
COMPUTATION TIME OF ITERATIVE METHODS FOR NONSMOOTH

CONVEX OPTIMIZATION WITH FIXED POINT CONSTRAINTS OF

QUASI-NONEXPANSIVE MAPPINGS

KENGO SHIMIZU AND HIDEAKI IIDUKA

Abstract. There are various computation methods for minimizing the sum of convex func-

tions over the intersection of fixed point constraints of quasi-nonexpansive mappings. We have

determined the actual computation times of the parallel proximal point, parallel subgradient,

and incremental subgradient methods by using parallel computing on multi-core processors for

a concrete convex optimization problem. The results show that the larger the number of cores,

the shorter the actual computation times of the two parallel methods and that, when the num-

ber of cores is fixed, the parallel proximal point method is faster than the parallel subgradient

method.

1. Introduction

Convex optimization over the intersection of fixed points of (quasi-)nonexpansive mappings

[4, Problem 2.1] is of great interest since it has several potentially useful applications, such as

network resource allocation [3, 5] and machine learning [2, 6]. Considering the convex optimiza-

tion problem enables us to deal with convex optimization with complicated constraints. For

example, let us consider convex optimization over the set of minimizers of a smooth, convex

function g with Lipschitz continuous gradient ∇g. Since the set coincides with the fixed point

set of Id−λ∇g, where λ > 0 depends on the Lipschitz constant of ∇g, convex optimization over

the set of minimizers of a smooth convex function can be regarded as convex optimization over

the fixed point set.

Various iterative methods, such as parallel and incremental subgradient methods [4] and the

parallel proximal point method [7], have been presented for solving the convex optimization

problem, and their convergence analyses have been presented [4, 7]. We have determined the

actual computation times of these methods using parallel computing on multi-core processors

for a concrete convex optimization problem.

Let RN be an N -dimensional Euclidean space with inner product ⟨·, ·⟩ and its norm ∥ · ∥.
We use the standard notation N for the natural numbers including zero. Let Id be the identity

mapping on RN . Let f : RN → (−∞,+∞] be proper, lower semicontinuous, and convex. Then,

the proximity operator of f [1, Definition 12.23], denoted by Proxf , maps every x ∈ RN to the

unique minimizer of f(·) + (1/2)∥x− ·∥2. The subdifferential [1, Definition 16.1] of f is defined

for all x ∈ RN by ∂f(x) := {u ∈ RN : f(y) ≥ f(x) + ⟨y − x, u⟩ (y ∈ RN)}. The fixed point set

2010 Mathematics Subject Classification. 65K05, 90C25, 90C90.

Key words and phrases. Fixed point; Incremental method; Nonsmooth convex optimization; Parallel comput-

ing; Proximal point method; Quasi-nonexpansive mapping.

1

2 K. SHIMIZU AND H. IIDUKA

of a mapping Q : RN → RN is denoted by Fix(Q) := {x ∈ RN : Q(x) = x}. The sublevel set of

a function g : RN → R is denoted by lev≤0g := {x ∈ RN : g(x) ≤ 0}.

2. Numerical Comparisons

Here we consider the following problem [4, Problem 5.1]. Let ai,j > 0, bi,j , di ∈ R (i ∈ I =

{1, 2, . . . , I}, j = 1, 2, . . . , N), and ci := (ci,j)
N
j=1 ∈ RN with ∥ci∥ = 1. Then,

minimize f(x) :=
∑
i∈I

fi(x)subject to x ∈
∩
i∈I

Fix(Qi) =
∩
i∈I

lev≤0gi, (2.1)

where fi : RN → R and Qi : RN → RN are defined for all x := (xj)
N
j=1 ∈ RN by

fi(x) :=
N∑
j=1

ai,j |xj − bi,j | and Qi(x) :=

x− gi(x)

∥zi(x)∥2
zi(x) if gi(x) > 0,

x if x ∈ lev≤0gi,

and gi : RN → R is defined for all x ∈ RN by

gi(x) :=

⟨ci, x⟩+ di if ⟨ci, x⟩ > −di,

0 otherwise,

and zi(x) is any vector in ∂gi(x). Let Qα,i := αId + (1− α)Qi, where α ∈ (0, 1).

The incremental subgradient method (ISM) [4, Algorithm 4.1] is shown in Algorithm 1.

Algorithm 1 ISM

Require: (γn)n∈N ⊂ (0,+∞)

1: n← 0, x0 := x0,0 ∈ H

2: loop

3: for i = 1 to i = I do

4: gn,i ∈ ∂fi(Qα,i(xn,i−1))

5: xn,i := Qα,i(xn,i−1)− γngn,i

6: end for

7: xn+1 = xn+1,0 := xn,I

8: n← n+ 1

9: end loop

The parallel subgradient method (PSM) [4, Algorithm 3.1] is shown in Algorithm 2.

COMPUTATION TIME OF ITERATIVE METHODS 3

Algorithm 2 PSM

Require: (γn)n∈N ⊂ (0,+∞)

1: n← 0, x0 ∈ H

2: loop

3: for i = 1 to i = I do

4: gn,i ∈ ∂fi(Qα,i(xn))

5: xn,i := Qα,i(xn)− γngn,i

6: end for

7: xn+1 =
1

I

∑
i∈I

xn,i

8: n← n+ 1

9: end loop

The parallel proximal point method (PPM) [7, Algorithm 1] is shown in Algorithm 3.

Algorithm 3 PPM

Require: (γn)n∈N ⊂ (0,+∞)

1: n← 0, x0 ∈ H

2: loop

3: for i = 1 to i = I do

4: xn,i := Qi (Proxγnfi(xn))

5: end for

6: xn+1 =
1

I

∑
i∈I

xn,i

7: n← n+ 1

8: end loop

The actual computation times of these methods were determined experimentally using a FU-

JITSU PRIMERGY RX2540 M4 system with a 2.40 GHz Intel Xeon Gold 6148 CPU processor,

384 GB memory, and the Red Hat Enterprise Linux 7.6 OS. The three methods were imple-

mented in Python 3.6.9 with the NumPy 1.18.1 package. We set I = 256, N = 1000, and

α = 1/2 and chose randomly ai ∈ (0, 100], bi ∈ [−100, 100), di ∈ [−1, 0), and ci,j ∈ [−0.5, 0.5).
Step size was γn := 10−3/n, which satisfies the conditions in the convergence analyses [4, 7] of

PPM, PSM, and ISM. Two performance measures were used for n ∈ N:

Dn :=
∑
i∈I
∥xn −Qi(xn)∥ and Fn :=

∑
i∈I

fi(xn),

where (xn)n∈N is the sequence generated by each of the three algorithms with the randomly

chosen initial point x0 ∈ [0, 1)N .

Figure 1 plots the actual calculation times against the number of cores. Since ISM cannot

be implemented on multi-core processors, the results for ISM are shown for only one core. The

stopping condition was n = 104. Figure 1 indicates that, when the number of cores was one, the

actual calculation time of PPM (resp. PSM) was 57.96 (resp. 71.37) s and the actual calculation

time of ISM was 47.00 s. Although ISM was the fastest on one core, PPM and PSM can be

4 K. SHIMIZU AND H. IIDUKA

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 16

Ac
tu

al
 c

al
cu

la
tio

n
tim

e

Number of cores

PPM

PSM

ISM

Figure 1. Actual calculation time against number of cores

implemented on multiple cores, so they can solve the problem faster than ISM. For example,

when two cores were used, PPM (resp. PSM) took 30.32 (resp. 37.76) s to solve the problem,

which is about half the time taken by PPM (resp. PSM) for serial calculation. Furthermore,

when 16 cores were used, PPM (resp. PSM) took 5.06 (resp. 6.24) s. Therefore, the greater the

number of cores, the shorter the actual computation time of the parallel methods.

Table 1. Values of Fn and Dn when two cores were used

Fn Dn

PPM 640230921.5034176 0.5281329190044164

PSM 640229653.1002244 2.7151783607515156

Table 2. Values of Fn and Dn when four cores were used

Fn Dn

PPM 640230925.6562285 0.42034425426413835

PSM 640228917.1070017 0.7841617699210753

Tables 1, 2, 3, and 4 show the values of Fn and Dn when the number of cores used were,

respectively, 2, 4, 8, and 16 and the stopping condition was 4 s. There were no significant

differences in Fn. For PPM and PSM, Dn decreased as the number of cores increased, with

PPM showing a smaller value of Dn. This means that, when the number of cores is fixed, PPM

solves the problem faster than PSM.

COMPUTATION TIME OF ITERATIVE METHODS 5

Table 3. Values of Fn and Dn when eight cores were used

Fn Dn

PPM 640232204.0944406 0.34500715972864293

PSM 640228658.1872368 0.4505422109431341

Table 4. Values of Fn and Dn when 16 cores were used

Fn Dn

PPM 640236043.7194792 0.260459959391738

PSM 640229163.6883407 0.390958207796753

3. Conclusion

Experimental determination of the actual computation time of parallel incremental and prox-

imal methods for minimizing the sum of convex functions over the intersection of fixed point

constraints of quasi-nonexpansive mappings showed that the parallel proximal point method has

a shorter computation time than the parallel and incremental subgradient methods.

4. Acknowledgments

The authors are grateful to Professor Wataru Takahashi of the Tokyo Institute of Technology

for giving us the chance to submit our paper to Linear and Nonlinear Analysis. This work was

supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number

JP18K11184).

References

[1] H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, (2011),

Springer, New York.

[2] Y. Hayashi, H. Iiduka, Optimality and convergence for convex ensemble learning with sparsity and diversity

based on fixed point optimization, Neurocomputing 273 (2018), 367–372.

[3] H. Iiduka, Fixed point optimization algorithms for distributed optimization in networked systems, SIAM J.

Optim. 23 (2013), 1–26.

[4] H. Iiduka, Convergence analysis of iterative methods for nonsmooth convex optimization over fixed point sets

of quasi-nonexpansive mappings, Math. Program. 159 (2016), 509–538.

[5] H. Iiduka, Distributed optimization for network resource allocation with nonsmooth utility functions, IEEE

Trans. Control. Netw. Syst. 6 (2019), 1354–1365.

[6] H. Iiduka, Stochastic fixed point optimization algorithm for classifier ensemble, IEEE Trans. Cybern. (2020).

[7] K. Shimizu, K. Hishinuma, H. Iiduka, Parallel computing proximal method for nonsmooth convex opti-

mization with fixed point constraints of quasi-nonexpansive mappings, Applied Set-Valued Analysis and

Optimization 2(2020), 1–17.

6 K. SHIMIZU AND H. IIDUKA

(K. Shimizu) Computer Science Course, Graduate School of Science and Technology, Meiji Uni-

versity, 1-1-1 Higashimita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

Email address: kengo@cs.meiji.ac.jp

(H. Iiduka)Department of Computer Science, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki-

shi, Kanagawa 214-8571, Japan

Email address: iiduka@cs.meiji.ac.jp

	1. Introduction
	2. Numerical Comparisons
	3. Conclusion
	4. Acknowledgments
	References

