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Abstract This paper presents modified memoryless quasi-Newton methods
based on the spectral-scaling Broyden family on Riemannian manifolds. The
method involves adding one parameter to the search direction of the memo-
ryless self-scaling Broyden family on the manifold. Moreover, it uses a general
map instead of vector transport. This idea has already been proposed within
a general framework of Riemannian conjugate gradient methods where one
can use vector transport, scaled vector transport, or an inverse retraction. We
show that the search direction satisfies the sufficient descent condition under
some assumptions on the parameters. In addition, we show global convergence
of the proposed method under the Wolfe conditions. We numerically compare
it with existing methods, including Riemannian conjugate gradient methods
and the memoryless spectral-scaling Broyden family. The numerical results in-
dicate that the proposed method with the BFGS formula is suitable for solving
an off-diagonal cost function minimization problem on an oblique manifold.
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1 Introduction

Riemannian optimization has recently attracted a great deal of attention and
has been used in many applications, including low-rank tensor completion
[10,30], machine learning [17], and shape analysis [8].

Iterative methods for solving unconstrained optimization problems on the
Euclidean space have been studied for a long time [18]. Quasi-Newton methods
and nonlinear conjugate gradient methods are the especially important ones
and have been implemented in various software packages.

Here, quasi-Newton methods need to store dense matrices, so it is difficult
to apply them to large-scale problems. Shanno [27] proposed a memoryless
quasi-Newton method as a way to deal with this problem. This method [9,
12–15] has proven effective at solving large-scale unconstrained optimization
problems. The concept is simple: an approximate matrix is updated by using
the identity matrix instead of the previous approximate matrix. Similar to
the case of nonlinear conjugate gradient methods, the search direction can
be computed without having to use matrices and simply by taking the inner
product without matrices.

Kou and Dai [9] proposed a modified memoryless spectral-scaling BFGS
method. Their method involves adding one parameter to the search direction of
the memoryless self-scaling BFGS method. In [13], Nakayama used this tech-
nique to devise a memoryless spectral-scaling Broyden family. In addition,
he showed that the search direction is a sufficient descent direction and has
the global convergence property. Nakayama, Narushima, and Yabe [15] pro-
posed memoryless quasi-Newton methods based on the spectral-scaling Broy-
den family [3]. Their methods generate a sufficient descent direction and have
the global convergence property.

Many useful iterative methods for solving unconstrained optimization prob-
lems on manifolds have been studied (see [2, 24]). They have been obtained
by extending iterative methods in Euclidean space by using the concepts of
retraction and vector transport. For example, Riemannian quasi-Newton meth-
ods [6,7] and Riemannian conjugate gradient methods [20,24,26,34] have been
developed. Sato and Iwai [26] introduced scaled vector transport [26, Defini-
tion 2.2] in order to remove the assumption of isometric vector transport from
the convergence analysis. Zhu and Sato [34] proposed Riemannian conjugate
gradient methods that use an inverse retraction instead of vector transport.
In [24], Sato proposed a general framework of Riemannian conjugate gradient
methods. This framework uses a general map instead of vector transport and
utilizes the existing Riemannian conjugate gradient methods such as ones that
use vector transport, scaled vector transport [26], or inverse retraction [34].

In [19], Ring and Wirth proposed the BFGS method, which has a global
convergence property under some convexity assumptions. Narushima et al. [16]
proposed memoryless quasi-Newton methods based on the spectral-scaling
Broyden family on Riemannian manifolds. They extended the memoryless
spectral-scaling Broyden family in Euclidean space to Riemannian manifolds
with an additional modification to ensure a sufficient descent condition. More-
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over, they presented a global convergence analysis under the Wolfe conditions.
In particular, they did not assume convexity of the objective function or iso-
metric vector transport. The results of the previous studies are summarized
in Tables 1 and 2.

In this paper, we propose a modified memoryless quasi-Newton method
based on the spectral-scaling Broyden family on Riemannian manifolds, ex-
ploiting the idea used in the paper [13]. In the case of Euclidean space,
Nakayama [13] reported that the modified memoryless quasi-Newton method
based on the spectral-scaling Broyden family shows good experimental per-
formance with parameter tuning. Therefore, it is worth extending it to Rie-
mannian manifolds. Our method is based on the memoryless quasi-Newton
methods on Riemannian manifolds proposed by Narushima et al. [16] as well
as on the modification by Kou and Dai [9]. It uses a general map to transport
vectors similarly to the general framework of Riemannian conjugate gradient
methods [25]. This generalisation allows us to use maps such as an inverse
retraction [34] instead of vector transport. We show that our method gener-
ates a search direction satisfying the sufficient descent condition under some
assumptions on the parameters (see Proposition 4.1). Moreover, we present
global convergence analyses under the Wolfe conditions (see Theorem 4.2).
Furthermore, we describe the results of numerical experiments comparing our
method with the existing ones, including Riemannian conjugate gradient meth-
ods [20] and the memoryless spectral-scaling Broyden family on Riemannian
manifolds [16]. The key advantages of the proposed methods are the added pa-
rameter ξk−1 and support for maps other than vector transports. As shown in
the numerical experiments, the proposed method may outperform the existing
methods depending on how the parameter ξk−1 is chosen. It has an advantage
over [16] in that it can use a map such as an inverse retraction, which is not
applicable in [16].

This paper is organized as follows. Section 2 reviews the fundamentals
of Riemannian geometry and Riemannian optimization. Section 3 proposes
the modified memoryless quasi-Newton method based on the spectral-scaling
Broyden family. Section 4 gives a global convergence analysis. Section 5 com-
pares the proposed method with the existing methods through numerical ex-
periments. Section 6 concludes the paper.

Table 1 Results of previous studies on Quasi-Newton methods in Euclidean space and
Riemannian manifolds.

BFGS Broyden family
spectral-scaling
Broyden family

Euclidean —— ——
Chen–Cheng
(2013) [3]

Riemannian

Ring–Wirth

——
(2012) [19] Huang et al.
Huang et al. (2015) [7]
(2018) [6]
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Table 2 Results of previous studies and ours on memoryless quasi-Newton methods in
Euclidean space and Riemannian manifolds.

spectral-scaling modified spectral-scaling
Broyden family Broyden family

Euclidean
Nakayama et al. Nakayama

(2019) [15] (2018) [13]

Riemannian
Narushima et al.

this work
(2023) [16]

2 Mathematical preliminaries

Let M be a Riemannian manifold with Riemannian metric g. TxM denotes the
tangent space of M at a point x ∈ M . The tangent bundle of M is denoted by
TM . A Riemannian metric at x ∈ M is denoted by ⟨·, ·⟩x : TxM × TxM → R.
The induced norm of a tangent vector η ∈ TxM is defined by ∥η∥x :=

√
⟨η, η⟩x.

For a given tangent vector η ∈ TxM , η♭ represents the flat of η, i.e., η♭ : TxM →
R : ξ 7→ ⟨η, ξ⟩x. Let F : M → N be a smooth map between smooth manifolds;
then, the derivative of F at x ∈ M is denoted by DF (x) : TxM → TF (x)N .
For a smooth function f : M → R, gradf(x) denotes the Riemannian gradient
at x ∈ M , i.e., a unique element of TxM satisfying

⟨gradf(x), η⟩x = Df(x)[η],

for all η ∈ TxM . Hessf(x) denotes the Riemannian Hessian at x ∈ M , which
is defined as

Hessf(x) : TxM → TxM : η 7→ ∇ηgradf(x),

where ∇ denotes the Levi-Civita connection of M (see [2]).

Definition 2.1 Any smooth map R : TM → M is called a retraction on M
if it has the following properties.

– Rx(0x) = x, where 0x denotes the zero element of TxM ;
– DRx(0x) = idTxM with the canonical identification T0x(TxM) ≃ TxM ,

where Rx denotes the restriction of R to TxM .

Definition 2.2 Any smooth map T : TM ⊕ TM → TM is called a vector
transport on M if it has the following properties.

– There exists a retraction R such that Tη(ξ) ∈ TRx(η)M for all x ∈ M and
η, ξ ∈ TxM ;

– T0x(ξ) = ξ for all x ∈ M and ξ ∈ TxM ;
– Tη(aξ + bζ) = aTη(ξ) + bTη(ζ) for all x ∈ M , a, b ∈ R and η, ξ, ζ ∈ TxM ,

where Tη(ξ) := T (η, ξ).
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Let us consider an iterative method in Riemannian optimization. For an
initial point x0 ∈ M , step size αk > 0, and search direction ηk ∈ Txk

M , the
k-th approximation to the solution is described as

xk+1 = Rxk
(αkηk), (1)

where R is a retraction. We define gk := gradf(xk). Various algorithms have
been developed to determine the search direction ηk. We say that ηk is a
sufficient descent direction if the sufficient descent condition,

⟨gk, ηk⟩xk
≤ −κ∥gk∥2xk

(2)

holds for some constant κ > 0.
In [6, 7, 16], the search direction ηk ∈ Txk

M of Riemannian quasi-Newton
methods is computed as

ηk = −Hk[gk], (3)

where Hk : Txk
M → Txk

M is a symmetric approximation to Hessf(xk)
−1.

In [25], Sato proposed a general framework of Riemannian conjugate gra-
dient methods by using a map T (k−1) : Txk−1

M → Txk
M which satisfies

Assumption 2.1, to transport ηk−1 ∈ Txk−1
M to Txk

M ; i.e., the search direc-
tion ηk is computed as

ηk = −gk + βkσk−1T
(k−1)(ηk−1),

where βk ∈ R, and σk−1 is a scaling parameter (see [25, Section 4.1]) satisfying

0 < σk−1 ≤ min

{
1,

∥ηk−1∥xk−1

∥T (k−1)(ηk−1)∥xk

}
.

Assumption 2.1 There exist C ≥ 0 and K ⊂ N, such that for all k ∈ K,

∥T (k)(ηk)−DRx(αkηk)[ηk]∥xk+1
≤ Cαk∥ηk∥2xk

, (4)

and for all k ∈ N−K,

∥T (k)(ηk)−DRx(αkηk)[ηk]∥xk+1
≤ C(αk + α2

k)∥ηk∥2xk
. (5)

Note that inequality (5) is weaker than (4). For k satisfying the stronger
condition (4), the assumption of Theorem 4.1 can be weakened. Further de-
tails can be found in [25, Remark 4.3]. Assumption 2.1 requires that T (k) is
an approximation of the differentiated retraction. Therefore, the differentiated
retraction clearly satisfies the conditions of Assumption 2.1. In [25, Exam-
ple 4.5] and [25, Example 4.6], Sato gives examples of maps T (k) satisfying
Assumption 2.1 in the case of the unit sphere and Grassmann manifolds, re-
spectively. In [34, Proposition 1], Zhu and Sato proved that the inverse of the
retraction satisfies Assumption 2.1.
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Sato [25, Section 4.3] generalized the parameter βk (i.e., Fletcher–Reeves
(FR) [26], Dai–Yuan (DY) [23], Polak–Ribière–Polyak (PRP) and Hestenes–
Stiefel (HS) methods) as follows:

βFR
k =

∥gk∥2xk

∥gk−1∥2xk−1

,

βDY
k =

∥gk∥2xk

⟨gk, σk−1T (k−1)(ηk−1)⟩xk
− ⟨gk−1, ηk−1⟩xk−1

, (6)

βPRP
k =

∥gk∥2xk
− ⟨gk, lk−1S (k−1)(gk−1)⟩xk−1

∥gk−1∥2xk−1

,

βHS
k =

∥gk∥2xk
− ⟨gk, lk−1S (k−1)(gk−1)⟩xk−1

⟨gk, σk−1T (k−1)(ηk−1)⟩xk
− ⟨gk−1, ηk−1⟩xk−1

,

where lk−1 > 0 and S (k−1) : Txk−1
M → Txk

M is an appropriate mapping.
Therefore, we can use the Hager-Zhang (HZ) methods [22, Section 3] general-
ized by the above techniques, as follows:

βHZ
k = βHS

k − µ
∥yk−1∥2xk

⟨gk,T (k−1)(ηk−1)⟩xk(
⟨gk, σk−1T (k−1)(ηk−1)⟩xk

− ⟨gk−1, ηk−1⟩xk−1

)2 , (7)

where µ > 1/4.
We suppose that the search direction ηk ∈ Txk

M is a descent direction.
In [25, Section 4.4], Sato introduced the Riemannian version of the Wolfe
conditions with a T (k) : Txk

M → Txk+1
M , called T (k)-Wolfe conditions.

T (k)-Wolfe conditions are written as

f(Rxk
(αkηk)) ≤ f(xk) + c1αk⟨gk, ηk⟩xk

, (8)

⟨gradf(Rxk
(αkηk)),T

(k)(ηk)⟩Rxk
(αkηk) ≥ c2⟨gk, ηk⟩xk

, (9)

where 0 < c1 < c2 < 1. Note that the existence of a step size αk > 0 sat-
isfying the T (k)-Wolfe conditions is discussed in [25, Section 4.4]. Moreover,
algorithms [21, Algorithm 3] and [23, Section 5.1] exist for finding step sizes
which satisfy the T (k)-Wolfe conditions.

3 Memoryless spectral-scaling Broyden family

Let us start by reviewing the memoryless spectral-scaling Broyden family in
Euclidean space. In the Euclidean setting, an iterative optimization algorithm
updates the current iterate xk to the next iterate xk+1 with the updating
formula,

xk+1 = xk + αkdk,
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where αk > 0 is a positive step size. One often chooses a step size αk > 0 to
satisfy the Wolfe conditions (see [31,32]),

f(xk + αkdk) ≤ f(xk) + c1αk∇f(xk)
⊤dk,

∇f(xk + αkdk)
⊤dk ≥ c2∇f(xk)

⊤dk,

where 0 < c1 < c2 < 1. The search direction dk of the quasi-Newton methods
is defined by

dk = −Hk∇f(xk), (10)

where gk = ∇f(xk) and Hk is a symmetric approximation to ∇2f(xk)
−1. In

this paper, we will focus on the Broyden family, written as

Hk = Hk−1 −
Hk−1yk−1y

⊤
k−1Hk−1

y⊤k−1Hk−1yk−1
+

sk−1s
⊤
k−1

s⊤k−1yk−1

+ ϕk−1y
⊤
k−1Hk−1yk−1wk−1w

⊤
k−1,

(11)

where

wk−1 =
sk−1

s⊤k−1yk−1
− Hk−1yk−1

y⊤k−1Hk−1yk−1
,

sk−1 = xk − xk−1 and yk−1 = ∇f(xk) − ∇f(xk−1). ϕk−1 is a parameter,
which becomes the DFP formula when ϕk−1 = 0 or the BFGS formula when
ϕk−1 = 1 (see [18,28]). Here, if ϕk−1 ∈ [0, 1], then (11) is a convex combination
of the DFP formula and the BFGS formula; we call this interval the convex
class. Zhang and Tewarson [33] found a better choice in the case ϕk−1 > 1;
we call this interval the preconvex class. In [3], Chen and Cheng proposed the
Broyden family based on the spectral-scaling secant condition [4] as follows:

Hk = Hk−1 −
Hk−1yk−1y

⊤
k−1Hk−1

y⊤k−1Hk−1yk−1
+

1

τk−1

sk−1s
⊤
k−1

s⊤k−1yk−1

+ ϕk−1y
⊤
k−1Hk−1yk−1wk−1w

⊤
k−1,

(12)

where τk−1 > 0 is a spectral-scaling parameter.
Shanno [27] proposed memoryless quasi-Newton methods in which Hk−1 is

replaced with the identity matrix in (11). Memoryless quasi-Newton methods
avoid having to make memory storage for matrices and can solve large-scale
unconstrained optimization problems. In addition, Nakayama, Narushima and
Yabe [15] proposed memoryless quasi-Newton methods based on the spectral-
scaling Broyden family by replacing Hk−1 with the identity matrix in (12),
i.e.,

Hk = I −
yk−1y

⊤
k−1

y⊤k−1yk−1
+

1

τk−1

sk−1s
⊤
k−1

s⊤k−1yk−1
+ ϕk−1y

⊤
k−1yk−1wk−1w

⊤
k−1, (13)
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where

wk−1 =
sk−1

s⊤k−1yk−1
− yk−1

y⊤k−1yk−1
.

From (10) and (12), the search direction dk of memoryless quasi-Newton meth-
ods based on the spectral-scaling Broyden family can be computed as

dk = −gk +

(
ϕk−1

y⊤k−1gk

d⊤k−1yk−1
−

(
1

τk−1
+ ϕk−1

y⊤k−1yk−1

s⊤k−1yk−1

)
s⊤k−1gk

d⊤k−1yk−1

)
dk−1

+

(
ϕk−1

d⊤k−1gk

d⊤k−1yk−1
+ (1− ϕk−1)

y⊤k−1gk

y⊤k−1yk−1

)
yk−1.

In [15], they also proved global convergence for step sizes satisfying the Wolfe
conditions (see [15, Theorem 3.1] and [15, Theorem 3.6]). In [9], Kou and
Dai proposed a modified memoryless self-scaling BFGS method and showed
that it generates a search direction satisfying the sufficient descent condition.
Moreover, Nakayama [13] used the modification by Kou and Dai and proposed
a search direction dk defined by

dk = −gk +

(
ϕk−1

y⊤k−1gk

d⊤k−1yk−1
−

(
1

τk−1
+ ϕk−1

y⊤k−1yk−1

s⊤k−1yk−1

)
s⊤k−1gk

d⊤k−1yk−1

)
dk−1

+ ξk−1

(
ϕk−1

d⊤k−1gk

d⊤k−1yk−1
+ (1− ϕk−1)

y⊤k−1gk

y⊤k−1yk−1

)
yk−1,

where ξk−1 ∈ [0, 1] is a parameter.

3.1 Memoryless spectral-scaling Broyden family on Riemannian manifolds

We define sk−1 = Tαk−1ηk−1
(αk−1ηk−1) and yk−1 = gk −Tαk−1ηk−1

(gk−1). The
Riemannian quasi-Newton method with the spectral-scaling Broyden family
[16, (23)] is written as

Hk = H̃k−1 −
H̃k−1yk−1(H̃k−1yk−1)

♭

(H̃k−1yk−1)♭yk−1

+
1

τk−1

sk−1s
♭
k−1

s♭k−1yk−1

+ ϕk−1(H̃k−1yk−1)
♭yk−1wk−1w

♭
k−1,

(14)

where

wk−1 =
sk−1

s♭k−1yk−1

− H̃k−1yk−1

(H̃k−1yk−1)♭yk−1

,

and

H̃k−1 = Tαk−1ηk−1
◦ Hk−1 ◦ (Tαk−1ηk−1

)−1.
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Here, ϕk−1 ≥ 0 is a parameter, and τk−1 > 0 is a spectral-scaling parameter.

The idea of behind the memoryless spectral-scaling Broyden family is very
simple: replace H̃k−1 with idTxk−1

M . In [16], a memoryless spectral-scaling

Broyden family on a Riemannian manifold is proposed by replacing H̃k−1 with
idTxk

M . To guarantee global convergence, they replaced yk−1 by zk−1 ∈ Txk
M

satisfying the following conditions [16, (27)]: for positive constants ν, ν > 0,

ν∥sk−1∥2xk
≤ s♭k−1zk−1, (15)

∥zk−1∥xk
≤ ν∥sk−1∥xk

. (16)

Here, we can choose zk−1 by using Li-Fukushima regularization [11], which is
a Levenberg–Marquardt type of regularization, and set

zk−1 = yk−1 + νk−1sk−1, (17)

where

νk−1 =


0, if s♭k−1yk−1 ≥ ν̂∥sk−1∥2xk

,

max

{
0,−

s♭k−1yk−1

∥sk−1∥2xk

}
+ ν̂, otherwise,

(18)

and ν̂ > 0. We can also use Powell’s damping technique [18], which sets

zk−1 = νk−1yk−1 + (1− νk−1)sk−1, (19)

where ν̂ ∈ (0, 1) and

νk−1 =


1, if s♭k−1yk−1 ≥ ν̂∥sk−1∥2xk

,
(1− ν̂)∥sk−1∥2xk

∥sk−1∥2xk
− s♭k−1yk−1

, otherwise.
(20)

The proof that these choices satisfy conditions (15) and (16) is given in [16,
Proposition 4.1]. Thus, a memoryless spectral-scaling Broyden family on a
Riemannian manifold [16, (28)] can be described as

Hk = γk−1idTxkM
− γk−1

zk−1z
♭
k−1

z♭k−1zk−1

+
1

τk−1

sk−1s
♭
k−1

s♭k−1zk−1

+ ϕk−1γk−1z
♭
k−1zk−1wk−1w

♭
k−1,

where

wk−1 =
sk−1

s♭k−1zk−1

− zk−1

z♭k−1zk−1

.
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Here, γk−1 > 0 is a sizing parameter. From (3), we can compute the search
direction of the memoryless spectral-scaling Broyden family on a Riemannian
manifold as follows:

ηk =− γk−1gk

+ γk−1

(
ϕk−1

z♭k−1gk

s♭k−1zk−1

−

(
1

γk−1τk−1
+ ϕk−1

z♭k−1zk−1

s♭k−1zk−1

)
s♭k−1gk

s♭k−1zk−1

)
sk−1

+ γk−1

(
ϕk−1

s♭k−1gk

s♭k−1zk−1

+ (1− ϕk−1)
z♭k−1gk

z♭k−1zk−1

)
zk−1.

3.2 Proposed algorithm

Let T (k−1) : Txk−1
M → Txk

M be a map which satisfies Assumption 2.1. Fur-

thermore, we define yk−1 = gk−T (k−1)(gk−1) and sk−1 = T (k−1)(αk−1ηk−1).
We propose the following search direction of the modified memoryless spectral-
scaling Broyden family on a Riemannian manifold:

ηk =− γk−1gk

+ γk−1

(
ϕk−1

z♭k−1gk

s♭k−1zk−1

−

(
1

γk−1τk−1
+ ϕk−1

z♭k−1zk−1

s♭k−1zk−1

)
s♭k−1gk

s♭k−1zk−1

)
sk−1

+ γk−1ξk−1

(
ϕk−1

s♭k−1gk

s♭k−1zk−1

+ (1− ϕk−1)
z♭k−1gk

z♭k−1zk−1

)
zk−1,

(21)

where ξk−1 ∈ [0, 1] is a parameter, and zk−1 ∈ Txk
M is a tangent vector

satisfying (15) and (16). Note that equation (21) has not only added ξk−1,
but also changed the definition of the two tangent vectors yk−1 and sk−1 for
determining zk−1. The proposed algorithm is listed in Algorithm 1. Note that
Algorithm 1 is a generalization of memoryless quasi-Newton methods based
on the spectral-scaling Broyden family proposed in [16]. In fact, if ξk−1 = 1
and T (k−1) = Tαk−1ηk−1

(·), then Algorithm 1 coincides with it.

4 Convergence analysis

Assumption 4.1 Let f : M → R be a smooth, bounded below function with
the following property: there exists L > 0 such that

|D(f ◦Rx)(tη)[η]−D(f ◦Rx)(0x)[η]| ≤ Lt,

for all η ≤ TxM , ∥η∥x = 1, x ∈ M and t ≥ 0.
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Algorithm 1 Modified memoryless quasi-Newton methods based on spectral-
scaling Broyden family on Riemannian manifolds.
Require: Initial point x0 ∈ M , (γk)

∞
k=0 ⊂ (0,∞), (ϕk)

∞
k=0 ⊂ [0,∞), (ξk)

∞
k=0 ⊂ [0, 1],

(τk)
∞
k=0 ⊂ (0,∞).

Ensure: Sequence (xk)
∞
k=0 ⊂M .

1: k ← 0.
2: Set η0 = −g0 = −gradf(x0).
3: loop
4: Compute a step size αk > 0 satisfying the Wolfe conditions (8) and (9).
5: Set xk+1 = Rxk (αkηk).
6: Compute gk+1 := gradf(xk+1).
7: Compute a search direction ηk+1 ∈ Txk+1M by (21).
8: k ← k + 1
9: end loop

Assumption 4.2 We suppose that there exists Γ > 0 such that

∥gk∥xk
≤ Γ

for all k.

Zoutendijk’s theorem about the T (k)-Wolfe conditions [25, Theorem 5.3],
is described as follows:

Theorem 4.1 Suppose that Assumptions 2.1 and 4.1 hold. Let (xk)k=0,1,··· be
a sequence generated by an iterative method of the form (1). We assume that
the step size αk satisfies the T (k)-Wolfe conditions (8) and (9). If the search
direction ηk is a descent direction and there exists µ > 0, such that ηk satisfies
∥gk∥xk

≤ µ∥ηk∥xk
for all k ∈ N−K, then the following holds:

∞∑
k=0

⟨gk, ηk⟩2xk

∥ηk∥2xk

< ∞,

where K is the subset of N in Assumption 2.1.

We present a proof that the search direction (21) satisfies the sufficient
descent condition (2), which involves generalizing the Euclidean case in [13,
Proposition 3.1] and [15, Proposition 2.1].

Proposition 4.1 Assume that 0 < γ ≤ γk−1 and 0 ≤ ϕk−1 ≤ ϕ
2
hold, where

1 < ϕ < 2. The search direction (21) with
0 ≤ ξk−1 ≤ ξ, if 0 ≤ ϕk−1 ≤ 1,

0 ≤ ξk−1 <
ϕ√
ϕk−1

− 1, otherwise,
(22)

where 0 ≤ ξ < 1, satisfies the sufficient descent condition (2) with

κ := min

{
3γ(1− ξ)

4
, γ

(
1− ϕ

2

4

)}
> 0.
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Proof The proof involves extending the discussion in [13, Proposition 3.1] to
the case of Riemannian manifolds. For convenience, let us set

Φk−1 =
1

γk−1τk−1
+ ϕk−1

z♭k−1zk−1

s♭k−1zk−1

.

From the definition of the search direction (2), we have

⟨gk, ηk⟩xk
= −γk−1∥gk∥2xk

+ γk−1(1 + ξk−1)ϕk−1

(z♭k−1gk)(s
♭
k−1gk)

s♭k−1zk−1

− γk−1Φk−1

(s♭k−1gk)
2

s♭k−1zk−1

+ γk−1ξk−1(1− ϕk−1)
(z♭k−1gk)

2

z♭k−1zk−1

.

From the relation 2⟨u, v⟩ ≤ ∥u∥2 + ∥v∥2 for any vectors u and v in an inner
product space, we obtain

⟨gk, ηk⟩xk
≤ −γk−1∥gk∥2xk

+
γk−1ϕk−1

2

∥∥∥∥∥
√
2s♭k−1gk

s♭k−1zk−1

zk−1

∥∥∥∥∥
2

xk

+

∥∥∥∥1 + ξk−1√
2

gk

∥∥∥∥2
xk


− γk−1Φk−1

(s♭k−1gk)
2

s♭k−1zk−1

+ γk−1ξk−1(1− ϕk−1)
(z♭k−1gk)

2

z♭k−1zk−1

= −γk−1

(
1− ϕk−1(1 + ξk−1)

2

4

)
∥gk∥2xk

− 1

τk−1

(s♭k−1gk)
2

s♭k−1zk−1

+ γk−1ξk−1(1− ϕk−1)
(z♭k−1gk)

2

z♭k−1zk−1

.

From (15) (i.e., 0 < ν∥sk−1∥2xk
≤ s♭k−1zk−1), we have

⟨gk, ηk⟩xk
≤ −γk−1

(
1− ϕk−1(1 + ξk−1)

2

4

)
∥gk∥2xk

+γk−1ξk−1(1− ϕk−1)
(z♭k−1gk)

2

z♭k−1zk−1

.

Here, we consider the case 0 ≤ ϕk−1 ≤ 1. From ξk−1(1 − ϕk−1) ≥ 0 and the
Cauchy-Schwarz inequality, we obtain

⟨gk, ηk⟩xk
≤ −γk−1

(
(1− ξk−1)

(
1− ϕk−1

4
(1− ξk−1)

))
∥gk∥2xk

.

From 0 ≤ ξk−1 ≤ ξ < 1 and 0 ≤ γ ≤ γk−1, we have

⟨gk, ηk⟩xk
≤ −γ

(
(1− ξ)

(
1− 1

4
(1− 0)

))
∥gk∥2xk

= −
3γ(1− ξ)

4
∥gk∥2xk

.



Modified memoryless spectral-scaling Broyden family on Riemannian manifolds 13

Next, let us consider the case 1 < ϕk−1 < ϕ. From ξk−1(1 − ϕk−1) ≤ 0 and
0 ≤ γ ≤ γk−1, we obtain

⟨gk, ηk⟩xk
≤ −γk−1

(
1− ϕk−1(1 + ξk−1)

2

4

)
∥gk∥2xk

= −γ

(
1− ϕ

2

4

)
∥gk∥2xk

.

Therefore, the search direction (21) satisfies the sufficient descent condition
(2), i.e., ⟨gk, ηk⟩xk

≤ −κ∥gk∥2xk
, where

κ := min

{
3γ(1− ξ)

4
, γ

(
1− ϕ

2

4

)}
> 0.

⊓⊔

Now let us show the global convergence of Algorithm 1.

Theorem 4.2 Suppose that Assumptions 2.1,4.1 and 4.2 are satisfied. As-

sume further that 0 < γ ≤ γk−1 ≤ γ, τ ≤ τk−1 and 0 ≤ ϕk−1 ≤ ϕ
2
hold, where

τ > 0 and 1 < ϕ < 2. Moreover, suppose that ξk ∈ [0, 1] satisfies (22). Let
(xk)k=0,1,··· be a sequence generated by Algorithm 1, and let the step size αk

satisfy the T (k)-Wolfe conditions (8) and (9). Then, Algorithm 1 converges
in the sense that

lim inf
k→∞

∥gk∥xk
= 0

holds.

Proof For convenience, let us set

Φk−1 =
1

γk−1τk−1
+ ϕk−1

z♭k−1zk−1

s♭k−1zk−1

.

From (21) and the triangle inequality, we have

∥ηk∥xk
=

∥∥∥∥∥−γk−1gk + γk−1

(
ϕk−1

z♭k−1gk

s♭k−1zk−1

− Φk−1

s♭k−1gk

s♭k−1zk−1

)
sk−1

+γk−1ξk−1

(
ϕk−1

s♭k−1gk

s♭k−1zk−1

+ (1− ϕk−1)
z♭k−1gk

z♭k−1zk−1

)
zk−1

∥∥∥∥∥
xk

≤ γk−1∥gk∥xk
+ γk−1

∣∣∣∣∣ϕk−1

z♭k−1gk

s♭k−1zk−1

∣∣∣∣∣ ∥sk−1∥xk

+ γk−1

∣∣∣∣∣Φk−1

s♭k−1gk

s♭k−1zk−1

∣∣∣∣∣ ∥sk−1∥xk
+ γk−1ξk−1

∣∣∣∣∣ϕk−1

s♭k−1gk

s♭k−1zk−1

∣∣∣∣∣ ∥zk−1∥xk

+ γk−1ξk−1

∣∣∣∣∣(1− ϕk−1)
z♭k−1gk

z♭k−1zk−1

∣∣∣∣∣ ∥zk−1∥xk
.
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Here, from the Cauchy-Schwarz inequality, we obtain

|z♭k−1gk| = |⟨zk−1, gk⟩xk
| ≤ ∥zk−1∥xk

∥gk∥xk
,

|s♭k−1gk| = |⟨sk−1, gk⟩xk
| ≤ ∥sk−1∥xk

∥gk∥xk
,

which together with (15) (i.e., ν∥sk−1∥2xk
≤ s♭k−1zk−1) and 0 ≤ ϕk−1 < 4,

gives

∥ηk∥xk
≤ γk−1∥gk∥xk

+ 4γk−1
∥zk−1∥xk

∥gk∥xk

ν∥sk−1∥2xk

∥sk−1∥xk

+ γk−1

(
1

γk−1τk−1
+

4∥zk−1∥2xk

ν∥sk−1∥2xk

)
∥sk−1∥xk

∥gk∥xk

ν∥sk−1∥2xk

∥sk−1∥xk

+ γk−1ξk−1
4∥sk−1∥xk

∥gk∥xk

ν∥sk−1∥2xk

∥zk−1∥xk
+ γk−1ξk−1

3∥zk−1∥xk
∥gk∥xk

∥zk−1∥2xk

∥zk−1∥xk
.

From (16) (i.e., ∥zk−1∥xk
≤ ν∥sk−1∥xk

), 0 ≤ ξk−1 ≤ 1, and γk−1 ≤ γ, we have

∥ηk∥xk
≤ γ∥gk∥xk

+
4γν

ν
∥gk∥xk

+
1

τν
∥gk∥xk

+
4γν2

ν2
∥gk∥xk

+
4γν

ν
∥gk∥xk

+ 3γ∥gk∥xk
,

which, together with ∥gk∥xk
≤ Γ , give

∥ηk∥xk
≤
(
4γ +

8γν

ν
+

1

τν
+

4γν2

ν2

)
︸ ︷︷ ︸

Θ

Γ = ΘΓ.

To prove convergence by contradiction, suppose that there exists a positive
constant ε > 0 such that

∥gk∥xk
≥ ε,

for all k. From Proposition 4.1,

⟨gk, ηk⟩xk
≤ −κ∥gk∥2xk

≤ −κε2,

where

κ := min

{
3γ(1− ξ)

4
, γ

(
1− ϕ

2

4

)}
> 0.

It follows from the above inequalities that

∞ =

∞∑
k=0

κ2ε4

Θ2Γ 2
≤

∞∑
k=0

⟨gk, ηk⟩2xk

∥ηk∥2xk

.

This contradicts the Zoutendijk theorem (Theorem 4.1) and thus completes
the proof. ⊓⊔
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5 Numerical experiments

We compared the proposed method with existing methods, including the Rie-
mannian conjugate gradient methods and memoryless spectral-scaling Broy-
den family. In the experiments, we implemented the proposed method as an
optimizer of pymanopt (see [29]) and solved two Riemannian optimization
problems (Problems 5.1 and 5.2).

Problem 5.1 is the Rayleigh-quotient minimization problem on the unit
sphere [2, Chapter 4.6].

Problem 5.1 Let A ∈ Rn×n be a symmetric matrix,

minimize f(x) := x⊤Ax,

subject to x ∈ Sn−1 := {x ∈ Rn : ∥x∥ = 1},

where ∥·∥ denotes the Euclidean norm.

In the experiments, we set n = 100 and generated a matrix B ∈ Rn×n with
randomly chosen elements by using numpy.random.randn. Then, we set a sym-
metric matrix A = (B +B⊤)/2.

Absil and Gallivan [1, Section 3] introduced an off-diagonal cost func-
tion. Problem 5.2 is an off-diagonal cost function minimization problem on
an oblique manifold.

Problem 5.2 Let Ci ∈ Rn×n (i = 1, · · · , N) be symmetric matrices,

minimize f(X) :=

N∑
i=1

∥X⊤CiX − ddiag(X⊤CiX)∥2F ,

subject to X ∈ OB(n, p) := {X ∈ Rn×p : ddiag(X⊤X) = I},

where ∥·∥F denotes the Frobenius norm and ddiag(M) denotes a diagonal
matrix M with all its off-diagonal elements set to zero.

In the experiments, we set N = 5, n = 10, and p = 5 and generated five
matrices Bi ∈ Rn×n (i = 1, · · · , 5) with randomly chosen elements by using
numpy.random.randn. Then, we set symmetric matrices Ci = (Bi + B⊤

i )/2
(i = 1, · · · , 5).

The experiments used a MacBook Air (M1, 2020) with version 12.2 of the
macOS Monterey operating system. The algorithms were written in Python
3.11.3 with the NumPy 1.25.0 package and the Matplotlib 3.7.1 package.
Python implementations of the methods used in the numerical experiments are
available at https://github.com/iiduka-researches/202307-memoryless.

We considered that a sequence had converged to an optimal solution when
the stopping condition,

∥gradf(xk)∥xk
< 10−6,
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was satisfied. We set T (k−1) = T R
αk−1ηk−1

(·),

γk−1 = max

{
1,

s♭k−1zk−1

z♭k−1zk−1

}
, τk−1 = min

{
1,

z♭k−1zk−1

s♭k−1zk−1

}
.

We compared the proposed methods with the existing Riemannian optimiza-
tion algorithms, including Riemannian conjugate gradient methods. Moreover,
we compared twelve versions of the proposed method with different parame-
ters, i.e., ϕk−1, zk−1 and ξk−1. We compared the BFGS formula ϕk−1 = 1 and
the preconvex class ϕk−1 ∈ [0,∞). For the preconvex class (see [16, (43)]), we
used

ϕk−1 =
0.1θ∗k−1 − 1

0.1θ∗k−1(1− µk−1)− 1
,

where

θ∗k−1 = max

{
1

1− µk−1
, 10−5

}
, µk−1 =

(s♭k−1sk−1)(z
♭
k−1zk−1)

(s♭k−1zk−1)2
.

Moreover, we compared Li-Fukushima regularization (17) and (18) with ν̂ =
10−6 and Powell’s damping technique (19) and (20) with ν̂ = 0.1. In addition,
we used a constant parameter ξk−1 = ξ ∈ [0, 1] and compared our methods
with ξ = 1 (i.e., the existing methods when T (k) = Tαk−1ηk−1

(·)), ξ = 0.8, and
ξ = 0.1. For comparison, we also tested two Riemannian conjugate gradient
methods, i.e., DY (6) and HZ (7).

As the measure for these comparisons, we calculated the performance pro-
file Ps : R → [0, 1] [5] defined as follows: let P and S be the sets of problems
and solvers, respectively. For each p ∈ P and s ∈ S,

tp,s := (iterations or time required to solve problem p by solver s).

We defined the performance ratio rp,s as

rp,s :=
tp,s

mins′∈S tp,s′
.

Next, we defined the performance profile Ps for all τ ∈ R as

Ps(τ) :=
|{p ∈ P : rp,s ≤ τ}|

|P|
,

where |A| denotes the number of elements in a set A. In the experiments, we
set |P| = 100 for Problems 5.1 and 5.2, respectively.

Figures 1–4 plot the results of our experiments. In particular, Figure 1
shows the numerical results for Problem 5.1 with Li-Fukushima regulariza-
tion (17) and (18). It shows that Algorithm 1 with ξ = 0.1 has much higher
performance than that of Algorithm 1 with ξ = 1 (i.e., the existing method)
regardless of whether the BFGS formula or the preconvex class is used. In
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(b) elapsed time

Fig. 1 Performance profiles of each algorithm versus the number of iterations (a) and the
elapsed time (b) for Problem 5.1. zk is defined by Li-Fukushima regularization (17) and
(18).

addition, we can see that Algorithm 1 with ξ = 0.8 and ξ = 1 have about the
same performance.

Figure 2 shows the numerical results for solving Problem 5.1 with Powell’s
damping technique (19) and (20). It shows that Algorithm 1 with ξ = 0.1 is
superior to Algorithm 1 with ξ = 1 (i.e., the existing method), regardless of
whether the BFGS formula or the preconvex class is used. Moreover, it can be
seen that Algorithm 1 with ξ = 0.8 and ξ = 1 has about the same performance.
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(b) elapsed time

Fig. 2 Performance profiles of each algorithm versus the number of iterations (a) and the
elapsed time (b) for Problem 5.1. zk is defined by Powell’s damping technique (19) and (20).

Figure 3 shows numerical results for Problem 5.1 with Li-Fukushima reg-
ularization (17) and (18). It shows that if we use the BFGS formula (i.e.,
ϕk = 1), then Algorithm 1 with ξ = 0.8 and the HZ method outperform the
others. However, Algorithm 1 with the preconvex class is not compatible with
is an off-diagonal cost function minimization problem on an oblique manifold.
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Fig. 3 Performance profiles of each algorithm versus the number of iterations (a) and the
elapsed time (b) for Problem 5.2. zk is defined by Li-Fukushima regularization (17) and
(18).

Figure 4 shows the numerical results for solving Problem 5.1 with Powell’s
damping technique (19) and (20). It shows that if we use the BFGS formula
(i.e., ϕk = 1), then Algorithm 1 with ξ = 0.8 or ξ = 1 is superior to the
others. However, Algorithm 1 with the preconvex class is not compatible with
is an off-diagonal cost function minimization problem on an oblique manifold.
Therefore, we can see that Algorithm 1 with the BFGS formula (i.e., ϕk = 1)
is suitable for solving an off-diagonal cost function minimization problem on
an oblique manifold.
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Fig. 4 Performance profiles of each algorithm versus the number of iterations (a) and the
elapsed time (b) for Problem 5.2. zk is defined by Powell’s damping technique (19) and (20)

6 Conclusion

This paper presented a modified memoryless quasi-Newton method with the
spectral-scaling Broyden family on Riemannian manifolds, i.e., Algorithm 1.
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Algorithm 1 is a generalization of the memoryless self-scaling Broyden family
on Riemannian manifolds. Specifically, it involves adding one parameter to the
search direction. We use a general map instead of vector transport, similarly to
the general framework of Riemannian conjugate gradient methods. Therefore,
we can utilize methods that use vector transport, scaled vector transport, or
an inverse retraction. Moreover, we proved that the search direction satisfies
the sufficient descent condition, and the method globally converges under the
Wolfe conditions. Moreover, the numerical experiments indicated that the pro-
posed method with the BFGS formula is suitable for solving an off-diagonal
cost function minimization problem on an oblique manifold.
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