

(
yn + dNn+1

)∥∥
=
∥∥∥N (xn)−N (yn)− β(1)

n dNn − β(2)
n wn

∥∥∥
≤ ∥N (xn)−N (yn)∥+

∥∥∥β(1)
n dNn + β(2)

n wn

∥∥∥
≤ ∥xn − yn∥+

∥∥∥β(1)
n dNn + β(2)

n wn

∥∥∥
= µαn

∥∥dfn∥∥+ ∥∥∥β(1)
n dNn + β(2)

n wn

∥∥∥ ,
we find that, for all n ∈ N,

∥xn+1 −N (xn+1)∥ ≤ ∥xn −N (xn)∥+ 2
(
µαn

∥∥dfn∥∥+ ∥∥∥β(1)
n dNn + β(2)

n wn

∥∥∥) .
This implies that (∥xn −N(xn)∥)n∈N does not monotonically decrease. How-

ever, for large enough n, µαn∥dfn∥+ ∥β(1)
n dNn + β

(2)
n wn∥ ≈ 0 by Conditions (i)

and (iv) in Theorem 3.1. Therefore, we can see that (∥xn − N(xn)∥)n∈N will
monotonically decrease for large enough n. Such a trend is also observed in the
numerical examples in Section 4. Figures 5 and 7 show that (∥xn−N(xn)∥)n≤10

in Algorithm 3.1 does not monotonically decrease, (∥xn −N(xn)∥)n>10 in Al-
gorithm 3.1 monotonically decreases, and Algorithm 3.1 converges in Fix(N)
faster than the existing algorithms. See Section 4 for the details about the
numerical examples.

We can prove Theorem 3.1 by using Lemmas 3.1 and 3.2.
Proof of Theorem 3.1. Conditions (II), (i) and (v), and Lemmas 3.1 and

3.2 guarantee that, for all ε > 0, there exists m1 ∈ N such that, for all n ≥ m1,

µ

τ
⟨x⋆ − xn,∇f(x⋆)⟩ ≤ ε

10
,
µδ

(1)
n−1

τ

⟨
xn − x⋆, dfn−1

⟩
≤ ε

10
,

µδ
(2)
n−1

τ
⟨x⋆ − xn, zn−1⟩ ≤

ε

10
,

γαn

τ

(∥∥dNn ∥∥+ ∥wn∥
) ∥∥∥N̂(yn)− N̂(x⋆) + γtn

∥∥∥ ≤ ε

10
,

µ2αn

τ

⟨
dfn, δ

(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1 −∇f(x⋆)

⟩
≤ ε

10
.

(18)
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The nonexpansivity of PK and the definition of (dfn)n∈N imply that, for all
n ≥ m1,

∥yn − x⋆∥2 =
∥∥PK

(
xn + µαnd

f
n

)
− PK(x⋆)

∥∥2
≤
∥∥xn + µαnd

f
n − x⋆

∥∥2
=
∥∥∥xn + µαn

(
−∇f(xn) + δ

(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1

)
− x⋆

∥∥∥2
=
∥∥∥ (xn − µαn∇f(xn))− (x⋆ − µαn∇f(x⋆))

+ µαn

(
δ
(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1 −∇f(x⋆)

)∥∥∥2.
Accordingly, from the inequality, ∥x+ y∥2 ≤ ∥x∥2 +2⟨x+ y, y⟩ (x, y ∈ H) and
Lemma 2.1, we have that, for all n ≥ m1,

∥yn − x⋆∥2

≤ ∥(xn − µαn∇f(xn))− (x⋆ − µαn∇f(x⋆))∥2

+ 2µαn

⟨
xn + µαnd

f
n − x⋆, δ

(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1 −∇f(x⋆)

⟩
≤ (1− ταn) ∥xn − x⋆∥2

+ 2µαn

⟨
xn + µαnd

f
n − x⋆, δ

(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1 −∇f(x⋆)

⟩
= (1− ταn) ∥xn − x⋆∥2 + 2ταn

{µ
τ
⟨x⋆ − xn,∇f(x⋆)⟩+

µδ
(1)
n−1

τ

⟨
xn − x⋆, dfn−1

⟩
+

µδ
(2)
n−1

τ
⟨x⋆ − xn, zn−1⟩+

µ2αn

τ

⟨
dfn, δ

(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1 −∇f(x⋆)

⟩}
.

Therefore, Inequality (18) guarantees that, for all n ≥ m1,

∥yn − x⋆∥2 ≤ (1− ταn) ∥xn − x⋆∥2 + 4

5
εταn. (19)

Also, from the nonexpansivity of PK and the inequality, ∥x + y∥2 ≤ ∥x∥2 +
2⟨x+ y, y⟩ (x, y ∈ H), we have that, for all n ≥ m1,

∥xn+1 − x⋆∥2 =
∥∥∥PK

(
N̂ (yn) + γtn

)
− PK

(
N̂ (x⋆)

)∥∥∥2
≤
∥∥∥N̂ (yn)− N̂(x⋆) + γtn

∥∥∥2
≤
∥∥∥N̂ (yn)− N̂(x⋆)

∥∥∥2 + 2γ
⟨
tn, N̂(yn)− N̂(x⋆) + γtn

⟩
.

Moreover, the nonexpasivity of N̂ and the Cauchy-Schwarz inequality mean
that, for all n ≥ m1,

∥xn+1 − x⋆∥2

≤∥yn − x⋆∥2 + 2γ
⟨
β(1)
n dNn + β(2)

n wn, N̂(yn)− N̂(x⋆) + γtn

⟩
≤∥yn − x⋆∥2 + 2γ

(
β(1)
n

∥∥dNn ∥∥+ β(2)
n ∥wn∥

)∥∥∥N̂(yn)− N̂(x⋆) + γtn

∥∥∥ .
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Condition (iv) leads one to deduce that, for all n ≥ m1,

∥xn+1 − x⋆∥2

≤∥yn − x⋆∥2 + 2γα2
n

(∥∥dNn ∥∥+ ∥wn∥
) ∥∥∥N̂(yn)− N̂(x⋆) + γtn

∥∥∥
= ∥yn − x⋆∥2 + 2ταn

γαn

τ

(∥∥dNn ∥∥+ ∥wn∥
) ∥∥∥N̂(yn)− N̂(x⋆) + γtn

∥∥∥ .
Hence, Inequalities (19) and (18) imply that, for all n ≥ m1,

∥xn+1 − x⋆∥2 ≤ (1− ταn) ∥xn − x⋆∥2 + 4

5
εταn + 2ταn

ε

10

= (1− ταn) ∥xn − x⋆∥2 + εταn

= (1− ταn) ∥xn − x⋆∥2 + ε(1− (1− ταn)).

Induction thus gives, for all n ≥ m1,

∥xn+1 − x⋆∥2 ≤
n∏

k=m1

(1− ταk) ∥xm1 − x⋆∥2 + ε

(
1−

n∏
k=m1

(1− ταk)

)
.

Since
∏∞

k=m1
(1− ταk+1) = 0 from Condition (ii), we find that

lim sup
n→∞

∥xn+1 − x⋆∥2 ≤ ε.

The arbitrary property of ε ensures that lim supn→∞ ∥xn+1 − x⋆∥2 ≤ 0; i.e.,

limn→∞ ∥xn+1 − x⋆∥2 = 0. This means that (xn)n∈N in Algorithm 3.1 strongly
converges to the unique solution to Problem 3.1. □

4 Numerical Examples

This section provides numerical comparisons of the existing algorithms (HSDM,
HCGM, and HTCGM) with Algorithm 3.1 for the following problem:

Problem 4.1

Minimize f(x) :=
1

2
⟨x,Qx⟩+ ⟨b, x⟩ subject to x ∈ Fix(N),

where Q ∈ RS×S (S = 1000, 5000) is positive definite, b ∈ RS, and N : RS →
RS is nonexpansive with Fix(N) ̸= ∅.

HSDM, HCGM, and HTCGM used in the experiment were as follows:
x0 ∈ RS , df0 := −∇f(x0),

xn+1 := N

(
xn +

10−4

√
n+ 1

dfn

)
,
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where the directions in HSDM, HCGM, and HTCGM are, respectively,

dfn+1 := −∇f(xn+1),

dfn+1 := −∇f(xn+1) +
1

(n+ 1)0.01
dfn, (20)

dfn+1 := −∇f(xn+1) +
1

(n+ 1)0.01
dfn − 1

(n+ 1)0.01
∇f(xn+1). (21)

It is guaranteed that the above HSDM, HCGM, and HTCGM converge to the
unique solution to Problem 4.1 [15, Theorem 7].

The directions in Algorithm 3.1 used in the experiment are given by df0 :=

−∇f(x0), d
N
0 := N(x0 + 10−4df0 )− (x0 + 10−4df0 ),

dNn+1 := N(yn)− yn +
1

n+ 1
dNn +

1

n+ 1
(N(yn)− yn) , (22)

dfn+1 := −∇f(xn+1) +
1

(n+ 1)0.01
dfn − 1

(n+ 1)0.01
∇f(xn+1), (23)

where yn := PK(xn + (10−4/
√
n+ 1)dfn), xn+1 := PK(yn + dNn+1), and K

(⊂ RS) is a closed ball with a large radius. Theorem 3.1 guarantees that
Algorithm 3.1 with the above directions converges to the unique solution to
Problem 4.1.

We also applied HCGM with each of the FR, PRP, HS, and DY formulas
(Algorithm (11) with δn defined by one of Formulas (10)) to Problem 4.1 and
verified whether HCGMs with the FR, PRP, HS, and DY formulas converge
to the solution to Problem 4.1.

We chose five random initial points and executed HSDM, HCGM, HTCGM,
Algorithm 3.1, and HCGMs with the FR, PRP, HS, and DY formulas for any
initial point. The following graphs plot the mean values of the fifth execution.
The computer used in the experiment had an Intel Boxed Core i7 i7-870 2.93
GHz 8 M CPU and 8 GB of memory. The language was MATLAB 7.9.

4.1 Constraint set in Problem 4.1 is the intersection of two balls

Suppose that b := 0 ∈ RS , Q ∈ RS×S (S = 1000, 5000) is a diagonal matrix
which has eigenvalues, 1, 2, . . . , S, C1 := {x ∈ RS : ∥x∥2 ≤ 4}, and C2 := {x ∈
RS : ∥x− (2, 0, 0 . . . , 0)T ∥2 ≤ 1}. Define N : RS → RS by

N := PC1PC2 .

Then, N is nonexpansive because PC1 and PC2 are nonexpansive. Moreover,
Fix(N) = C1∩C2 ̸= ∅. Note that the exact solution to Problem 4.1 in this case
is x⋆ := (1, 0, 0, . . . , 0)T ∈ RS . To see whether or not the algorithms used in
the experiment converge to the solution, we employed the following function:
for each n ∈ N,

Dn := ∥xn − x⋆∥2,
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where xn is the nth approximation to the solution. The convergence of (Dn)n∈Ns
to 0 implies that the algorithms converge to the solution to Problem 4.1.

Figure 1 describes the behaviors of Dn for HSDM, HCGM, HTCGM, and
Algorithm 3.1 (Proposed) when S = 1000. This figure shows that (Dn)n∈N
generated by Algorithm 3.1 converges to 0 faster than (Dn)n∈Ns generated
by the existing algorithms, which means that Algorithm 3.1 converges fastest
to the solution. The CPU time to compute x2000 satisfying D2000 < 10−6

in Algorithm 3.1 is about 8.1 s, while HSDM, HCGM, and HTCGM satisfy
Dn > 10−2 when the CPU time is about 8.1 s. In particular, Algorithm 3.1
converges to the solution faster than the best conventional HTCGM employing
the three-term conjugate gradient-like direction. HTCGM has the direction,
dNn+1 := N(yn)−yn, whereas Algorithm 3.1 has the direction in Equation (22)
to converge in Fix(N) quickly. It is considered that this difference between
HTCGM and Algorithm 3.1 leads us to the fast convergence of Algorithm 3.1.
Figure 2 plots the behaviors of Dn for HSDM, HCGM, HTCGM, and Algo-
rithm 3.1 (Proposed) when S = 5000 and shows that Algorithm 3.1 converges
fastest, as can be seen in Figure 1.

Let us apply HCGMs employing the conventional FR, PRP, HS, and DY
formulas with limn→∞ δn ̸= 0 to Problem 4.1 in the above cases and see
whether they converge to the solution. Unfortunately, it is not guaranteed
that they converge to the solution because δn defined by one of Formulas
(10) satisfies limn→∞ δn ̸= 0 when κ, η ̸= 0 and the unique minimizer of
f over RS satisfying ∇f(x∗) = Qx∗ = 0 (i.e., x∗ = Q−10 = 0) is not
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Number of iterations
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HTCGM
Proposed

Fig. 1 Behavior of Dn := ∥xn − x⋆∥2 for HSDM, HCGM,
HTCGM, and Algorithm 3.1 (Proposed) when S = 1000 and
{x⋆} = Argminx∈C1∩C2

f(x) (CPU times to compute x500 in
HSDM, HCGM, HTCGM, and Algorithm 3.1 are, respectively,
0.5048 s, 0.9446 s, 1.2596 s, and 2.0045 s.)

0 2000 4000 6000 8000 1000010 -15

10 -10

10 -5

10 0

10 5

Number of iterations

Dn

HSDM
HCGM
HTCGM
Proposed

Fig. 2 Behavior of Dn := ∥xn − x⋆∥2 for HSDM, HCGM,
HTCGM, and Algorithm 3.1 (Proposed) when S = 5000 and
{x⋆} = Argminx∈C1∩C2

f(x) (CPU times to compute x500 in
HSDM, HCGM, HTCGM, and Algorithm 3.1 are, respectively,
8.5586 s, 15.2463 s, 21.1717 s, and 33.4314 s.)
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Fig. 3 Behavior of Dn := ∥xn − x⋆∥2 for HCGMs with FR,
PRP, HS, and DY formulas when S = 1000 and {x⋆} =
Argminx∈C1∩C2

f(x) (CPU times to compute x500 in FR, PRP,
HS, and DY are, respectively, 1.9925 s, 2.3310 s, 2.6161 s, and
2.5345 s.)
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Fig. 4 Behavior of Dn := ∥xn − x⋆∥2 for HCGMs with FR,
PRP, HS, and DY formulas when S = 5000 and {x⋆} =
Argminx∈C1∩C2

f(x) (CPU times to compute x500 in FR, PRP,
HS, and DY are, respectively, 25.7676 s, 29.1687 s, 32.9006 s,
and 31.8607 s.)

in C1 ∩ C2 (see Proposition 3.2 and Theorem 3.1). Figures 3 and 4 plot
the behaviors of Dn for HCGMs with the FR, PRP, HS, and DY formulas
when κ = η := 0.01 and S = 1000, 5000. We can see from these figures
that (Dn)n∈Ns generated by HCGMs with the PRP, HS, and DY formu-
las do not converge to 0, while (Dn)n∈N generated by HCGM with the FR
formula converges to 0; i.e., HCGM with the FR formula converges to the
solution to Problem 4.1. To verify why HCGM with the FR formula con-
verges to the solution, we checked the behaviors of δFRn , δPRR

n , δHS
n , and δDY

n

in the above cases. These values and behaviors were as follows: δFRn ≈ 0.9999,
δPRR
n ≈ −0.1049, δHS

n ≈ −0.9958, and δDY
n ≈ 0.8897 (n ≥ 2000). Meanwhile,

HCGM, HTCGM, and Algorithm 3.1 use the slowly diminishing sequence,

δ
(i)
n := 1/(n + 1)0.01 (i = 1, 2), in Directions (20), (21), and (23), satisfying

1/(104)0.01 ≈ 0.9120. This leads us that δFRn is approximately δ
(i)
n (i = 1, 2) for

large enough n. Since it is guaranteed that HCGM with δ
(1)
n := 1/(n+ 1)0.01

converges to the solution (Theorem 4.1 in [20] or Theorem 3.1 in this paper),
it is considered that HCGM with the FR formula also converges to the solu-
tion. In the case of Subsection 4.1, we can see from Figures 1–4 that HCGM

with the FR formula converges faster than HCGM with δ
(1)
n := 1/(n+ 1)0.01.

Reference [20] includes a numerical performance evaluation of HCGM as-

sociated with the choice of δ
(1)
n . The evaluation shows that HCGM with

δ
(1)
n = 1/(n + 1)0.001 (1/(104)0.001 ≈ 0.9908) converges to the solution faster

than one with δ
(1)
n = 1/(n+ 1)0.01 (1/(104)0.01 ≈ 0.9120). From this observa-
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tion, it is considered that HCGM with δFRn ≈ 0.9999 ≈ 1/(104)0.001 converges

faster than one with δ
(1)
n = 1/(n + 1)0.01. In the case of S = 1000, the CPU

time of HCGM with the FR formula satisfying D6000 < 10−6 is about 23.9 s,
while Algorithm 3.1 satisfies D2000 < 10−6 and the CPU time of Algorithm
3.1 at 2000 iterations is about 8.1 s. This implies that Algorithm 3.1 converges
to the solution fastest. We can also check from Figure 4 that, in the case of
S = 5000, Algorithm 3.1 converges to the solution faster than HCGM with
the FR formula. Therefore, we can conclude from Figures 1–4 that Algorithm
3.1 solves Problem 4.1 in the case of Subsection 4.1 faster than the existing
algorithms.

4.2 Constraint set in Problem 4.1 is the generalized convex feasible set

We chose b ∈ RS as a random number given by MATLAB, and set a box
constraint set, C3, and halfspaces, C4 and C5, with C3 ∩ C4 ∩ C5 = ∅. We
chose9 a positive definite matrix, Q ∈ RS×S , of which the maximum and
minimum eigenvalues are, respectively, λmax

Q := λS
Q = S and λmin

Q := λ1
Q = 1.

In this case, we define a constraint set in Problem 4.1 by a subset of C3 with the
elements closest to C4 and C5 in terms of the mean square norm. This subset
is referred to as the generalized convex feasible set [9, Section I, Framework 2],
[31, Definition 4.1] and it is defined as follows:

CΦ :=

{
x ∈ C3 : Φ(x) = min

y∈C3

Φ(y)

}
,

where Φ(x) stands for the mean square value of the distances from x ∈ RS to
C4 and C5:

Φ(x) :=
1

2

∑
k=4,5

(
min
z∈Ck

∥x− z∥
)2 (

x ∈ RS
)
.

Define N : RS → RS by

N := PC3

[
1

2
PC4 +

1

2
PC5

]
.

Accordingly, N is nonexpansive and Fix(N) = CΦ [31, Proposition 4.2]. Since
we cannot describe the solution to Problem 4.1 in this case, let us check
whether the algorithms used in the experiment converge in Fix(N) or not.
Figure 5 describes the behaviors10 of (∥xn −N(xn)∥)100n=0 for HSDM, HCGM,
HTCGM, and Algorithm 3.1 (Proposed) when S = 1000. This figure shows
that the behaviors of (∥xn−N(xn)∥)100n=0 for HSDM, HCGM, and HTCGM are

9 We randomly chose λk
Q ∈ (1, S) (k = 2, 3, . . . , S − 1) and set Q̂ ∈ RS×S as a diagonal

matrix with eigenvalues, λ1
Q, λ2

Q, . . . , λS
Q. We made a positive definite matrix, Q ∈ RS×S ,

using an orthogonal matrix and Q̂.
10 x ∈ RS satisfies ∥x−N(x)∥ = 0 if and only if x ∈ Fix(N).
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Fig. 5 Behavior of ∥xn−N(xn)∥ for HSDM, HCGM, HTCGM,
and Algorithm 3.1 (Proposed) when Q ∈ R1000×1000 is a positive
definite matrix and Fix(N) is a generalized convex feasible set
(CPU times to compute x500 in HSDM, HCGM, HTCGM, and
Algorithm 3.1 are, respectively, 0.7349 s, 1.3021 s, 1.8243 s, and
2.9998 s.)
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Fig. 6 Behavior of f(xn) for HSDM, HCGM, HTCGM, and
Algorithm 3.1 (Proposed) when Q ∈ R1000×1000 is a positive
definite matrix and Fix(N) is a generalized convex feasible set
(Algorithm 3.1 is stable for n ≥ 2000 and converges to x⋆ ∈
Fix(N) with f(x⋆) ≈ −1.4.)

the same, whereas (∥xn −N(xn)∥)n∈N generated by Algorithm 3.1 converges
fastest to 0; i.e., Algorithm 3.1 converges fastest in Fix(N). 11 This will be
because Algorithm 3.1 has Direction (22) to converge in Fix(N) quickly. The
behaviors of (f(xn))

5000
n=0 for the four algorithms is presented in Figure 6. We

can see that Algorithm 3.1 dramatically decreases f as compared with HSDM,
HCGM, and HTCGM. We checked that Algorithm 3.1 is stable for n ≥ 2000
and converges to x⋆ with f(x⋆) ≈ −1.4, and that the CPU time of Algorithm
3.1 at 2000 iterations is about 11.9 s (HSDM, HCGM, and HTCGM are not
stable when the CPU time is about 11.9 s). Therefore, Figures 5 and 6 and
Theorem 3.1 ensure that Algorithm 3.1 converges to the solution to Problem
4.1 faster than the existing algorithms.

Figures 7 and 8 plot the behaviors of (∥xn −N(xn)∥)100n=0 and (f(xn))
5000
n=0

when S = 5000, respectively. As with the case of S = 1000, we can see that
Algorithm 3.1 converges in Fix(N) and decreases f faster than the existing
algorithms. We checked that Algorithm 3.1 is stable for n ≥ 2000 and converges
to x⋆ with f(x⋆) ≈ −2.5.

Finally, we verify whether HCGMs employing the FR, PRP, HS, and DY
formulas converge to the solution to Problem 4.1 under the same conditions
that were discussed in Figures 5–8. Figures 9 and 10 describe the behaviors
of (f(xn))

5000
n=0 for HCGMs with the FR, PRP, HS, and DY formulas when

11 See Remark 3.2 on the nonmonotonicity of (∥xn −N(xn)∥)n∈N in Algorithm 3.1.
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Fig. 7 Behavior of ∥xn−N(xn)∥ for HSDM, HCGM, HTCGM,
and Algorithm 3.1 (Proposed) when Q ∈ R5000×5000 is a positive
definite matrixand Fix(N) is a generalized convex feasible set
(CPU times to compute x500 in HSDM, HCGM, HTCGM, and
Algorithm 3.1 are, respectively, 8.7845 s, 16.9029 s, 22.1541 s,
and 33.8423 s.)
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Fig. 8 Behavior of f(xn) for HSDM, HCGM, HTCGM, and
Algorithm 3.1 (Proposed) when Q ∈ R5000×5000 is a positive
definite matrix and Fix(N) is a generalized convex feasible set
(Algorithm 3.1 is stable for n ≥ 2000 and converges to x⋆ ∈
Fix(N) with f(x⋆) ≈ −2.5.)

κ = η := 0.01 and S = 1000, 5000. We can see that HCGM with the FR
formula decreases f in the early stages. We checked that HCGM with the FR
formula is stable for n ≥ 3000, and converges in Fix(N) and to the same point
to which Algorithm 3.1 converges (f(x⋆) ≈ −1.4 when S = 1000, f(x⋆) ≈ −2.5
when S = 5000). We also verified the behaviors and values of δFRn , δPRP

n , δHS
n ,

and δDY
n : δFRn ≈ 0.9999, δPRP

n ≈ −0.1007, δHS
n ≈ −0.9981, and δDY

n ≈ 0.9076
(n ≥ 3000). From the same discussion in the third paragraph of Subsection 4.1,
we can conclude that HCGM with the FR formula converges to the solution
to Problem 4.1. Here, let us compare Algorithm 3.1 with HCGM with the
FR formula. In the case of S = 1000, the required CPU time and number of
iterations of Algorithm 3.1 are, respectively, about 11.9 s and 2000 iterations,
whereas the required CPU time and number of iterations of HCGM with the
FR formula are, respectively, about 15.2 s and 3000 iterations. We can also
verify that, in the case of S = 5000, the required CPU time and number of
iterations of Algorithm 3.1 are, respectively, about 135 s and 2000 iterations,
whereas the required CPU time and number of iterations of HCGM with the
FR formula are, respectively, about 177 s and 3000 iterations. Therefore, we
can conclude form Figures 5–10 that Algorithm 3.1 solves Problem 4.1 in the
case of Subsection 4.2 faster than the existing algorithms.
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Fig. 9 Behavior of f(xn) for HCGMs with FR, PRP, HS, and
DY formulas when Q ∈ R1000×1000 is a positive definite matrix
and Fix(N) is a generalized convex feasible set (CPU times to
compute x500 in FR, PRP, HS, and DY are, respectively, 2.5199
s, 2.7011 s, 3.2887 s, and 2.9388 s.)
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Fig. 10 Behavior of f(xn) for HCGMs with FR, PRP, HS, and
DY formulas when Q ∈ R5000×5000 is a positive definite matrix
and Fix(N) is a generalized convex feasible set (CPU times to
compute x500 in FR, PRP, HS, and DY are, respectively, 29.4655
s, 33.2822 s, 34.3774 s, and 33.5166 s.)

5 Conclusion and Future Work

This paper presented a novel fixed point optimization algorithm to accelerate
the existing algorithms for solving the convex minimization problem over the
fixed point set of a nonexpansive mapping on a Hilbert space and showed that
the algorithm with slowly diminishing step-size sequences strongly converges
to the solution to the problem. It also described that conjugate gradient meth-
ods with the conventional Fletcher–Reeves, Polak–Ribiére–Polyak, Hestenes–
Stiefel, and Dai–Yuan formulas do not always converge to the solution to the
problem. To demonstrate the effectiveness and convergence of the algorithm,
we provided numerical comparisons of the algorithm with the existing algo-
rithms. The comparisons suggested that the algorithm is effective for solving
the convex minimization problems.

The numerical examples in this paper demonstrated that, for concrete con-
vex optimization problems, the proposed algorithm converges to the desired
solutions faster than the existing algorithms. Although we need to prove that
the acceleration algorithm increases the rate of convergence, it seems to be
difficult to evaluate the rate of convergence for a convex optimization prob-
lem over the fixed point set of a nonexpansive mapping. This is because the
constraint set is a fixed point set, which does not have a simple form; i.e., the
explicit form of the metric projection onto the fixed point set is not known.
However, combining the ideas of [2, Chapter 5] and [5,24] would give a good
way to evaluate the convergence rate of the proposed algorithm because refer-



32 Hideaki Iiduka

ence [2, Chapter 5] discussed the convergence rate of iterative algorithms for
solving nonlinear ill-posed problems with monotone operators and references
[5,24] discussed the convergence rate of algorithms for solving linear inverse
problems and convex optimization problems. On the basis on these previously
reported results, we first should try to evaluate the rate of convergence of the
proposed algorithm for concrete convex optimization problems (e.g., a problem
of minimizing a linear objective function over the generalized convex feasible
set).

The problem of minimizing an objective function, which does not satisfy a
strong convexity condition, over the fixed point set of a nonexpansive mapping
includes important and practical engineering problems. For example, the net-
work bandwidth allocation problem is expressed as a problem of maximizing a
strictly concave or a nonconcave utility function over a certain fixed point set
[17–19], the power control problem is one of maximizing a nonconcave func-
tion over a certain fixed point set [16], and the optimal control problem is
one of minimizing a convex function over a certain fixed point set [21]. The
algorithms presented in [16–19,21] are based on algorithmic methods, such as
the steepest descent method and conjugate gradient methods, for minimiz-
ing objective functions. Therefore, by referring to the ideas of [16–19,21] and
Algorithm 3.1 in this paper, we will be able to devise an algorithm with three-
term conjugate gradient-like directions which can be applied when objective
functions are convex or nonconvex. However, it was not demonstrated that
the algorithm performs better in numerical experiments than the algorithms
presented in [16–19,21]. In the future, we need to apply the algorithm to
real-world optimization problems in [16–19,21] and see whether the algorithm
performs better than those algorithms.
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