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Abstract: The split feasibility problem deals with finding a point in a closed convex subset of the domain
space of a linear operator such that the image of the point under the linear operator is in a prescribed closed
convex subset of the image space. The split feasibility problem and its variants and generalizations have
been widely investigated as a means for resolving practical inverse problems in various disciplines. Many
iterative algorithms have been proposed for solving the problem. This paper discusses a split feasibility
problem which does not have a solution, referred to as an inconsistent split feasibility problem. When the
closed convex set of the domain space is the absolute set and the closed convex set of the image space is the
subsidiary set, it would be reasonable to formulate a compromise solution of the inconsistent split feasibility
problem by using a point in the absolute set such that its image of the linear operator is closest to the
subsidiary set in terms of the norm. We show that the problem of finding the compromise solution can be
expressed as a convex minimization problem over the fixed point set of a nonexpansive mapping and propose
an iterative algorithm, with three-term conjugate gradient directions, for solving the minimization problem.
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1 Introduction
Inverse problems in various disciplines can be expressed as split feasibility problems and its generalizations,
such as the multiple-set split feasibility problem and split common fixed point problem (see, e.g., [4, 5, 6, 7]
and references therein), and many iterative algorithms have been presented to solve these problems. First,
let us describe the multiple-set split feasibility problem (MSFP).1

Find x⋆ ∈ C :=
∩
i∈I

C(i) such that Ax⋆ ∈ Q :=
∩
j∈J

Q(j), (1.1)

where C(i) (⊂ RN ) (i ∈ I := {1, 2, . . . , I}) and Q(j) (⊂ RM ) (j ∈ J := {1, 2, . . . , J}) are nonempty, closed,
and convex, and A ∈ RM×N . The conventional algorithms (see, e.g., [4, 6, 28, 31, 35, 36] and references
therein) for solving MSFP can be applied if it is known from the beginning that MSFP (1.1) has a solution.
However, it would be difficult to verify whether MSFP (1.1) has a solution or not before executing the
conventional algorithms. This implies the applications of the conventional algorithms are severely limited.
Therefore, we should devise algorithms that work without having to assume the existence of a solution to
MSFP (1.1). This paper deals with an inconsistent multiple-set split feasibility problem (IMSFP) under
following assumptions.

(I) C(i) (i ∈ I) are the absolute sets for which the conditions must be satisfied, whereas Q(j) and
D(j) := {x ∈ RN : Ax ∈ Q(j)} (j ∈ J ) are the subsidiary sets for which the conditions are satisfied
as much as possible. We assume that

∩
i∈I C(i) ∩

∩
j∈J D(j) = ∅.2

(II) We can use a nonexpansive mapping, T (i) : RN → RN , satisfying Fix(T (i)) := {x ∈ RN : T (i)(x) =
x} = C(i)3 and the metric projection onto Q(j) (j ∈ J ), denoted by PQ(j) .4

0This work was supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for
Scientific Research (C) (15K04763).

1MSFP (1.1) when I = J = 1 is referred to as the split feasibility problem.
2The condition,

∩
i∈I C(i) ∩

∩
j∈J D(j) = ∅, implies that MSFP (1.1) has no solution.

3T : RN → RN is said to be nonexpansive if ∥T (x)− T (y)∥ ≤ ∥x− y∥ (x, y ∈ RN ), where ∥ · ∥ stands for
the Euclidean norm. Fix(T ) is closed and convex when T is nonexpansive [14, Proposition 5.3].

4Given a closed convex set C (⊂ RN ), the metric projection onto C is defined as follows: PC(x) ∈ C
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The following is an example of T (i) satisfying assumption (II). When a closed convex set C
(i)
k (k =

1, 2, . . . ,m(i)) is simple in the sense that P
C

(i)
k

can be computed within a finite number of arithmetic

operations (e.g., C
(i)
k is a closed ball, a closed cone, or a half-space) and C(i) :=

∩m(i)
k=1 C

(i)
k , we can use

a nonexpansive mapping T (i) :=
∑m(i)

k=1 u
(i)
k P

C
(i)
k

, where (u
(i)
k )

m(i)
k=1 ⊂ (0, 1) satisfies

∑m(i)
k=1 u

(i)
k = 1, with

Fix(T (i)) =
∩m(i)

k=1 C
(i)
k = C(i) [29, Fact 2.1(b), (c)].

Since C =
∩

i∈I Fix(T (i)) is the absolute set, it would be reasonable to define a compromise solution

of IMSFP as a point in
∩

i∈I Fix(T (i)) such that its image of A is closest to Q(j) (j ∈ J ) in terms of the
mean square norm (see [10, section I, Framework 2] and [29, Definition 4.1] for the details of the compromise
solution). The mean square value of the distances from Ax (∈ RM ) to Q(j) (j ∈ J ) is represented as follows:
given (w(j))j∈J ⊂ (0, 1) satisfying

∑
j∈J w(j) = 1,

fD(x) :=
1

2

∑
j∈J

w(j)
∥∥∥PQ(j) (Ax)−Ax

∥∥∥2 (
x ∈ RN

)
. (1.2)

Hence, the compromise solution of IMSFP can be found by taking the minimizer of fD over
∩

i∈I Fix(T (i)).
Therefore, the main objective of this paper is to solve the following problem.

Find x⋆ ∈
∩
i∈I

Fix
(
T (i)

)
such that fD (x⋆) = min

x∈
∩

i∈I Fix(T (i))
fD(x). (1.3)

Even if C ∩ D :=
∩

i∈I C(i) ∩
∩

j∈J D(j) = ∅, the solution set of problem (1.3) is well defined because it

is the set of all minimizers of fD over
∩

i∈I Fix(T (i)). When at least one of the fixed point sets Fix(T (i))
(i ∈ I) is bounded, the continuity of fD guarantees that problem (1.3) has a solution. Moreover, if MSFP
(1.1) has a solution; i.e., C ∩D ̸= ∅, we find that

C ∩D = C ∩
∩
j∈J

{
x ∈ RN : Ax ∈ Q(j)

}
= C ∩

∩
j∈J

{
x ∈ RN :

∥∥∥PQ(j) (Ax)−Ax
∥∥∥ = 0

}
=
∩
i∈I

Fix
(
T (i)

)
∩
{
x ∈ RN : fD(x) = min

y∈RN
fD (y)

}

=

x⋆ ∈
∩
i∈I

Fix
(
T (i)

)
: fD (x⋆) = min

x∈
∩

i∈I Fix(T (i))
fD(x)

 .

The first equation comes from the definition of D(j) (j ∈ J ), the second equation from Fix(PQ(j) ) = {y ∈
RM : ∥PQ(j) (y) − y∥ = 0} = Q(j) (j ∈ J ), and the third and fourth equations from the definition of fD

(see (1.2)), C =
∩

i∈I Fix(T (i)) ⊂ RN , and C ∩ D ̸= ∅. This means that the solution set of problem (1.3)
when C ∩ D ̸= ∅ coincides with the solution set of MSFP (1.1); i.e., the solution set of problem (1.3) is a
generalization of the solution set of MSFP (1.1).

Let us define a general problem which includes problem (1.3). Since we can use nonexpansive mappings
T (i) : RN → RN (i ∈ I) satisfying

∩
i∈I Fix(T (i)) ̸= ∅, we can also use T : RN → RN defined as follows:

given (v(i))i∈I ⊂ (0, 1) with
∑

i∈I v(i) = 1,

T :=
∑
i∈I

v(i)T (i).

The mapping T satisfies the nonexpansivity condition [29, Fact 2.1(b)], and the following holds [29, Fact
2.1(c)]:

Fix (T ) =
∩
i∈I

Fix
(
T (i)

)
̸= ∅.

Therefore, we can regard the constrained set in problem (1.3) as the fixed point set of a certain nonexpansive
mapping (see [29, Fact 2.1] for other compositions of T such that Fix(T ) =

∩
i∈I Fix(T (i))). The function

and ∥x − PC(x)∥ = infy∈C ∥x − y∥ (x ∈ RN ). Assumption (II) means that PQ(j) can be easily computed

within a finite number of arithmetic operations. PQ(j) (j ∈ J ) satisfies the nonexpansivity condition [2,

Proposition 2.10].
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fD : RN → R defined by (1.2) is convex because A is linear and ∥ · ∥2 is convex. Moreover, the gradient of
fD defined by

∇fD(x) = tAAx−
∑
j∈J

w(j)tA
[
PQ(j) (Ax)

] (
x ∈ RN

)
is Lipschitz continuous [6, Theorem 2(i)] with a constant ρ(tAA)

∑
j∈J w(j),5 where ρ(tAA) is the spectral

radius of tAA and tA stands for the transpose of A. Hence, we can regard the objective function in problem
(1.3) as a differentiable, convex function with the Lipschitz continuous gradient. Now, we can formulate the
following problem, which includes problem (1.3).

Problem 1.1. Suppose that T : RN → RN is a nonexpansive mapping with Fix(T ) ̸= ∅, f : RN → R is
convex and differentiable, and ∇f : RN → RN is L-Lipschitz continuous. Our objective is to

minimize f(x) subject to x ∈ Fix (T ) .

There are many useful algorithms for minimizing a smooth (convex) function with a Lipschitz continuous
gradient over the intersection of convex sets [11, 12, 26] or the intersection of fixed point sets [9, 17, 19, 21,
22, 23, 29, 30]. This paper focuses on conventional fixed point optimization algorithms [9, 17, 21, 22, 29, 30]
and presents an algorithm which not only minimizes the objective function quickly but also converges in the
fixed point set quickly.

Iterative algorithms [9, 21, 17, 22, 29, 30] have been proposed to solve Problem 1.1 under the assumptions
that T is nonexpansive, f is strongly convex,6 and ∇f is Lipschitz continuous; these assumptions are stronger
than the assumptions of Problem 1.1 considered in this paper. The strong convexity of f and the Lipschitz
continuity of ∇f guarantee that there exists a unique solution to Problem 1.1. By using the uniqueness and
existence of the solution, we can prove that the algorithms converge to the solution; i.e., the algorithms can
solve Problem 1.1 when f is strongly convex (see [18, 20] for algorithms for solving Problem 1.1 when f is
strictly convex that has a unique solution).

Meanwhile, it is not always true that Problem 1.1 has a unique solution because f in Problem 1.1 and fD
defined by (1.2) do not satisfy the strong convexity condition. The main objective of this paper is to devise
an iterative algorithm for solving Problem 1.1 with a convex objective function in contrast with the previous
algorithms [9, 17, 18, 20, 21, 22, 29, 30]. The new result presented here is that the proposed algorithm
(Algorithm 2.1) can solve problem (1.3), that is, find a compromise solution of IMSFP, which cannot be
solved with the previous algorithms.

It is particularly worth noting that the algorithm, with three-term conjugate gradient directions [8,
17, 21, 24, 32, 33, 34], converges to a solution to Problem 1.1 faster than the conventional algorithms
[4, 6, 28, 31, 35, 36] using the steepest descent direction of the objective function. Let us consider the
following iterative algorithm for solving the problem of minimizing f over RN (i.e., Problem 1.1 when T is
the identity mapping, denoted by Id).

xn+1 := xn + αnd
f
n (n ∈ N) , (1.4)

where xn (∈ RN ) is the nth approximation, αn (> 0) is the step size, and dfn (∈ RN ) is the search direction.
The three-term conjugate gradient direction (TCGD) of f at xn+1 is

dfn+1 := −∇f (xn+1) + δ
(1)
n dfn − δ

(2)
n zn, (1.5)

where (δ
(i)
n )n∈N (⊂ [0,∞)) (i = 1, 2) and zn (∈ RN ) is an arbitrary point.

Algorithm (1.4) with a direction (1.5) when δ
(i)
n := 0 (i = 1, 2, n ∈ N), i.e., xn+1 = xn − αn∇f(xn),

is the steepest descent method. It satisfies ⟨dn,∇f(xn)⟩ < 0 (n ∈ N), called the descent condition. Since
the methods satisfying the descent condition strictly decrease f at each iteration, they are powerfully useful
to solve the problem of minimizing f over RN . However, the steepest descent method has a slow rate of
convergence. Its acceleration has been of great interest. Much research in this direction covers, for example,

the conjugate gradient methods and the three-term conjugate gradient method. Direction (1.5) when δ
(2)
n :=

0 (n ∈ N); i.e., dfn+1 := −∇f (xn+1)+ δ
(1)
n dfn, is called the conjugate gradient direction [25, Chapter 5], and

algorithm (1.4) with this direction is called the conjugate gradient method. Well-known formulas for δ
(1)
n

have been proposed, including the Fletcher–Reeves, Polak–Ribiére–Polyak, Hestenes–Stiefel, and Dai–Yuan
formulas (see [25, Chapter 5] for the definitions of their formulas). The conjugate gradient methods do not

always satisfy the descent condition, and δ
(1)
n must be set appropriately so as to satisfy the descent condition.

5S : RN → RN is said to be Lipschitz continuous with L > 0 (L-Lipschitz continuous) if ∥S(x)−S(y)∥ ≤
L∥x− y∥ (x, y ∈ RN ).

6f : RN → R is said to be strongly convex with α > 0 (α-strongly convex) if f(λx + (1 − λ)y) ≤
λf(x) + (1− λ)f(y)− (1/2)αλ(1− λ)∥x− y∥2 (λ ∈ [0, 1], x, y ∈ RN ).
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Meanwhile, the three-term conjugate gradient method (TCGM) satisfies the descent condition [24, Sub-

section 2.1] without depending on the choice of δ
(1)
n . This is because the third term, δ

(2)
n zn, in direction

(1.5) plays an important role in satisfying the descent condition. Therefore, we can conclude that TCGM
is a good way to solve the problem of minimizing f over RN . Hence, in this paper, we will present the
algorithm with direction (1.5), which is used to minimize f quickly, for solving Problem 1.1.

Next, let us define TCGD for finding a fixed point of T . Consider the problem of minimizing a convex,
differentiable functional g, with the l-Lipschitz gradient, over RN . Here, we define Tg := Id − r∇g, where
r ∈ (0, 2/l]. The mapping Tg satisfies the nonexpansivity condition and Fix(Tg) = {x ∈ RN : g(x) =
miny∈RN g(y)} [16, Proposition 2.3]. Accordingly, we can regard the problem of minimizing g over RN as
the fixed point problem for a nonexpansive mapping. The well-known algorithm for solving the fixed point
problem is as follows [15, 27]: given x0 ∈ RN ,

xn+1 := βnx0 + (1− βn)Tg (xn) (n ∈ N) , (1.6)

where (βn)n∈N ⊂ [0, 1] with limn→∞ βn = 0 and
∑∞

n=0 βn = ∞. Algorithm (1.6) converges to a fixed point
of Tg . Algorithm (1.6) with Tg := Id− r∇g can be represented as

xn+1 = βnx0 + (1− βn) [xn − r∇g (xn)]

= βnx0 + (1− βn)

[
xn + r

{
Tg (xn)− xn

r

}]
,

which implies that algorithm (1.6) has the steepest descent direction of g at xn, i.e.,

d
Tg

n+1 := −∇g (xn) =
Tg (xn)− xn

r
.

Therefore, we can define TCGD for finding a fixed point of T by

d
Tg

n+1 :=
Tg (xn)− xn

r
+ β

(1)
n d

Tg
n + β

(2)
n wn, (1.7)

where (β
(i)
n )n∈N (⊂ [0,∞)) (i = 1, 2) and wn (∈ RN ) is an arbitrary point.

From the above discussion, we can devise an algorithm with TCGDs (1.5) and (1.7) for solving Problem
1.1 that not only minimizes the objective function quickly but also converges in the fixed point set quickly.
Section 2 describes the proposed algorithm and presents its convergence analyses. Section 3 gives numerical
examples for the inconsistent split feasibility problems and demonstrates the effectiveness and convergence
of the algorithm. Section 4 concludes the paper.

2 Algorithm with TCGDs and Its Convergence Analy-
ses

Let us describe the algorithm for solving Problem 1.1.

Algorithm 2.1.

Step 0. Take a closed convex set K (⊂ RN ), (αn)n∈N, (γn)n∈N ⊂ [0, 1], (β
(i)
n )n∈N, (δ

(i)
n )n∈N ⊂ [0, 1]

(i = 1, 2), µ ∈ (0, 1], and choose x0 ∈ RN arbitrarily. Let df0 := −∇f(x0), y0 := x0+α0d
f
0 , d

T
0 := T (y0)−y0,

and n := 0.
Step 1. Compute yn (∈ RN ) as

yn := PK

(
xn + αnd

f
n

)
and update dTn+1 (∈ RN ) by

dTn+1 := T (yn)− yn + β
(1)
n dTn + β

(2)
n wn,

where wn (∈ RN ) is an arbitrary point.
Step 2. Compute xn+1 (∈ RN ) as

x̄n+1 := PK

(
yn + µdTn+1

)
,

xn+1 := PK (γnx0 + (1− γn)x̄n+1)

and update dfn+1 (∈ RN ) by

dfn+1 := −∇f (xn+1) + δ
(1)
n dfn − δ

(2)
n zn,

where zn (∈ RN ) is an arbitrary point. Put n := n+ 1, and go to Step 1.
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2.1 Convergence analysis of Algorithm 2.1 when Fix(T ) is bounded
This subsection assumes the following.

Assumption 2.1.

(A1) K (⊃ Fix(T )) is bounded.

(A2) (wn)n∈N and (zn)n∈N are bounded.

(A3) (αn)n∈N ⊂ (0, 2/L], (γn)n∈N ⊂ (0, 1], (β
(i)
n )n∈N, (δ

(i)
n )n∈N ⊂ [0, 1] (i = 1, 2) satisfy

(C1)
∞∑

n=0

γn = ∞, (C2) lim
n→∞

αn = lim
n→∞

γn = 0,

(C3) lim
n→∞

1

γn+1

∣∣∣∣ 1

αn+1
−

1

αn

∣∣∣∣ = 0, (C4) lim
n→∞

1

αn+1

∣∣∣∣1−
γn

γn+1

∣∣∣∣ = 0,

(C5) lim
n→∞

γn

αn
= 0, (C6)

αn

αn+1
,

γn

γn+1
≤ σ for some σ < ∞,

(C7) β
(i)
n ≤ γ2

n (i=1,2) , (C8) δ
(i)
n ≤ γ2

n+1 (i=1,2).

Consider problem (1.3) when i0 ∈ I exists such that C(i0) is bounded. Then, we can set a bounded
K (⊃ Fix(T (i0)) = C(i0)) onto which the metric projection is easily computed (e.g., K is a closed ball
with a large enough radius). In this case, we have K ⊃ Fix(T (i0)) ⊃

∩
i∈I Fix(T (i)) =: Fix(T ), where

T :=
∑

i∈I v(i)T (i) (see also section 1 for the definition of T and the details of problem (1.3)). This implies

that Assumption (A1) holds when at least one of the C(i) is bounded.
We can define wn := T (yn)−yn and zn := ∇f(xn+1) (n ∈ N) by referring to [17, 21, 33]. As a result, the

boundedness of K (Assumption (A1)) guarantees that (wn)n∈N and (zn)n∈N are bounded (see the proofs of
Lemmas 2.1 and 2.2 for the details). Accordingly, Assumption (A2) holds when K is bounded, and (wn)n∈N
and (zn)n∈N are defined by wn := T (yn)− yn and zn := ∇f(xn+1) (n ∈ N).

Examples of (αn)n∈N, (γn)n∈N, (β
(i)
n )n∈N, and (δ

(i)
n )n∈N (i = 1, 2) satisfying Assumption (A3) are

αn := (2/L)(1/(n + 1)a), γn := 1/(n + 1)b, β
(i)
n := 1/(n + 1)2b, and δ

(i)
n := 1/(n + 2)2b (i = 1, 2), where

a ∈ (0, 1/2) and b ∈ (a, 1− a).
The following is a convergence analysis of Algorithm 2.1.

Theorem 2.1. Under Assumption 2.1, the sequence (xn)n∈N generated by Algorithm 2.1 satisfies

lim
n→∞

d (xn, X
⋆) = 0,

where X⋆ is the solution set of Problem 1.1 and d(xn, X⋆) := infx⋆∈X⋆ ∥xn − x⋆∥ (n ∈ N).

2.2 Proof of Theorem 2.1
We first prove the following lemmas.

Lemma 2.1. (yn)n∈N, (T (yn))n∈N, and (dTn )n∈N are bounded.

Proof. Since K is bounded, (yn)n∈N (⊂ K) is bounded. The nonexpansivity of T implies that ∥T (yn) −
T (x)∥ ≤ ∥yn − x∥ (x ∈ RN ), and hence, (T (yn))n∈N is also bounded.

From (C2) and (C7), we have that limn→∞ β
(i)
n = 0 (i = 1, 2). Accordingly, there exists n0 ∈ N such

that β
(1)
n ≤ 1/3 and β

(2)
n ≤ 1 for all n ≥ n0. Assumption (A2) and the boundedness of (T (yn))n∈N ensure

that M1 := max{sup{∥T (yn) − yn∥ : n ∈ N}, sup{∥wn∥ : n ∈ N}} < ∞ and M2 := max{M1, ∥dTn0
∥} < ∞.

Hence, we have that ∥dTn0
∥ ≤ 3M2. Suppose that ∥dTm∥ ≤ 3M2 for some m ≥ n0. Then, ∥dTm+1∥ =

∥T (ym)−ym+β
(1)
m dTm+β

(2)
m wm∥ ≤ ∥T (ym)−ym∥+β

(1)
m ∥dTm∥+β

(2)
m ∥wm∥ ≤ M2+(1/3)3M2+M2 = 3M2.

Therefore, induction shows that ∥dTn∥ ≤ 3M2 (n ≥ n0); i.e., (dTn )n∈N is bounded.

Lemma 2.2. (x̄n)n∈N, (xn)n∈N, (∇f(xn))n∈N, and (dfn)n∈N are bounded.

Proof. The boundedness of K guarantees that (x̄n)n∈N and (xn)n∈N are bounded. From the Lipschitz
continuity of ∇f , we have that ∥∇f(xn)−∇f(x)∥ ≤ L∥xn−x∥ (x ∈ RN ). Hence, (∇f(xn))n∈N is bounded.

Moreover, (C2) and (C8) imply that limn→∞ δ
(i)
n = 0 (i = 1, 2). Accordingly, a discussion similar to the

proof of the boundedness of (dTn )n∈N leads us to conclude that (dfn)n∈N is bounded.
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Next, we prove the following.

Lemma 2.3. limn→∞ ∥xn+1 − xn∥/αn = 0.

Proof. The definition of xn (n ∈ N) and the nonexpansivity of PK mean that, for all n ∈ N,

∥xn+1 − xn∥ = ∥PK (γnx0 + (1− γn)x̄n+1)− PK (γn−1x0 + (1− γn−1)x̄n)∥
≤ ∥(γnx0 + (1− γn)x̄n+1)− (γn−1x0 + (1− γn−1)x̄n)∥
= ∥(1− γn) (x̄n+1 − x̄n) + (γn − γn−1) (x0 − x̄n)∥ ,

which from the triangle inequality and M3 := sup{∥x0 − x̄n∥ : n ∈ N} < ∞ implies that

∥xn+1 − xn∥ ≤ (1− γn) ∥x̄n+1 − x̄n∥+M3 |γn − γn−1| . (2.1)

Meanwhile, x̄n+1 (n ∈ N) can be represented as

x̄n+1 = PK

(
yn + µdTn+1

)
= PK

(
yn + µ

(
T (yn)− yn + β

(1)
n dTn + β

(2)
n wn

))
= PK

(
(1− µ) yn + µT (yn) + µ

(
β
(1)
n dTn + β

(2)
n wn

))
=: PK

(
T̂ (yn) + µtn

)
,

where T̂ := (1−µ)Id+µT and tn := β
(1)
n dTn +β

(2)
n wn (n ∈ N). Accordingly, we have from the nonexpansivity

of PK and the triangle inequality that, for all n ∈ N,

∥x̄n+1 − x̄n∥ =
∥∥∥PK

(
T̂ (yn) + µtn

)
− PK

(
T̂ (yn−1) + µtn−1

)∥∥∥
≤
∥∥∥(T̂ (yn) + µtn

)
−
(
T̂ (yn−1) + µtn−1

)∥∥∥
=
∥∥∥(T̂ (yn)− T̂ (yn−1)

)
+ µ (tn − tn−1)

∥∥∥
≤
∥∥∥T̂ (yn)− T̂ (yn−1)

∥∥∥+ µ ∥tn − tn−1∥ .

Since T is nonexpansive, T̂ := (1− µ)Id + µT is also nonexpansive. Hence, for all n ∈ N,

∥x̄n+1 − x̄n∥ ≤ ∥yn − yn−1∥+ µ ∥tn − tn−1∥ . (2.2)

The definitions of yn and dfn (n ∈ N) and the nonexpansivity of PK ensure that, for all n ∈ N,

∥yn − yn−1∥ =
∥∥∥PK

(
xn + αnd

f
n

)
− PK

(
xn−1 + αn−1d

f
n−1

)∥∥∥
≤
∥∥∥(xn + αnd

f
n

)
−
(
xn−1 + αn−1d

f
n−1

)∥∥∥
=
∥∥∥ [xn + αn

(
−∇f (xn) + δ

(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1

)]
−
[
xn−1 + αn−1

(
−∇f (xn−1) + δ

(1)
n−2d

f
n−2 − δ

(2)
n−2zn−2

)] ∥∥∥
=
∥∥∥ (xn − αn∇f (xn))− (xn−1 − αn∇f (xn−1)) + (αn−1 − αn)∇f (xn−1)

+ αn

(
δ
(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1

)
− αn−1

(
δ
(1)
n−2d

f
n−2 − δ

(2)
n−2zn−2

)∥∥∥.
Hence, the triangle inequality guarantees that

∥yn − yn−1∥ ≤ ∥(xn − αn∇f (xn))− (xn−1 − αn∇f (xn−1))∥+M4 |αn−1 − αn|

+ αn

∥∥∥δ(1)n−1d
f
n−1 − δ

(2)
n−1zn−1

∥∥∥+ αn−1

∥∥∥δ(1)n−2d
f
n−2 − δ

(2)
n−2zn−2

∥∥∥ ,
where M4 := sup{∥∇f(xn)∥ : n ∈ N} < ∞. Since the mapping, Id − α∇f , where α ∈ (0, 2/L], satisfies the
nonexpansivity condition [18, Proposition 2.3], we have, for all n ∈ N,

∥(xn − αn∇f (xn))− (xn−1 − αn∇f (xn−1))∥ ≤ ∥xn − xn−1∥ .

Moreover, the triangle inequality and (C8) imply that, for all n ∈ N,∥∥∥δ(1)n−1d
f
n−1 − δ

(2)
n−1zn−1

∥∥∥ ≤ δ
(1)
n−1

∥∥∥dfn−1

∥∥∥+ δ
(2)
n−1 ∥zn−1∥ ≤ M5γ

2
n,∥∥∥δ(1)n−2d

f
n−2 − δ

(2)
n−2zn−2

∥∥∥ ≤ δ
(1)
n−2

∥∥∥dfn−2

∥∥∥+ δ
(2)
n−2 ∥zn−2∥ ≤ M5γ

2
n−1,
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where M5 := max{sup{∥dfn∥ : n ∈ N}, sup{∥zn∥ : n ∈ N}} < ∞. Therefore, we find that, for all n ∈ N,

∥yn − yn−1∥ ≤ ∥xn − xn−1∥+M4 |αn−1 − αn|+M5

(
αnγ

2
n + αn−1γ

2
n−1

)
. (2.3)

Since we have from (C7), for all n ∈ N,

∥tn∥ =
∥∥∥β(1)

n dTn + β
(2)
n wn

∥∥∥ ≤ β
(1)
n

∥∥∥dTn∥∥∥+ β
(2)
n ∥wn∥ ≤ M6γ

2
n,

where M6 := max{sup{∥dTn∥ : n ∈ N}, sup{∥wn∥ : n ∈ N}} < ∞, we find that

∥tn − tn−1∥ ≤ ∥tn∥+ ∥tn−1∥ ≤ M6

(
γ2
n + γ2

n−1

)
. (2.4)

Therefore, (2.1), (2.2), (2.3), and (2.4) guarantee that, for all n ∈ N,

∥xn+1 − xn∥ ≤ (1− γn) ∥x̄n+1 − x̄n∥+M3 |γn − γn−1|
≤ (1− γn) {∥yn − yn−1∥+ µ ∥tn − tn−1∥}+M3 |γn − γn−1|
≤ (1− γn) ∥xn − xn−1∥+M3 |γn − γn−1|+M4 |αn−1 − αn|

+M5

(
αnγ

2
n + αn−1γ

2
n−1

)
+M6

(
γ2
n + γ2

n−1

)
.

Accordingly, for all n ∈ N,

∥xn+1 − xn∥
αn

≤ (1− γn)
∥xn − xn−1∥

αn
+M3

|γn − γn−1|
αn

+M4
|αn−1 − αn|

αn

+M5

(
γ2
n +

αn−1

αn
γ2
n−1

)
+M6

γ2
n + γ2

n−1

αn

= (1− γn)
∥xn − xn−1∥

αn−1
+M3

|γn − γn−1|
αn

+M4
|αn−1 − αn|

αn

+M5

(
γ2
n +

αn−1

αn
γ2
n−1

)
+M6

γ2
n + γ2

n−1

αn

+ (1− γn)

{
∥xn − xn−1∥

αn
−

∥xn − xn−1∥
αn−1

}
≤ (1− γn)

∥xn − xn−1∥
αn−1

+M3
|γn − γn−1|

αn
+M4

|αn−1 − αn|
αn

+M5

(
γ2
n +

αn−1

αn
γ2
n−1

)
+M6

γ2
n + γ2

n−1

αn
+M7

∣∣∣∣ 1

αn
−

1

αn−1

∣∣∣∣ ,
where M7 := sup{∥xn+1 − xn∥ : n ∈ N} < ∞. On the other hand, we have

M3
|γn − γn−1|

αn
= M3γn

1

αn

|γn − γn−1|
γn

= M3γn
1

αn

∣∣∣∣1−
γn−1

γn

∣∣∣∣ ,
M7

∣∣∣∣ 1

αn
−

1

αn−1

∣∣∣∣ = M7γn
1

γn

∣∣∣∣ 1

αn
−

1

αn−1

∣∣∣∣ .
We also have from αn−1 ≤ 2/L that

M4
|αn−1 − αn|

αn
=

2

L
M4γn

1

γn

|αn−1 − αn|
2
L
αn

≤
2

L
M4γn

1

γn

|αn−1 − αn|
αn−1αn

≤
2

L
M4γn

1

γn

∣∣∣∣ 1

αn
−

1

αn−1

∣∣∣∣ .
Condition (C6) implies that

M5

(
γ2
n +

αn−1

αn
γ2
n−1

)
≤ M5

(
γ2
n + σγ2

n−1

)
= M5γn

(
γn + σ

γn−1

γn
γn−1

)
≤ M5γn

(
γn + σ2γn−1

)
,

M6

γ2
n + γ2

n−1

αn
= M6γn

(
γn

αn
+

γ2
n−1

γnαn

)
= M6γn

(
γn

αn
+

γn−1

γn

γn−1

γn

γn

αn

)
≤ M6γn

(
γn

αn
+ σ2 γn

αn

)
.
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Therefore, we find that, for all n ∈ N,

∥xn+1 − xn∥
αn

≤ (1− γn)
∥xn − xn−1∥

αn−1
+ γnΓn,

where

Γn := M3
1

αn

∣∣∣∣1−
γn−1

γn

∣∣∣∣+ 2

L
M4

1

γn

∣∣∣∣ 1

αn
−

1

αn−1

∣∣∣∣+M5

(
γn + σ2γn−1

)
+M6

(
γn

αn
+ σ2 γn

αn

)
+M7

1

γn

∣∣∣∣ 1

αn
−

1

αn−1

∣∣∣∣ .
Conditions (C2), (C3), (C4), and (C5) guarantee that limn→∞ Γn = 0. Hence, (C1) and [3, Lemma 1.2]7

lead us to

lim
n→∞

∥xn+1 − xn∥
αn

= 0.

This proves Lemma 2.3.

Lemma 2.3 leads us to the following.

Lemma 2.4. limn→∞ ∥xn − x̄n+1∥/αn = 0 and limn→∞ ∥xn − x̄n+1∥ = 0.

Proof. The nonexpansivity of PK and (x̄n)n∈N ⊂ K = Fix(PK) ensure that, for all n ∈ N, ∥xn+1− x̄n+1∥ =
∥PK(γnx0+(1−γn)x̄n+1)−PK(x̄n+1)∥ ≤ ∥(γnx0+(1−γn)x̄n+1)− x̄n+1∥ = γn∥x0− x̄n+1∥. Accordingly,
the triangle inequality implies that, for all n ∈ N, ∥xn − x̄n+1∥ ≤ ∥xn − xn+1∥ + ∥xn+1 − x̄n+1∥ ≤
∥xn − xn+1∥+ γn∥x0 − x̄n+1∥, which means that

∥xn − x̄n+1∥
αn

≤
∥xn − xn+1∥

αn
+

γn

αn
∥x0 − x̄n+1∥ .

The boundedness of (x̄n)n∈N, Lemma 2.3, and (C5) guarantee that limn→∞ ∥xn−x̄n+1∥/αn = 0. Moreover,
from (C2), we find that limn→∞ ∥xn − x̄n+1∥ = 0.

Lemma 2.5. limn→∞ ∥xn − T (xn)∥ = 0.

Proof. From the triangle inequality, we have, for all n ∈ N, ∥xn − PK(T̂ (xn))∥ ≤ ∥xn − x̄n+1∥ + ∥x̄n+1 −
PK(T̂ (xn))∥. Meanwhile, x̄n+1 = PK(T̂ (yn) + µtn) (n ∈ N) and the nonexpansivity of PK and T̂ imply

that, for all n ∈ N, ∥x̄n+1 − PK(T̂ (xn))∥ = ∥PK(T̂ (yn) + µtn)− PK(T̂ (xn))∥ ≤ ∥T̂ (yn)− T̂ (xn) + µtn∥ ≤
∥yn − xn∥+ µ∥tn∥. Moreover,

∥yn − xn∥ =
∥∥∥PK

(
xn + αnd

f
n

)
− PK (xn)

∥∥∥ ≤
∥∥∥(xn + αnd

f
n

)
− xn

∥∥∥ ≤ M5αn,

∥tn∥ =
∥∥∥β(1)

n dTn + β
(2)
n wn

∥∥∥ ≤ β
(1)
n

∥∥∥dTn∥∥∥+ β
(2)
n ∥wn∥ ≤ M6γ

2
n,

whereM5 := max{sup{∥dfn∥ : n ∈ N}, sup{∥zn∥ : n ∈ N}} < ∞ andM6 := max{sup{∥dTn∥ : n ∈ N}, sup{∥wn∥ : n ∈
N}} < ∞. Hence, for all n ∈ N,∥∥∥xn − PK

(
T̂ (xn)

)∥∥∥ ≤ ∥xn − x̄n+1∥+M5αn +M6γ
2
n.

Lemma 2.4 and (C2) ensure that limn→∞ ∥xn − PK(T̂ (xn))∥ = 0. Since Fix(T̂ ) = Fix(T ) ⊂ K, we

find that limn→∞ ∥xn − T̂ (xn)∥ = 0 [1, Theorems 3.7 and 3.9].8 From T̂ = (1 − µ)Id + µT , we have

0 = limn→∞ ∥xn − T̂ (xn)∥ = µ limn→∞ ∥xn − T (xn)∥; i.e., limn→∞ ∥xn − T (xn)∥ = 0.

We can also prove the following.

Lemma 2.6. 0 ≤ N1∥x̄n+1 − xn∥/αn +2⟨x− xn,∇f(xn)⟩+N2αn +N3γn/αn (x ∈ Fix(T), n ∈ N), where
⟨·, ·⟩ stands for the inner product of RN , and Ni (i = 1, 2, 3) are positive constants.

7Lemma 1.2 in [3] is as follows: Let (xn)n∈N be a sequence of nonnegative real numbers defined by
xn+1 ≤ (1− an)xn + anbn (n ∈ N), where (an)n∈N (⊂ [0, 1]) with

∑∞
n=0 an = ∞ and (bn)n∈N with bn ≥ 0

and limn→∞ bn = 0. Then, limn→∞ xn = 0.
8Theorems 3.7 and 3.9 in [1] lead us to the following: Suppose that PK is the metric projection onto

a closed convex K, T : RN → RN is nonexpansive with K ∩ Fix(T ) ̸= ∅, and (xn)n∈N is bounded. Then,
limn→∞ ∥xn − PK(T (xn))∥ = 0 if and only if limn→∞ ∥xn − PK(xn)∥ = 0 and limn→∞ ∥xn − T (xn)∥ = 0.
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Proof. Choose x ∈ Fix(T ) arbitrarily. Then, we have from Fix(T ) = Fix(T̂ ) ⊂ K = Fix(PK) that x = PK(x)

and x = T̂ (x). The nonexpansivity of PK and x̄n+1 = PK(T̂ (yn) + µtn) (n ∈ N) mean that, for all

n ∈ N, ∥x̄n+1 − x∥2 = ∥PK(T̂ (yn) + µtn) − PK(x)∥2 ≤ ∥(T̂ (yn) − T̂ (x)) + µtn∥2. Hence, the inequality,
∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩ (x, y ∈ RN ), guarantees that, for all n ∈ N,

∥x̄n+1 − x∥2 ≤
∥∥∥T̂ (yn)− T̂ (x)

∥∥∥2 + 2µ
⟨
tn, T̂ (yn)− T̂ (x) + µtn

⟩
,

which implies that

∥x̄n+1 − x∥2 ≤ ∥yn − x∥2 + 2µ ∥tn∥
∥∥∥T̂ (yn)− T̂ (x) + µtn

∥∥∥
≤ ∥yn − x∥2 + 2µM6γ

2
n

∥∥∥T̂ (yn)− T̂ (x) + µtn

∥∥∥
≤ ∥yn − x∥2 +M8γ

2
n.

The first inequality comes from the nonexpansivity of T̂ and the Cauchy-Schwarz inequality, the second
inequality from ∥tn∥ ≤ M6γ2

n (n ∈ N), and the third inequality from M8 := sup{2µM6∥T̂ (yn) − T̂ (x) +
µtn∥ : n ∈ N} < ∞. Moreover, we find from the equation, ∥x + y∥2 = ∥x∥2 + 2⟨x, y⟩ + ∥y∥2 (x, y ∈ RN ),
that, for all n ∈ N,

∥yn − x∥2 =
∥∥∥PK

(
xn + αnd

f
n

)
− PK (x)

∥∥∥2
≤
∥∥∥(xn − x) + αnd

f
n

∥∥∥2
= ∥xn − x∥2 + 2αn

⟨
xn − x, dfn

⟩
+ α2

n

∥∥∥dfn∥∥∥2
≤ ∥xn − x∥2 + 2αn

⟨
xn − x, dfn

⟩
+M2

5α
2
n,

which implies that

∥yn − x∥2 ≤ ∥xn − x∥2 + 2αn

⟨
xn − x,−∇f (xn) + δ

(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1

⟩
+M2

5α
2
n

= ∥xn − x∥2 + 2αn ⟨xn − x,−∇f (xn)⟩+M2
5α

2
n

+ 2αn

⟨
xn − x, δ

(1)
n−1d

f
n−1 − δ

(2)
n−1zn−1

⟩
≤ ∥xn − x∥2 + 2αn ⟨x− xn,∇f (xn)⟩+M2

5α
2
n

+ 2αn ∥xn − x∥
∥∥∥δ(1)n−1d

f
n−1 − δ

(2)
n−1zn−1

∥∥∥
≤ ∥xn − x∥2 + 2αn ⟨x− xn,∇f (xn)⟩+M2

5α
2
n + 2αn ∥xn − x∥M5γ

2
n.

The first inequality comes from the definition of dfn (n ∈ N), the second inequality from the Cauchy-Schwarz

inequality, and the third inequality from ∥δ(1)n−1d
f
n−1−δ

(2)
n−1zn−1∥ ≤ M5γ2

n (n ∈ N). Therefore, for all n ∈ N,

∥x̄n+1 − x∥2 ≤ ∥xn − x∥2 + 2αn ⟨x− xn,∇f (xn)⟩+M2
5α

2
n +M9γ

2
n,

where M9 := sup{2αn ∥xn − x∥M5 +M8 : n ∈ N} < ∞. Accordingly, we have

0 ≤ ∥xn − x∥2 − ∥x̄n+1 − x∥2 + 2αn ⟨x− xn,∇f (xn)⟩+M2
5α

2
n +M9γ

2
n

= (∥xn − x∥+ ∥x̄n+1 − x∥) (∥xn − x∥ − ∥x̄n+1 − x∥) +M2
5α

2
n +M9γ

2
n

+ 2αn ⟨x− xn,∇f (xn)⟩

≤ (∥xn − x∥+ ∥x̄n+1 − x∥) ∥xn − x̄n+1∥+M2
5α

2
n +M9γ

2
n

+ 2αn ⟨x− xn,∇f (xn)⟩ ,

which implies that, for all n ∈ N,

0 ≤ M10
∥xn − x̄n+1∥

αn
+M2

5αn +M9
γn

αn
+ 2 ⟨x− xn,∇f (xn)⟩ ,

where M10 := sup{∥xn − x∥+ ∥x̄n+1 − x∥ : n ∈ N} < ∞. This proves Lemma 2.6.

We can prove Theorem 2.1 by using the above lemmas.
Proof of Theorem 2.1 We prove the claim by contradiction. Suppose on the contrary that there exists a

subsequence (xnk )k∈N such that d(xnk , X
⋆) ≥ ε for some ε > 0. Since (xnk )k∈N is bounded, it has a limit
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point x∗. Hence, the continuity of T ensures that (T (xnk ))k∈N converges to T (x∗). Lemma 2.5 guarantees
that

0 = lim
k→∞

∥xnk − T (xnk )∥ = ∥x∗ − T (x∗)∥ ;

i.e., x∗ ∈ Fix(T ). Lemmas 2.4 and 2.6, (C2), (C5), and the continuity of ∇f lead us to

0 ≤ ⟨x− x∗,∇f (x∗)⟩ (x ∈ Fix (T )) .

The convexity of f and the closedness and convexity of Fix(T ) imply that x∗ (∈ Fix(T )) satisfies the above
inequality if and only if x∗ (∈ Fix(T )) is a solution to Problem 1.1; i.e., x∗ ∈ X⋆ [13, Proposition 2.1 in
Chapter II]. Therefore, we conclude that (xnk )k∈N converges to x∗ ∈ X⋆. We also have from x∗ ∈ X⋆ that
d(xnk , X

⋆) = infx⋆∈X⋆ ∥xnk − x⋆∥ ≤ ∥xnk − x∗∥. Since (xnk )k∈N converges to x∗, we find

0 < ε ≤ lim sup
k→∞

d (xnk , X
⋆) ≤ lim sup

k→∞
∥xnk − x∗∥ = lim

k→∞
∥xnk − x∗∥ = 0,

which is a contradiction. Therefore, we can conclude that (xn)n∈N satisfies limn→∞ d (xn, X⋆) = 0. □

2.3 Convergence analysis of Algorithm 2.1 when Fix(T ) is unbounded
Subsection 2.1 gave the convergence analysis of Algorithm 2.1 when Fix(T ) is bounded (see Assumption
(A1)). In this subsection, let us consider Algorithm 2.1 when Fix(T ) is unbounded. We need to replace

Assumption (A1) with the following so as to prove that (dTn )n∈N, (d
f
n)n∈N, and (xn)n∈N are bounded.

(A1)’ K = RN , and (yn)n∈N and (∇f(xn))n∈N are bounded.

Suppose that Assumptions (A1)’, (A2), and (A3) are satisfied. Since (yn)n∈N is bounded, and T is
nonexpansive, (T (yn) − yn)n∈N is bounded. Hence, we have from the proof of Lemma 2.1 that (dTn )n∈N
is bounded. Moreover, the boundedness of (∇f(xn))n∈N and the proofs of Lemmas 2.1 and 2.2 lead us to

conclude that (dfn)n∈N is bounded. The boundedness of (dTn )n∈N and (yn)n∈N means that (x̄n)n∈N and
(xn)n∈N are bounded. This implies that we can prove Lemmas 2.1 and 2.2 under Assumptions (A1)’, (A2),
and (A3). Therefore, we can also prove Lemmas 2.3, 2.4, 2.5, and 2.6 under Assumptions (A1)’, (A2), and
(A3) because the proofs of Lemmas 2.3, 2.4, 2.5, and 2.6 in subsection 2.2 use the boundedness of (dTn )n∈N,

(dfn)n∈N, (x̄n)n∈N, and (xn)n∈N, not the boundedness of Fix(T ).
We can perform a convergence analysis of Algorithm 2.1 when Fix(T ) is unbounded by referring to the

proof of Theorem 2.1.

Theorem 2.2. Under Assumptions (A1)’, (A2), and (A3), the sequence (xn)n∈N generated by Algorithm
2.1 satisfies

lim
n→∞

d (xn, X
⋆) = 0.

3 Numerical Examples
Let us see how Algorithm 2.1 works in solving a concrete IMSFP. We set A (∈ R500×1000) and x0 (∈ R1000)
given randomly by MATLAB, and closed balls C(i) (⊂ R1000) (i ∈ I := {1, 2, 3, 4, 5}) and Q(j) (⊂ R500)
(j ∈ J := {1, 2, 3}) with

∩
i∈I C(i) ̸= ∅ and

∩
i∈I C(i) ∩

∩
j∈J D(j) = ∅, where D(j) := {x ∈ R1000 : Ax ∈

Q(j)} (j ∈ J ). We used T := (1/5)
∑

i∈I PC(i) and K := C(1) with K ⊃ Fix(T ) =
∩

i∈I C(i) ̸= ∅. We

also used ∇f(x) := tAAx− (1/3)
∑

j∈J
tA[PQ(j) (Ax)] (x ∈ R1000), wn := T (yn)− yn, and zn := ∇f(xn+1)

(n ∈ N) (see subsection 2.1 for the setting of wn and zn). The step-size sequences in the experiment were

αn := 1/(n + 1)0.4, γn := 1/(n + 1)0.5, β
(i)
n := 1/(n + 1), and δ

(i)
n := 1/(n + 2) (i = 1, 2, n ∈ N). Since

Assumption 2.1 holds, Algorithm 2.1 can find a minimizer of f over Fix(T ), i.e., the compromise solution
of IMSFP defined by C(i) (i ∈ I), Q(j) (j ∈ J ), and A (∈ R1000×500) (see section 1 and Theorem 2.1).
The computer used in the experiment had an Intel Boxed Core i7 i7-870 2.93 GHz 8 M CPU and 8 GB of
memory. The language was MATLAB 7.13.

We compared Algorithm 2.1 with the following algorithms: df0 := −∇f(x0),

yn := PK

(
xn +

10−3

(n+ 1)0.4
dfn

)
,

xn+1 := PK

(
1

(n+ 1)0.5
x0 +

(
1−

1

(n+ 1)0.5

)
PK (T (yn))

)
(n ∈ N) ,
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Figure 1: Behavior ofDn := ∥xn−T (xn)∥
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rithm 2.1 (Proposed)
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Figure 2: Behavior of f(xn) :=
(1/2)

∑
j∈J (1/3)∥PQ(j)(Axn)−Axn∥2 for

HSDM, HCGM, HTCGM, and Algorithm
2.1 (Proposed)

where dfn+1 is defined by one of

dfn+1 := −∇f (xn+1) , (3.1)

dfn+1 := −∇f (xn+1) +
1

n+ 2
dfn, (3.2)

dfn+1 := −∇f (xn+1) +
1

n+ 2
dfn −

1

n+ 2
∇f (xn+1) . (3.3)

The algorithms with directions (3.1), (3.2), and (3.3) are referred to the hybrid steepest descent method
(HSDM) [30], the hybrid conjugate gradient method (HCGM) [22], and the hybrid three-term conjugate
gradient method (HTCGM) [17], respectively. We note that HTCGM coincides with Algorithm 2.1 when

µ := 1, and β
(i)
n := 0 (i = 1, 2, n ∈ N). We executed Algorithm 2.1 (Proposed) generated by

yn := PK

(
xn +

10−3

(n+ 1)0.4
dfn

)
,

dTn+1 := T (yn)− yn +
1

n+ 1
dTn +

1

n+ 1
(T (yn)− yn) ,

x̄n+1 := PK

(
yn + dTn+1

)
,

xn+1 := PK

(
1

(n+ 1)0.5
x0 +

(
1−

1

(n+ 1)0.5

)
x̄n+1

)
,

dfn+1 := −∇f (xn+1) +
1

n+ 2
dfn −

1

n+ 2
∇f (xn+1) .

Note that Algorithm 2.1 has TCGD, which is used to find a fixed point of T quickly,

dTn+1 := T (yn)− yn +
1

n+ 1
dTn +

1

n+ 1
(T (yn)− yn) (n ∈ N), (3.4)

while HTCGM has the steepest descent direction for finding a fixed point of T (see section 1 for the details),

dTn+1 := T (yn)− yn (n ∈ N). (3.5)

Accordingly, we can expect that Algorithm 2.1 converges to a fixed point of T faster than HTCGM.
We define Dn := ∥xn − T (xn)∥ (n ∈ N). If (Dn)n∈N converges to 0, (xn)n∈N converges to a fixed point

of T . Figure 1 describes the behavior of Dn generated by HSDM, HCGM, HTCGM, and Algorithm 2.1.
(Dn)n≥500 generated by HSDM, HCGM, and HTCGM converge to 0, and their behaviors are the same.
This is because their search directions for finding a fixed point of T are generated by (3.5). Moreover, we
can see from Figure 1 that they slowly converge to a fixed point of T . This is because direction (3.5) is
expressed as the steepest descent direction of a certain convex function (see also section 1). Meanwhile,
(Dn)n∈N generated by Algorithm 2.1 converges to 0 faster than (Dn)n∈N generated by HSDM, HCGM, and
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HTCGM. This implies that Algorithm 2.1 with TCGD (3.4) can find a fixed point of T faster than the
algorithms with the steepest descent direction (3.5).

Finally, let us see the behavior of the objective function defined by f(x) := (1/2)
∑

j∈J (1/3)∥PQ(j) (Ax)−
Ax∥2 (x ∈ R1000). Figure 2 shows that (f(xn))n∈N generated by HSDM, HCGM, HTCGM, and Algorithm
2.1 converge. Since Figure 1 describes that Algorithm 2.1 decreases Dn faster than HSDM, HCGM, and
HTCGM, we can conclude that Algorithm 2.1 is effective for solving Problem 1.1.

4 Conclusion
This paper discussed the inconsistent multiple-set split feasibility problem and proved that the compromise
solution of the problem can be expressed as a minimizer of a convex objective function over the fixed
point set of a nonexpansive mapping. We presented the algorithm, with the three-term conjugate gradient
directions, for solving the convex minimization problem and provided its convergence analyses. The analyses
guarantee that the algorithm, with slowly diminishing step-size sequences, converges to a solution to the
convex minimization problem. Finally, we gave numerical results to support the convergence analyses on the
algorithm. The numerical results showed that the proposed algorithm performs better than the algorithms
with the steepest descent directions.
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