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Abstract Smooth convex optimization problems are solved over fixed point sets of quasi-nonexpansive
mappings by using a distributed optimization technique. This is done for a networked system with an
operator, who manages the system, and a finite number of users, by solving the problem of minimizing
the sum of the operator’s and users’ differentiable, convex objective functions over the intersection of the
operator’s and users’ fixed point sets of quasi-nonexpansive mappings. Under the assumption that the
operator can communicate with all users, a parallel optimization algorithm can be devised that enables the
operator to find a solution to the problem without using all user objective functions and quasi-nonexpansive
mappings. This algorithm does not use proximity operators, in contrast to conventional parallel proximal
algorithms. Moreover, it can optimize over fixed point sets of quasi-nonexpansive mappings, in contrast to
conventional fixed point algorithms. Investigation of the algorithm’s convergence properties for a constant
step-size rule reveals that, with a small constant step size, it approximates the solution to the problem.
Consideration of the case in which the step-size sequence is diminishing demonstrates that the algorithm
converges to the problem solution. Application of the algorithm to network bandwidth allocation based on
an operational policy is shown to make the network more stable and reliable.

Keywords: nonlinear programming, fixed point, network bandwidth allocation, paral-
lel optimization algorithm, quasi-nonexpansive mapping, smooth convex optimization,
strongly monotone operator

1. Introduction

Optimization problems with a fixed point constraint (see, e.g., [7, 21, 24, 44]) enable con-
sideration of constrained optimization problems in which the explicit form of the metric
projection onto the constraint set is not always known; i.e., the constraint set is not simple
in the sense that the projection cannot be easily calculated (e.g., the constraint set is the
set of all minimizers of a convex function over a closed convex set [9, 44], the set of zeros
of a set-valued, monotone operator [4, Proposition 23.38], or the level set of a nondiffer-
entiable, convex function [3, Proposition 2.3]). These and related optimization problems
include such practical problems as signal recovery [7], power control [16, 18, 40], bandwidth
allocation [19, 20], storage allocation [23, 32], control optimization [25], beamforming [41],
and minimal antenna-subset selection [46].

This paper focuses on a networked system consisting of an operator, who manage the
system, and a finite number of participating users, and considers the problem of minimizing
the sum of the operator’s and users’ differentiable, convex functions over the intersection of
the operator’s and users’ fixed point constraint sets of quasi-nonexpansive mappings.

The motivations for considering this problem are to devise optimization algorithms that
have a wider range of applications than previous algorithms for convex optimization over
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fixed point sets of nonexpansive mappings [7, 21, 24, 44] and to solve the problem by using
parallel optimization techniques [4, Chapter 27], [47, PART II].

Many parallel and optimization algorithms have been presented for smooth or nonsmooth
optimization. The parallel proximal algorithms [4, Proposition 27.8], [12, Algorithm 10.27],
[38] are useful for minimizing the sum of nondifferentiable, convex functions over the whole
space. They use the ideas of the Dauglas-Rachford algorithm [4, Chapters 25 and 27],
[10, 12, 13, 29] and forward-backward algorithm [4, Chapters 25 and 27], [8, 11, 12], which
use the proximity operators [4, Definition 12.23] of nondifferentiable, convex functions. The
incremental subgradient method [5, Section 8.2] and projected multi-agent algorithms [30,
35–37] can minimize the sum of nondifferentiable, convex functions over simple constraint
sets by using the subgradients [39, Section 23] of the nondifferentiable, convex functions
instead of the proximity operators. The fixed point optimization algorithms [20, 23] can
perform smooth convex distributed optimization over the fixed point sets of nonexpansive
mappings. The centralized fixed point optimization algorithm [22] can optimize over two
fixed point sets of a quasi-nonexpansive mapping and a nonexpansive mapping. There
have been no reports, however, on distributed optimization algorithms for smooth convex
optimization with fixed point constraints of quasi-nonexpansive mappings.

In this paper, we describe a parallel optimization algorithm for smooth convex optimiza-
tion over fixed point sets of quasi-nonexpansive mappings. It is based on two well-known
algorithms. The first is the hybrid steepest descent algorithm [44], a centralized algorithm for
smooth convex optimization over fixed point sets of nonexpansive mappings. The operator
and each user in the network can implement the hybrid steepest descent method. The sec-
ond algorithm is the parallel proximal algorithm [4, Proposition 27.8], [12, Algorithm 10.27],
[38] for nonsmooth convex optimization. From these two algorithms, a parallel optimization
algorithm is formulated for smooth convex optimization with fixed point constraints. Since
the operator can communicate with all users, the operator can find the solution to the main
problem by using the information transmitted from all users.

This paper makes three contributions in relation to other work on convex optimization.
The first is that the proposed parallel optimization algorithm does not use proximity oper-
ators, in contrast to several previous algorithms [8, 11, 12, 38, 46]. It uses the gradients of
the operator’s and users’ convex functions.

The second is that the proposed algorithm can be applied to distributed smooth con-
vex optimization over the fixed point sets of quasi-nonexpansive mappings while previous
algorithms can only perform nonsmooth convex optimization over simple constraint sets
[4, Subchapter 5.2],[8, 11, 12, 30, 35–38], centralized smooth convex optimization over fixed
point sets of (quasi-)nonexpansive mappings [7, 21, 22, 24, 44], or distributed smooth convex
optimization over fixed point sets of nonexpansive mappings [20, 23].

To clarify the advantages of dealing with distributed optimization over the fixed point
sets of quasi-nonexpansive mappings, let us consider network resource allocation [6, 42],
which is the sharing of available resources among users in the network so as to maximize
the sum of their utilities subject to the feasible regions for allocating the resources. The
problem of minimizing the sum of convex functions over the intersection of fixed point sets
of nonexpansive mappings includes practical network resource allocation problems, such as
power allocation [40], channel allocation [26], storage allocation [23, 32], and bandwidth al-
location [19, 20, 27, 31, 34, 42]. Here, let us consider the network resource allocation problem
with an operational constraint that makes the network more stable and reliable. When the
operational constraint set can be expressed as the level set of a certain nonsmooth, convex
function [22, subsection 1.2], it can be expressed as the fixed point set of the subgradient pro-
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jection that satisfies the quasi nonexpansivity condition, not the nonexpansivity condition
[3, Proposition 2.3] (see also subsection 2.1). This means that practical network resource
allocation problems with operational constraints can be formulated as a convex optimiza-
tion problem over the intersection of fixed point sets of quasi-nonexpansive mappings. The
proposed parallel algorithm can thus be applied to network resource allocation with opera-
tional constraints. This paper focuses on bandwidth allocation with operational constraints
and describes how the proposed parallel algorithm can solve it.

The third contribution is analysis of the proposed algorithm’s convergence for different
step-size rules. A small constant step size is shown to result in an approximate solution to
the main problem. Thanks to the useful lemma of Maingé [33] (Proposition 2.6), it is also
shown that the proposed algorithm with a diminishing step size converges to the solution
to the problem.

This paper is organized as follows. Section 2 gives the mathematical preliminaries and
states the main problem. Section 3 presents the proposed parallel optimization algorithm
for solving the main problem and describes its convergence properties for a constant step
size and for a diminishing step size. It also provides several application examples. Section
4 describes how application of the algorithm to network bandwidth allocation based on an
operational policy makes the network stable and reliable. Section 5 concludes the paper
with a brief summary and a mention of future work on distributed optimization over the
fixed point sets of quasi-nonexpansive mappings.

2. Mathematical Preliminaries

Let RN be an N -dimensional Euclidean space with inner product ⟨·, ·⟩ and its induced norm
∥ · ∥, and let RN

+ := {(xi)
N
i=1 ∈ RN : xi ≥ 0 (i = 1, 2, . . . , N)}. Let N denote the set of

all positive integers including zero. The identity mapping on RN is denoted by Id, i.e.,
Id(x) := x (x ∈ RN).

2.1. Quasi nonexpansivity

A mapping Q : RN → RN is said to be quasi-nonexpansive [4, Definition 4.1(iii)] if ∥Q(x)−
y∥ ≤ ∥x − y∥ for all x ∈ RN and for all y ∈ Fix(Q).∗ The fixed point set of Q is denoted
by Fix(Q) := {x ∈ RN : Q(x) = x}. When a quasi-nonexpansive mapping has one fixed
point, its fixed point set is closed and convex [3, Proposition 2.6]. R : RN → RN is called
a quasi-firmly nonexpansive mapping [2] if a quasi-nonexpansive mapping Q : RN → RN

exists such that R = (1/2)(Id + Q).
An important example of a quasi-firmly nonexpansive mapping is as follows. Let f0 : RN

→ R be a convex function with lev≤0f0 := {x ∈ RN : f0(x) ≤ 0} ̸= ∅. Then the subdiffer-
ential [4, Definition 16.1], [39, Section 23] of f0 at x ∈ RN , denoted by

∂f0(x) :=
{
z ∈ RN : f0(y) ≥ f0(x) + ⟨y − x, z⟩

(
y ∈ RN

)}
,

has a point, and the subgradient of f0 at x can be denoted by f ′
0(x) ∈ ∂f0(x). The subgradient

projection relative to f0 [3, Proposition 2.3], [43, Subchapter 4.3], Qsp : RN → RN , defined
for all x ∈ RN by

Qsp(x) :=

x − f0(x)

∥f ′
0(x)∥2

f ′
0(x) if f0(x) > 0,

x otherwise,

∗The definition of a quasi-nonexpansive mapping is that, if x, y ∈ RN and if y ∈ Fix(Q) ( ̸= ∅), ∥Q(x)−y∥ ≤
∥x − y∥. This proposition is always true if Fix(Q) = ∅.
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is quasi-firmly nonexpansive (i.e., 2Qsp − Id is quasi-nonexpansive) and satisfies Fix(Qsp) =
Fix(2Qsp − Id) = lev≤0f0. Moreover, Qsp satisfies the following propositions.
Proposition 2.1.
(i) [2, Lemma 3.1] Qsp is fixed-point closed, i.e., x ∈ Fix(Qsp) whenever (xn)n∈N (⊂ RN)

converges to x (∈ RN) and limn→∞ ∥xn − Qsp(xn)∥ = 0.
(ii) 2Qsp − Id is fixed-point closed.

It is obvious from Fix(Qsp) = Fix(2Qsp − Id) and Proposition 2.1(i) that Proposition
2.1(ii) holds.

The following proposition indicates the properties of quasi-firmly nonexpansive map-
pings.
Proposition 2.2. Suppose that Q : RN → RN is quasi-firmly nonexpansive with Fix(Q) ̸= ∅
and α ∈ (0, 1] and that Qα := αId + (1 − α)Q. Then the following hold:
(i) Fix(Q) = Fix(Qα).
(ii) Qα is quasi-nonexpansive.
(iii) ⟨x − Qα(x), x − y⟩ ≥ (1 − α)∥x − Q(x)∥2 (x ∈ RN , y ∈ Fix(Q)).

Proof. Items (i) and (ii) in Proposition 2.2 are deduced from [33, Remark 2.1(i0), (i1)].
From ∥x − y∥2 = ∥x∥2 − 2⟨x, y⟩ + ∥y∥2 (x, y ∈ RN), it is found that, for all x ∈ RN and for
all y ∈ Fix(Q), ⟨x − Q(x), x − y⟩ = (1/2)(∥x − Q(x)∥2 + ∥x − y∥2 − ∥Q(x) − y∥2). Since Q
is quasi-firmly nonexpansive, ∥Q(x) − y∥2 ≤ ∥x − y∥2 − ∥x − Q(x)∥2 (x ∈ RN , y ∈ Fix(Q))
[2, section 3]. Accordingly, for all x ∈ RN and for all y ∈ Fix(Q),

⟨x − Q(x), x − y⟩ =
1

2

(
∥x − Q(x)∥2 + ∥x − y∥2 − ∥Q(x) − y∥2

)
≥ ∥x − Q(x)∥2.

Hence, for all x ∈ RN and for all y ∈ Fix(Q),

⟨x − Qα(x), x − y⟩ = (1 − α)⟨x − Q(x), x − y⟩ ≥ (1 − α)∥x − Q(x)∥2,

which means that item (iii) holds. This completes the proof.

2.2. Convex optimization problem and monotone variational inequality

An operator A : RN → RN is said to be monotone [4, Definition 20.1] if ⟨x−y,A(x)−A(y)⟩ ≥
0 for all x, y ∈ RN . A is called a strongly monotone operator with c > 0 (c-strongly
monotone operator) [4, Definition 22.1(iv)] if ⟨x − y,A(x) − A(y)⟩ ≥ c∥x − y∥2 for all
x, y ∈ RN . A is called a Lipschitz continuous operator with L > 0 (L-Lipschitz continuous)
if ∥A(x) − A(y)∥ ≤ L∥x − y∥ for all x, y ∈ RN .
Proposition 2.3. [44, Lemma 3.1] Suppose that A : RN → RN is c-strongly monotone and
L-Lipschitz continuous and that µ ∈ (0, 2c/L2). For λ ∈ [0, 1], define Tλ : RN → RN by
Tλ(x) := x − µλA(x) for all x ∈ RN . Then for all x, y ∈ RN ,

∥Tλ(x) − Tλ(y)∥ ≤ (1 − τλ) ∥x − y∥,

where τ := 1 −
√

1 − µ(2c − µL2) ∈ (0, 1].
The variational inequality problem [14, Chapter II], [28, Chapter I] for a monotone

operator A : RN → RN over a nonempty, closed convex set D ⊂ RN is to find a point in

VI(D,A) := {x⋆ ∈ D : ⟨y − x⋆, A(x⋆)⟩ ≥ 0 (y ∈ D)} .

Some properties of the solution set of the monotone variational inequality are as follows:
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Proposition 2.4. Suppose that D (⊂ RN) is nonempty, closed, and convex, A : RN → RN

is continuous, and f : RN → R is convex and differentiable. Then

(i) [14, Chapter 2, Proposition 2.1 (2.1) and (2.2)] VI(D,∇f) = argminx∈D f(x) := {x⋆ ∈
D : f(x⋆) = minx∈D f(x)}.

(ii) [15, Corollary 2.2.5] VI(D,A) ̸= ∅ when D is compact.
(iii) [43, Theorem 2.31] VI(D,A) consists of one point if A is strongly monotone and Lipschitz

continuous.

2.3. Main problem

The focus here is a networked system with an operator (denoted as user 0) and I users. Let

I := {1, 2, . . . , I} and I := {0} ∪ I.

Suppose that user i (i ∈ I) has its own private objective function, denoted by f (i) : RN → R,
and a nonempty, closed convex constraint set, denoted by C(i) (⊂ RN). Moreover, the
following is assumed.

Assumption 2.1.

(A1) Q(i) : RN → RN (i ∈ I) is quasi-firmly nonexpansive with Fix(Q(i)) = C(i) and∩
i∈I Fix(Q(i)) ̸= ∅.

(A2) f (i) : RN → R (i ∈ I) is convex and differentiable, and ∇f (i) : RN → RN is c(i)-strongly
monotone and L(i)-Lipschitz continuous.

(A3) User i (i ∈ I) can use its own private Q(i) and ∇f (i).
(A4) The operator can communicate with all users.

The following problem is discussed in this paper.

Problem 2.1.

Minimize
∑
i∈I

f (i)(x) subject to x ∈
∩
i∈I

Fix
(
Q(i)

)
.

The closedness and convexity [3, Proposition 2.6] of
∩

i∈I Fix(Q(i)) (̸= ∅) and (A2) guar-
antee the existence and uniqueness of the solution to Problem 2.1 (Proposition 2.4(i) and
(iii)).

Problem 2.1 is closely related to network resource allocation [6, 42], which is a central
issue in modern communication networks. The main objective of the allocation is to share
the available resources among users in the network so as to maximize the sum of their
utilities subject to the feasible regions for allocating the resources. Such a maximization
problem, called the network resource allocation problem (see [6, 27, 34, 42], and references
therein), includes future network resource allocation problems such as the channel allocation
problem for a multi-carrier system [26], the storage allocation problem for a peer-to-peer
network [23, 32], the power allocation problem for a wireless data network [40], and the
bandwidth allocation problem [19, 20, 27, 31, 34, 42].

For example, the bandwidth allocation problem [27, 34, 42] is the problem of maximizing
the sum of the utility function U (i) of source i (user i) over the intersection of RI

+∩Cl, where
Cl stands for the capacity constraint of link l (for the definition of Cl, see (4.2)). When C(i)

is defined by the intersection of the capacity constraints of links used by source i, C(i) can be
expressed as the fixed point set of a certain nonexpansive mapping Q(i) (see (4.7)). Moreover,
the condition 0 ∈

∩
i∈I C(i) =

∩
i∈I Fix(Q(i)) ̸= ∅ holds from 0 ∈ Cl for each link l. Since

the operator manages the network, it knows the explicit form of
∩

i∈I C(i). Accordingly, the
operator can set Q(0) such that Fix(Q(0)) = C(0) and C(0) ∩

∩
i∈I C(i) =

∩
i∈I Fix(Q(i)) ̸= ∅.
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The relationship between Problem 2.1 and the bandwidth allocation problem is described
more fully in section 4. Other application examples are storage allocation [23, 32] and power
allocation [40], and such allocation problems can be expressed as Problem 2.1.

The following notation is used.

Q(i)
α := α(i)Id +

(
1 − α(i)

)
Q(i)

(
α(i) ∈ (0, 1)

)
, X :=

∩
i∈I

Fix
(
Q(i)

)
,

f :=
∑
i∈I

f (i), {x⋆} =

{
x ∈ X : f(x) = f ⋆ := min

y∈X
f (y)

}

The following propositions are needed to prove one of the main theorems.

Proposition 2.5. Suppose that Assumption 2.1 holds and Q(i) (i ∈ I) is fixed-point closed.
Let (zn) (⊂ RN) be a bounded sequence with limn→∞ ∥zn − Q(i)(zn)∥ = 0 (i ∈ I). Then
lim infn→∞⟨zn − x⋆,∇f(x⋆)⟩ ≥ 0.

Proof. From the property of the limit inferior of (⟨zn − x⋆,∇f(x⋆)⟩)n∈N, there exists a
subsequence (zni

) of (zn)n∈N such that

lim inf
n→∞

⟨zn − x⋆,∇f (x⋆)⟩ = lim
i→∞

⟨zni
− x⋆,∇f (x⋆)⟩ .

Since (zni
)i∈N is bounded, there exists (znij

)j∈N (⊂ (zni
)i∈N) converging to x ∈ RN . It can

be assumed without loss of generality that (zni
)i∈N converges to x ∈ RN . Since Q(i) (i ∈ I)

is fixed-point closed, x ∈ Fix(Q(i)) (i ∈ I), and hence, x ∈ X. Meanwhile, the quasi
nonexpansivity of Q(i) (i ∈ I) and the nonempty condition of Fix(Q(i)) (i ∈ I) imply that
X is nonempty, closed, and convex. Hence, the convexity and differentiability of f (i) (i ∈ I)
and Proposition 2.4(i) guarantee that VI(X,∇f) = {x⋆}. Therefore,

lim inf
n→∞

⟨zn − x⋆,∇f (x⋆)⟩ = ⟨x − x⋆,∇f (x⋆)⟩ ≥ 0.

This completes the proof.

Proposition 2.6. [33, Lemma 2.1] Let (Γn)n∈N ⊂ R and suppose that (Γnj
)j∈N (⊂ (Γn)n∈N)

exists such that Γnj
< Γnj+1 for all j ∈ N. Then there exists n0 ∈ N such that (τ(n))n≥n0

defined by τ(n) := max{k ≤ n : Γk < Γk+1} (n ≥ n0) is increasing and limn→∞ τ(n) = ∞.
Moreover, Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1 for all n ≥ n0.

3. Parallel Optimization Algorithm for Smooth Convex Optimization with
Fixed Point Constraints of Quasi-Nonexpansive Mappings

This section presents the proposed parallel optimization algorithm for solving Problem 2.1.

Algorithm 3.1.
Step 0. User i (i ∈ I) sets α(i) (∈ (0, 1)), Q

(i)
α := α(i)Id + (1 − α(i))Q(i), µ (∈

(0, mini∈I 2c(i)/L(i)2)), and (λn)n∈N (⊂ (0, 1]). The operator (user 0) sets x0 (∈ RN) ar-
bitrarily and transmits it to all users.

Step 1. User i (i ∈ I) computes x
(i)
n ∈ RN using

x(i)
n := Q(i)

α (xn) − µλn∇f (i)
(
Q(i)

α (xn)
)
.

User i (i ∈ I) transmits x
(i)
n to the operator.
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Step 2. The operator computes xn+1 ∈ RN as

xn+1 :=
1

I + 1

∑
i∈I

x(i)
n

and transmits it to all users. The algorithm sets n := n + 1 and returns to Step 1.

Assumptions (A2) and (A3) ensure that user i (i ∈ I) knows c(i) and L(i), so user i can
compute 2c(i)/L(i)2 before executing Algorithm 3.1. Since (A4) implies that user i (i ∈ I)
can transmit the value of 2c(i)/L(i)2 to the operator, the operator knows all the values of
2c(i)/L(i)2s, i.e., it can set µ ∈ (0, mini∈I 2c(i)/L(i)2). Since the operator can transmit this
µ to all users, user i (i ∈ I) can obtain this µ before executing Algorithm 3.1. If the
operator sets (λn)n∈N (⊂ (0, 1]) in advance, (A4) guarantees that the operator can inform
all users of (λn)n∈N before executing Algorithm 3.1. When (λn)n∈N is a diminishing step
size (subsection 3.2), the convergence of Algorithm 3.1 to the solution to Problem 2.1 is
guaranteed regardless of the choice of µ (for details, see Remark 3.1).

Assumptions (A3) and (A4) imply that user i (i ∈ I) can compute in parallel x
(i)
n =

Q
(i)
α (xn)−µλn∇f (i)(Q

(i)
α (xn)) by using the information xn transmitted from the operator and

its own private information. The hybrid steepest descent method [44] is used to compute

x
(i)
n . Moreover, (A4) ensures that the operator has access to all x

(i)
n and can compute xn+1 =

(1/(I + 1))
∑

i∈I x
(i)
n . This idea is based on the parallel proximal algorithm [4, Proposition

27.8].

The following is an important lemma that will be used to prove the main theorems.

Lemma 3.1. Suppose that Assumption 2.1 holds. Then (xn)n∈N in Algorithm 3.1 satisfies
the following properties:

(i) (xn)n∈N, (x
(i)
n )n∈N, and (∇f (i)(Q

(i)
α (xn)))n∈N (i ∈ I) are bounded.

(ii) For all n ∈ N,

∥xn+1 − x⋆∥2 ≤ ∥xn − x⋆∥2 −
∑
i∈I

2α(i)
(
1 − α(i)

)
I + 1

∥∥xn − Q(i) (xn)
∥∥2

+ λnMn,

where

Mn :=
2µ

I + 1

∑
i∈I

{ ⟨
x⋆ − xn,∇f (i)

(
Q(i)

α (xn)
)⟩

+ µλn

∥∥∇f (i)
(
Q(i)

α (xn)
)∥∥2

}

satisfies M1 := supn∈N Mn < ∞.

Proof. (i) Choose x ∈ X ⊂ Fix(Q(i)) (i ∈ I) and n ∈ N arbitrarily. Then the triangle
inequality and Proposition 2.3 guarantee that, for all i ∈ I,∥∥x(i)

n − x
∥∥ =

∥∥Q(i)
α (xn) − µλn∇f (i)

(
Q(i)

α (xn)
)
− x

∥∥
≤

∥∥Q(i)
α (xn) − µλn∇f (i)

(
Q(i)

α (xn)
)
−

(
x − µλn∇f (i) (x)

)∥∥
+ µλn

∥∥∇f (i) (x)
∥∥

≤
(
1 − τ (i)λn

) ∥∥Q(i)
α (xn) − x

∥∥ + µλn

∥∥∇f (i) (x)
∥∥

≤ (1 − τλn)
∥∥Q(i)

α (xn) − x
∥∥ + µλn

∥∥∇f (i) (x)
∥∥ ,
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where τ (i) := 1 −
√

1 − µ(2c(i) − µL(i)2) ∈ (0, 1] (i ∈ I) and τ := mini∈I τ (i). Hence,
Proposition 2.2(i) and (ii) imply that, for all i ∈ I,∥∥x(i)

n − x
∥∥ ≤ (1 − τλn) ∥xn − x∥ + µλn

∥∥∇f (i) (x)
∥∥ . (3.1)

Therefore, the triangle inequality and summing up the above inequality over all i ensure
that

∥xn+1 − x∥ =

∥∥∥∥∥∥ 1

I + 1

∑
i∈I

(
x(i)

n − x
)∥∥∥∥∥∥

≤ 1

I + 1

∑
i∈I

∥∥x(i)
n − x

∥∥
≤ (1 − τλn) ∥xn − x∥ + τλn

µ

τ(I + 1)

∑
i∈I

∥∥∇f (i) (x)
∥∥ .

Accordingly, induction leads to

∥xn − x∥ ≤ max

∥x0 − x∥ ,
µ

τ(I + 1)

∑
i∈I

∥∥∇f (i) (x)
∥∥ ,

which means (xn)n∈N is bounded. Moreover, (3.1) and (λn) ⊂ (0, 1] (n ∈ N) imply the

boundedness of (x
(i)
n )n∈N (i ∈ I). From the quasi nonexpansivity of Q

(i)
α (i ∈ I), we have

∥Q(i)
α (xn) − x∥ ≤ ∥xn − x∥, which, together with the boundedness of (xn)n∈N, means that

(Q
(i)
α (xn))n∈N (i ∈ I) is bounded. Since the Lipschitz continuity of ∇f (i) (i ∈ I) means that

∥∇f (i)(Q
(i)
α (xn))−∇f (i)(x)∥ ≤ L(i)∥Q(i)

α (xn)− x∥, the boundedness of (Q
(i)
α (xn))n∈N (i ∈ I)

implies that (∇f (i)(Q
(i)
α (xn)))n∈N (i ∈ I) is bounded.

(ii) Choose x ∈ X ⊂ Fix(Q(i)) (i ∈ I) and n ∈ N arbitrarily. From −2⟨x, y⟩ =
∥x − y∥2 − ∥x∥2 − ∥y∥2 (x, y ∈ RN), we find that, for all i ∈ I,

2
⟨
x(i)

n − xn + µλn∇f (i)
(
Q(i)

α (xn)
)
, xn − x

⟩
= −2

⟨
xn − x(i)

n , xn − x
⟩

+ 2µλn

⟨
xn − x,∇f (i)

(
Q(i)

α (xn)
)⟩

=
∥∥x(i)

n − x
∥∥2 −

∥∥xn − x(i)
n

∥∥2 − ∥xn − x∥2 + 2µλn

⟨
xn − x,∇f (i)

(
Q(i)

α (xn)
)⟩

.

Moreover, Proposition 2.2(iii) ensures that

2
⟨
Q(i)

α (xn) − xn, xn − x
⟩
≤ −2

(
1 − α(i)

) ∥∥xn − Q(i)(xn)
∥∥2

.

Accordingly, from x
(i)
n := Q

(i)
α (xn) − µλn∇f (i)(Q

(i)
α (xn)),

2
⟨
x(i)

n − xn + µλn∇f (i)
(
Q(i)

α (xn)
)
, xn − x

⟩
= 2

⟨
Q(i)

α (xn) − xn, xn − x
⟩

≤ −2
(
1 − α(i)

) ∥∥xn − Q(i)(xn)
∥∥2

.

Therefore, for all i ∈ I,∥∥x(i)
n − x

∥∥2 ≤ ∥xn − x∥2 +
∥∥xn − x(i)

n

∥∥2 − 2µλn

⟨
xn − x,∇f (i)

(
Q(i)

α (xn)
)⟩

− 2
(
1 − α(i)

) ∥∥xn − Q(i)(xn)
∥∥2

.
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Moreover, from ∥x − y∥2 ≤ 2∥x∥2 + 2∥y∥2 (x, y ∈ RN),∥∥xn − x(i)
n

∥∥2
=

∥∥(
xn − Q(i)

α (xn)
)

+ µλn∇f (i)
(
Q(i)

α (xn)
)∥∥2

≤ 2
∥∥xn − Q(i)

α (xn)
∥∥2

+ 2µ2λ2
n

∥∥∇f (i)
(
Q(i)

α (xn)
)∥∥2

= 2
(
1 − α(i)

)2 ∥∥xn − Q(i) (xn)
∥∥2

+ 2µ2λ2
n

∥∥∇f (i)
(
Q(i)

α (xn)
)∥∥2

.

Hence, for all i ∈ I,∥∥x(i)
n − x

∥∥2 ≤ ∥xn − x∥2 − 2α(i)
(
1 − α(i)

) ∥∥xn − Q(i)(xn)
∥∥2

+ 2µ2λ2
n

∥∥∇f (i)
(
Q(i)

α (xn)
)∥∥2

− 2µλn

⟨
xn − x,∇f (i)

(
Q(i)

α (xn)
)⟩

,

which, together with the convexity of ∥ · ∥2 and putting x := x⋆, implies that

∥xn+1 − x⋆∥2

≤ 1

I + 1

∑
i∈I

∥∥x(i)
n − x⋆

∥∥2

≤ ∥xn − x⋆∥2 − 2

I + 1

∑
i∈I

α(i)
(
1 − α(i)

) ∥∥xn − Q(i) (xn)
∥∥2

− 2µλn

I + 1

∑
i∈I

{⟨
xn − x⋆,∇f (i)

(
Q(i)

α (xn)
)⟩

− µλn

∥∥∇f (i)
(
Q(i)

α (xn)
)∥∥2

}
= ∥xn − x⋆∥2 − 2

I + 1

∑
i∈I

α(i)
(
1 − α(i)

) ∥∥xn − Q(i) (xn)
∥∥2

+ λnMn,

where Mn := (2µ/(I + 1))
∑

i∈I{⟨x⋆ − xn,∇f (i)(Q
(i)
α (xn))⟩ + µλn∥∇f (i)(Q

(i)
α (xn))∥2} and

Lemma 3.1(i) guarantee M1 := supn∈N Mn < ∞. This completes the proof.

3.1. Constant step-size rule

The discussion in this subsection is based on the following assumption.

Assumption 3.1. User i (i ∈ I) has (λn)n∈N satisfying

(C1) λn := λ ∈ (0, 1] (n ∈ N).

Let us perform a convergence analysis on Algorithm 3.1 under Assumption 3.1.

Theorem 3.1. Suppose that Assumptions 2.1 and 3.1 hold. Then (xn)n∈N in Algorithm 3.1
satisfies the relations

lim inf
n→∞

∥∥xn − Q(i) (xn)
∥∥2 ≤ (I + 1) M1λ

2α(i) (1 − α(i))

(
i ∈ I

)
,

lim inf
n→∞

f (xn) ≤ f ⋆ + µM2λ + M3

∑
i∈I

L(i)

√
(1 − α(i)) (I + 1) M1λ

2α(i)
,

where M1 is as in Lemma 3.1, M2 := supn∈N
∑

i∈I ∥∇f (i)(Q
(i)
α (xn))∥2 < ∞, and M3 :=

supn∈N ∥xn − x⋆∥ < ∞.
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If λ > 0 can be chosen such that µM2λ ≈ 0, (I + 1)M1λ/(2α(i)(1 − α(i))) ≈ 0, and
L(i)

√
(1 − α(i))(I + 1)M1λ/(2α(i)) ≈ 0 (i ∈ I), Theorem 3.1 says that

lim inf
n→∞

∥∥xn − Q(i) (xn)
∥∥2 ≈ 0

(
i ∈ I

)
and lim inf

n→∞
f (xn) ≈ f⋆.

Therefore, Theorem 3.1 indicates that Algorithm 3.1 with a small enough λ may approximate
the solution to Problem 2.1.

Proof. First, let us show that

lim inf
n→∞

∑
i∈I

α(i)
(
1 − α(i)

) ∥∥xn − Q(i) (xn)
∥∥2 ≤ (I + 1) M1λ

2
. (3.2)

Assume that (3.2) does not hold. Accordingly, δ (> 0) can be chosen such that

lim inf
n→∞

∑
i∈I

α(i)
(
1 − α(i)

) ∥∥xn − Q(i) (xn)
∥∥2

>
(I + 1) M1λ

2
+ 2δ.

The property of the limit inferior of (
∑

i∈I α(i)(1 − α(i))∥xn − Q(i)(xn)∥2)n∈N guarantees
that there exists n0 ∈ N such that lim infn→∞

∑
i∈I α(i)(1 − α(i))∥xn − Q(i)(xn)∥2 − δ ≤∑

i∈I α(i)(1 − α(i))∥xn − Q(i)(xn)∥2 for all n ≥ n0. Accordingly, for all n ≥ n0,∑
i∈I

α(i)
(
1 − α(i)

) ∥∥xn − Q(i) (xn)
∥∥2

>
(I + 1) M1λ

2
+ δ.

Hence, Lemma 3.1(ii) leads to the finding that, for all n ≥ n0,

∥xn+1 − x⋆∥2 ≤ ∥xn − x⋆∥2 −
∑
i∈I

2α(i)
(
1 − α(i)

)
I + 1

∥∥xn − Q(i) (xn)
∥∥2

+ M1λ

< ∥xn − x⋆∥2 − 2

I + 1

{
(I + 1) M1λ

2
+ δ

}
+ M1λ

= ∥xn − x⋆∥2 − 2

I + 1
δ.

Therefore, induction ensures that, for all n ≥ n0,

0 ≤ ∥xn+1 − x⋆∥2 < ∥xn0 − x⋆∥2 − 2

I + 1
δ (n + 1 − n0) .

Since the right side of the above inequality approaches minus infinity as n diverges, there
is a contradiction. Therefore, (3.2) holds. Since lim infn→∞ α(i)(1 − α(i))∥xn − Q(i)(xn)∥2 ≤
lim infn→∞

∑
i∈I α(i)(1 − α(i))∥xn − Q(i)(xn)∥2 (i ∈ I), there is also another finding:

lim inf
n→∞

∥∥xn − Q(i) (xn)
∥∥2 ≤ (I + 1) M1λ

2α(i) (1 − α(i))

(
i ∈ I

)
. (3.3)

Let i ∈ I be fixed arbitrarily. Inequality (3.3) and the property of the limit inferior
of (∥xn − Q(i)(xn)∥2)n∈N guarantee the existence of a subsequence (xnk

)k∈N of (xn)n∈N such
that

lim
k→∞

∥∥xnk
− Q(i) (xnk

)
∥∥2

= lim inf
n→∞

∥∥xn − Q(i) (xn)
∥∥2 ≤ (I + 1) M1λ

2α(i) (1 − α(i))
.
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Therefore, for all ϵ > 0, there exists k0 ∈ N such that, for all k ≥ k0,

∥∥xnk
− Q(i) (xnk

)
∥∥ ≤

√
(I + 1) M1λ

2α(i) (1 − α(i))
+ ϵ. (3.4)

Here, it is proven that, for all k ≥ k0,

lim inf
n→∞

∑
i∈I

⟨
xn − x⋆,∇f (i) (xn)

⟩
≤ M3

∑
i∈I

L(i)
(
1 − α(i)

) ∥∥xnk
− Q(i) (xnk

)
∥∥

+ µM2λ + 2ϵ. (3.5)

Now, let us assume that (3.5) does not hold for all k ≥ k0, i.e., there exists n1 ∈ N such
that, for all n ≥ n1,

lim inf
n→∞

∑
i∈I

⟨
xn − x⋆,∇f (i) (xn)

⟩
> M3

∑
i∈I

L(i)
(
1 − α(i)

) ∥∥xn − Q(i) (xn)
∥∥

+ µM2λ + 2ϵ.

Since the property of the limit inferior of (
∑

i∈I⟨xn−x⋆,∇f (i)(xn)⟩)n∈N implies the existence
of n2 ∈ N such that lim infn→∞

∑
i∈I⟨xn − x⋆,∇f (i)(xn)⟩− ϵ ≤

∑
i∈I⟨xn − x⋆,∇f (i)(xn)⟩ for

all n ≥ n2, it is found that, for all n ≥ n3 := max{n1, n2},∑
i∈I

⟨
xn − x⋆,∇f (i) (xn)

⟩
> M3

∑
i∈I

L(i)
(
1 − α(i)

) ∥∥xn − Q(i) (xn)
∥∥

+ µM2λ + ϵ.

(3.6)

On the other hand, Lemma 3.1(ii) and the Cauchy-Schwarz inequality guarantee that, for
all n ≥ n3,

∥xn+1 − x⋆∥2

≤ ∥xn − x⋆∥2 +
2µλ

I + 1

∑
i∈I

⟨
x⋆ − xn,∇f (i)

(
Q(i)

α (xn)
)⟩

+
2µ2M2λ

2

I + 1

≤ ∥xn − x⋆∥2 +
2µλ

I + 1

∑
i∈I

⟨
x⋆ − xn,∇f (i) (xn)

⟩
+

2µ2M2λ
2

I + 1

+
2µλ

I + 1

∑
i∈I

∥x⋆ − xn∥
∥∥∇f (i)

(
Q(i)

α (xn)
)
−∇f (i) (xn)

∥∥ ,

which, together with the Lipschitz continuity of ∇f (i) (i ∈ I) and the definition of Q
(i)
α

(i ∈ I), implies that, for all n ≥ n3,

∥xn+1 − x⋆∥2 ≤ ∥xn − x⋆∥2 +
2µλ

I + 1

∑
i∈I

⟨
x⋆ − xn,∇f (i) (xn)

⟩
+

2µ2M2λ
2

I + 1

+
2µM3λ

I + 1

∑
i∈I

L(i)
(
1 − α(i)

) ∥∥Q(i) (xn) − xn

∥∥ .
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Hence, from (3.6), for all n ≥ n3,

∥xn+1 − x⋆∥2

< ∥xn − x⋆∥2 +
2µM3λ

I + 1

∑
i∈I

L(i)
(
1 − α(i)

) ∥∥Q(i) (xn) − xn

∥∥
− 2µλ

I + 1

M3

∑
i∈I

L(i)
(
1 − α(i)

) ∥∥xn − Q(i) (xn)
∥∥ + µM2λ + ϵ

 +
2µ2M2λ

2

I + 1

= ∥xn − x⋆∥2 − 2µλ

I + 1
ϵ

≤ ∥xn3 − x⋆∥2 − 2µλ

I + 1
ϵ (n + 1 − n3) .

Since the right side of the above inequality approaches minus infinity as n diverges, there
is a contradiction. Thus, (3.5) holds for all k ≥ k0. Therefore, (3.4) and (3.5) lead to the
deduction that, for all ϵ > 0,

lim inf
n→∞

∑
i∈I

⟨
xn − x⋆,∇f (i) (xn)

⟩
≤ M3

∑
i∈I

L(i)
(
1 − α(i)

) √
(I + 1) M1λ

2α(i) (1 − α(i))
+ ϵ

+ µM2λ + 2ϵ.

Since ϵ (> 0) is arbitrary, for all x ∈ X,

lim inf
n→∞

∑
i∈I

⟨
xn − x⋆,∇f (i) (xn)

⟩
≤ M3

∑
i∈I

L(i)

√
(1 − α(i)) (I + 1) M1λ

2α(i)
+ µM2λ.

From f (i)(x⋆) ≥ f (i)(xn) + ⟨x⋆ − xn,∇f (i)(xn)⟩ (n ∈ N, i ∈ I) (by {∇f (i)(xn)} = ∂f (i)(xn)),
f :=

∑
i∈I f (i), and f ⋆ := f(x⋆),

lim inf
n→∞

f (xn) − f ⋆ = lim inf
n→∞

(f (xn) − f ⋆)

≤ lim inf
n→∞

∑
i∈I

⟨
xn − x⋆,∇f (i) (xn)

⟩
≤ µM2λ + M3

∑
i∈I

L(i)

√
(1 − α(i)) (I + 1) M1λ

2α(i)
.

This completes the proof.

3.2. Diminishing step-size rule

The discussion in this subsection is based on the following assumption.
Assumption 3.2. Q(i) : RN → RN (i ∈ I) is fixed-point closed.† User i (i ∈ I) has (λn)n∈N
satisfying

(C2) lim
n→∞

λn = 0 and (C3)
∞∑

n=0

λn = ∞.

†Let g(i) : RN → R (i ∈ I) be convex and nondifferentiable and define Q(i) (i ∈ I) by the subgradient
projection relative to g(i). Then Q(i) is quasi-firmly nonexpansive and fixed-point closed with Fix(Q(i)) =
lev≤0g

(i) (see subsection 2.1).
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An example of (λn)n∈N is λn := 1/(n + 1)a (n ∈ N), where a ∈ (0, 1].
Let us perform a convergence analysis on Algorithm 3.1 under Assumption 3.2.

Theorem 3.2. Suppose that Assumptions 2.1 and 3.2 hold. Then the sequence (xn)n∈N
generated by Algorithm 3.1 converges to x⋆.

Regarding Assumption 3.2 and Theorem 3.2, the following remark can be made.
Remark 3.1. The condition µ ∈ (0, mini∈I 2c(i)/L(i)2) is needed for Id−µλn∇f (i) (i ∈ I) to

be contractive (see Proposition 2.3). Condition (C2) implies that, if µ ≥ mini∈I 2c(i)/L(i)2 ,

there exists m ∈ N such that µλn < mini∈I 2c(i)/L(i)2 for all n ≥ m. Accordingly, for

obtaining a sufficiently large n, µ̄ ∈ (0, mini∈I 2c(i)/L(i)2) and λ̄n ∈ (0, 1) can be chosen with
µλn = µ̄λ̄n. Since (λ̄n = (µ/µ̄)λn)n≥m also satisfies (C2) and (C3), Theorem 3.2 ensures
that Algorithm 3.1 with an initial point xm converges to x⋆. Therefore, the convergence of
Algorithm 3.1 is guaranteed regardless of the choice of µ. This implies that Algorithm 3.1
with µ := 1, i.e., (xn)n∈N generated by

x0 ∈ RN ,

x
(i)
n := Q

(i)
α (xn) − λn∇f (i)

(
Q

(i)
α (xn)

) (
i ∈ I

)
,

xn+1 :=
1

I + 1

∑
i∈I

x(i)
n

converges to x⋆ under the assumptions in Theorem 3.2.

Proof. We distinguish two cases.
Case 1: Suppose that there exists m0 ∈ N such that ∥xn+1 − x⋆∥ ≤ ∥xn − x⋆∥ for all

n ≥ m0. In this case, the existence of limn→∞ ∥xn − x⋆∥ is guaranteed. Since Lemma 3.1(ii)
implies that, for all n ≥ m0,∑

i∈I

2α(i)
(
1 − α(i)

)
I + 1

∥∥xn − Q(i) (xn)
∥∥2 ≤ ∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 + M1λn,

limn→∞(1/(I + 1))
∑

i∈I 2α(i)(1 − α(i))∥xn − Q(i)(xn)∥2 = 0, i.e.,

lim
n→∞

∥∥xn − Q(i) (xn)
∥∥ = 0

(
i ∈ I

)
.

Hence, Lemma 3.1(i) and Proposition 2.5 ensure that

lim inf
n→∞

⟨xn − x⋆,∇f (x⋆)⟩ ≥ 0. (3.7)

Furthermore, from Lemma 3.1(ii), λn(−Mn) ≤ ∥xn−x⋆∥2−∥xn+1−x⋆∥2 (n ∈ N). Summing
up this inequality from n = 0 to n = m (m ∈ N) implies that

∑m
n=0 λn(−Mn) ≤ ∥x0−x⋆∥2−

∥xm+1 − x⋆∥2 ≤ ∥x0 − x⋆∥2 < ∞, so

∞∑
n=0

λn(−Mn) < ∞.

Now, under the assumption that lim infn→∞(−Mn) > 0, m1 ∈ N and γ > 0 can be chosen
such that −Mn ≥ γ for all n ≥ m1. Accordingly, (C3) means that

∞ = γ

∞∑
n=m1

λn ≤
∞∑

n=m1

λn (−Mn) < ∞,
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which is a contradiction. Therefore, lim infn→∞(−Mn) ≤ 0, i.e.,

lim inf
n→∞

∑
i∈I

{⟨
xn − x⋆,∇f (i)

(
Q(i)

α (xn)
)⟩

− µλn

∥∥∇f (i)
(
Q(i)

α (xn)
)∥∥2

}
≤ 0,

which, together with (C2) and Lemma 3.1(i) (the boundedness of (∇f (i)(Q
(i)
α (xn)))n∈N (i ∈

I)), imply that

lim inf
n→∞

∑
i∈I

⟨
xn − x⋆,∇f (i)

(
Q(i)

α (xn)
)⟩

≤ 0. (3.8)

Moreover, the Cauchy-Schwarz inequality and the Lipschitz continuity of ∇f (i) (i ∈ I) mean
that, for all n ≥ m0 and for all i ∈ I,⟨

xn − x⋆,∇f (i) (xn)
⟩

=
⟨
xn − x⋆,∇f (i) (xn) −∇f (i)

(
Q(i)

α (xn)
)⟩

+
⟨
xn − x⋆,∇f (i)

(
Q(i)

α (xn)
)⟩

≤ L(i)M3

∥∥xn − Q(i)
α (xn)

∥∥ +
⟨
xn − x⋆,∇f (i)

(
Q(i)

α (xn)
)⟩

. (3.9)

From limn→∞ ∥xn − Q
(i)
α (xn)∥ = (1 − α(i)) limn→∞ ∥xn − Q(i)(xn)∥ = 0 (i ∈ I) and (3.8),

lim inf
n→∞

⟨xn − x⋆,∇f (xn)⟩ = lim inf
n→∞

∑
i∈I

⟨
xn − x⋆,∇f (i) (xn)

⟩
≤ 0. (3.10)

Since the strong monotonicity of ∇f (i) (i ∈ I) guarantees that, for all n ≥ m0,

⟨xn − x⋆,∇f (x⋆)⟩ ≤ −
∑
i∈I

c(i) ∥xn − x⋆∥2 + ⟨xn − x⋆,∇f (xn)⟩ ,

(3.7) and (3.10) lead to the deduction that

0 ≤ lim inf
n→∞

⟨xn − x⋆,∇f (x⋆)⟩

≤ lim inf
n→∞

−
∑
i∈I

c(i) ∥xn − x⋆∥2 + ⟨xn − x⋆,∇f (xn)⟩


= −

∑
i∈I

c(i) lim
n→∞

∥xn − x⋆∥2 + lim inf
n→∞

⟨xn − x⋆,∇f (xn)⟩

≤ −
∑
i∈I

c(i) lim
n→∞

∥xn − x⋆∥2 ,

i.e., limn→∞ ∥xn − x⋆∥ = 0. This means that (xn)n∈N converges to x⋆.
Case 2: Suppose that there exists (xnj

)j∈N such that ∥xnj
− x⋆∥ < ∥xnj+1 − x⋆∥ for all

j ∈ N. Define Γn := ∥xn−x⋆∥2 (n ∈ N). Proposition 2.6 guarantees the existence of m2 ∈ N
such that Γτ(n) < Γτ(n)+1 for all n ≥ m2, where τ(n) is as in Proposition 2.6. Lemma 3.1(ii)
implies that, for all n ≥ m2,∑

i∈I

2α(i)
(
1 − α(i)

)
I + 1

∥∥xτ(n) − Q(i)
(
xτ(n)

)∥∥2 ≤ Γτ(n) − Γτ(n)+1 + λτ(n)Mτ(n)

< λτ(n)Mτ(n) ≤ M1λτ(n), (3.11)

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



344 H. Iiduka

which, together with (C2), means that

lim
n→∞

(
1

I + 1

) ∑
i∈I

2α(i)
(
1 − α(i)

) ∥∥xτ(n) − Q(i)
(
xτ(n)

)∥∥2
= 0,

i.e.,

lim
n→∞

∥∥xτ(n) − Q(i)
(
xτ(n)

)∥∥ = 0
(
i ∈ I

)
. (3.12)

Hence, from Lemma 3.1(i) and Proposition 2.5, lim infn→∞⟨xτ(n) − x⋆,∇f(x⋆)⟩ ≥ 0, i.e.,

lim sup
n→∞

⟨
x⋆ − xτ(n),∇f (x⋆)

⟩
≤ 0. (3.13)

Moreover, from (3.11), Mτ(n) > 0 (n ≥ m2), which implies that, for all n ≥ m2,∑
i∈I

⟨
xτ(n) − x⋆,∇f (i)

(
Q(i)

α

(
xτ(n)

))⟩
< µM2λτ(n). (3.14)

A discussion similar to the one for obtaining (3.9) implies that, for all n ≥ m2 and for all
i ∈ I, ⟨

xτ(n) − x⋆,∇f (i)
(
xτ(n)

)⟩
≤ L(i)M3

∥∥xτ(n) − Q(i)
α

(
xτ(n)

)∥∥ +
⟨
xτ(n) − x⋆,∇f (i)

(
Q(i)

α

(
xτ(n)

))⟩
.

Summing up the above inequality over all i and (3.14) guarantee that, for all n ≥ m2,⟨
xτ(n) − x⋆,∇f

(
xτ(n)

)⟩
< M3

∑
i∈I

L(i)
(
1 − α(i)

) ∥∥xτ(n) − Q(i)
(
xτ(n)

)∥∥ + µM2λτ(n),

which, together with (3.12) and (C2), implies that

lim sup
n→∞

⟨
xτ(n) − x⋆,∇f

(
xτ(n)

)⟩
≤ 0. (3.15)

Accordingly, the strong monotonicity of ∇f (i) (i ∈ I), (3.13), and (3.15) lead to the deduc-
tion that

0 ≤
∑
i∈I

c(i) lim sup
n→∞

Γτ(n)

≤ lim sup
n→∞

{⟨
xτ(n) − x⋆,∇f

(
xτ(n)

)⟩
+

⟨
x⋆ − xτ(n),∇f (x⋆)

⟩}
≤ lim sup

n→∞

⟨
xτ(n) − x⋆,∇f

(
xτ(n)

)⟩
+ lim sup

n→∞

⟨
x⋆ − xτ(n),∇f (x⋆)

⟩
≤ 0,

i.e., limn→∞ Γτ(n) = 0. Since Proposition 2.6 ensures that 0 ≤ ∥xn − x⋆∥2 =: Γn ≤ Γτ(n)+1

(n ≥ m2), limn→∞ Γn = 0. That is, (xn)n∈N converges to x⋆. This completes the proof.
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3.3. Examples of Algorithm 3.1

Problem 2.1 is first considered for I = ∅, i.e., the problem of finding

{x⋆} = argmin
x∈Fix(Q)

f (x) , (3.16)

where ∇f : RN → RN is c-strongly monotone and L-Lipschitz continuous, and Q : RN → RN

is quasi-firmly nonexpansive with Fix(Q) ̸= ∅.
The following discussion proceeds from Theorems 3.1 and 3.2.

Corollary 3.1. Suppose that µ ∈ (0, 2c/L2), (λn)n∈N ⊂ (0, 1], α ∈ (0, 1), and Qα :=
αId + (1 − α)Q. Let (xn)n∈N be a sequence generated by an arbitrarily chosen initial point
x0 (∈ RN) and

xn+1 := Qα (xn) − µλn∇f (Qα (xn)) (n ∈ N) . (3.17)

Then the following hold:
(i) If (λn)n∈N satisfies (C1),

lim inf
n→∞

∥xn − Q (xn)∥2 ≤ M1λ

2α (1 − α)
,

lim inf
n→∞

f (xn) ≤ f⋆ + µM2λ + M3L

√
(1 − α) M1λ

2α
,

where M1 := supn∈N 2µ{⟨x⋆ − xn,∇f(Qα(xn))⟩ + µλ∥∇f(Qα(xn))∥2} < ∞, M2 :=
supn∈N ∥∇f(Qα(xn))∥2 < ∞, and M3 := supn∈N ∥xn − x⋆∥ < ∞.

(ii) If Q is fixed-point closed and if (λn)n∈N satisfies (C2) and (C3), (xn)n∈N converges to
the unique solution to problem (3.16).
Let us compare the results of Yamada and Ogura [45] with Corollary 3.1. Their theorem

4 guarantees that the algorithm in (3.17) with (C2) and (C3) converges to the solution x⋆

if x ∈ Fix(Q) and µ ∈ (0, 2c/L2) exist such that Q is quasi-shrinking‡ on Bx(ρ(x0)) :=
{x ∈ RN : ∥x−x∥ ≤ ρ(x0)}, where ρ(x0) := max{∥µ∇f(x)∥/τ, ∥x0− x̄∥, maxαn>µ ∥xn −x∥}
and τ := 1 −

√
1 − µ(2c − µL2) ∈ (0, 1]. It would be difficult to check for the existence

of Bx(ρ(x0)) on which Q is quasi-shrinking before executing algorithm (3.17). Meanwhile,
Corollary 3.1(ii) guarantees that algorithm (3.17) does not require checking in advance
whether complicated assumptions, such as the existence of Bx̄(ρ(x0)), are satisfied, and
converges to x⋆ when Q is quasi-firmly nonexpansive and fixed-point closed.

The next case considered is one in which Q(i) (i ∈ I) is the subgradient projection
relative to a convex functional g(i), which is defined for all x ∈ RN as follows (see also
subsection 2.1):

Q(i)
sp (x) :=

x − g(i)(x)∥∥g(i)′(x)
∥∥2 g(i)′(x) if g(i)(x) > 0,

x otherwise,

where g(i)′(x) ∈ ∂g(i)(x) (i ∈ I, x ∈ RN). The mapping Q
(i)
sp (i ∈ I) is quasi-firmly

nonexpansive and fixed-point closed (see subsection 2.1). Problem 2.1 in this case is to
find

{x⋆} = argmin
x∈

T

i∈I lev≤0g(i)

∑
i∈I

f (i) (x) . (3.18)

Therefore, Theorems 3.1 and 3.2 lead to the following.
‡See [45] for the definition of a quasi-shrinking mapping.
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Corollary 3.2. Suppose that µ ∈ (0, mini∈I 2c(i)/L(i)2), (λn)n∈N ⊂ (0, 1], Q
(i)
α := (1/2)(Id +

Q
(i)
sp ) (i ∈ I), and (xn)n∈N is defined by an arbitrary initial point x0 (∈ RN) and, for all

n ∈ N,

x(i)
n := Q(i)

α (xn) − µλn∇f (i)
(
Q(i)

α (xn)
)

(i ∈ I),

xn+1 :=
1

I + 1

∑
i∈I

x(i)
n .

Then the following hold:

(i) If (λn)n∈N satisfies (C1),

lim inf
n→∞

∥∥xn − Q(i)
sp (xn)

∥∥2 ≤ 2 (I + 1) M1λ
(
i ∈ I

)
,

lim inf
n→∞

f (xn) ≤ f ⋆ + µM2λ + M3

∑
i∈I

L(i)

√
(I + 1) M1λ

2
,

where M1 := supn∈N(2µ/(I+1))
∑

i∈I{⟨x⋆−xn,∇f (i)(Q
(i)
α (xn))⟩+µλ∥∇f (i)(Q

(i)
α (xn))∥2}

< ∞, M2 := supn∈N
∑

i∈I ∥∇f (i)(Q
(i)
α (xn))∥2 < ∞, and M3 := supn∈N ∥xn − x⋆∥ < ∞.

(ii) If (λn)n∈N satisfies (C2) and (C3), (xn)n∈N converges to the unique solution to problem
(3.18).

Remark 3.1, Corollary 3.1(ii) and Corollary 3.2(ii) say that the algorithm with µ := 1
in Corollary 3.1 (resp. Corollary 3.2) converges to the solution to problem (3.16) (resp.
problem (3.18)).

4. Application of Algorithm 3.1 to Bandwidth Allocation

The objective of bandwidth allocation [27, 34, 42] is to share the available bandwidth among
traffic sources so as to maximize the overall utility under the capacity constraints. The
utility function of source i (user i) (i ∈ I) is defined for all x ∈ R+ as follows [42, (2.4)]:
given w(i) > 0 and v(i) > 0,§

U (i) (x) :=

w(i) log (x + 1) if v(i) = 1,

w(i) (x + 1)1−v(i)

1 − v(i)
if v(i) ̸= 1.

(4.1)

The values of the parameters w(i) and v(i) are source i’s private information.
The capacity constraint for each link is an inequality constraint in which the sum of the

transmission rates of all sources sharing the link is less than or equal to the capacity of the
link. Hence, the capacity constraint set for each link l (∈ L := {1, 2, . . . , L}) is expressed
as RI

+ ∩ Cl, where

Cl :=

{
x := (x1, x2, . . . , xI) ∈ RI :

∑
i∈I

xiIi,l ≤ cl

}
, (4.2)

§Upf(x) :=
∑

i∈I w(i) log xi is called the weighted proportionally fair function [27, 34, 42]. To enable us to
define the weighted proportionally fair function on R+, we define U (i)(x) := w(i) log(x + 1) (x ∈ R+) when
v(i) := 1. The same discussion as in the case where v(i) = 1 leads to U (i)(x) := w(i)(x + 1)1−v(i)

/(1 − v(i))
(x ∈ R+) when v(i) ̸= 1.
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cl (> 0) stands for the capacity of link l, and Ii,l takes the value 1 if l is the link used by
source i, and 0 otherwise. Let L(i) (i ∈ I) be the set of all links used by source i. When
source i (i ∈ I) knows only the capacity constraints for links used by source i, it has the
constraint set defined by

C(i) := RI
+ ∩

∩
l∈L(i)

Cl. (4.3)

This section discusses a bandwidth allocation problem subject to not only the capacity
constraints but also an operational constraint [22, section 1]. The operator has an operational
policy to make the network more stable and reliable.

For example, when sources exist in the network such that they get a low (resp. high)
degree of satisfaction, the operator attempts to re-allocate bandwidth so as to enable them
to get a high (resp. low) degree of satisfaction. When the available bandwidth is limited in
the network, the operator needs to control the sum of the transmission rates of all sources.
When the network is controlled by using a certain indicator function representing the net-
work’s performance, the operator tries to design the network so as to satisfy a constraint
incorporating the indicator function.

The operational constraint set representing such operational policies can be written as

C(0) :=
{
x ∈ RI : P(x) ≤ p

}
, (4.4)

where P : RI → R is convex and is not always differentiable, and p ∈ R.
The operator can set C(0) = {x ∈ RI : xi0 ≤ p} when it tries to limit the transmission

rate of source i0 and C(0) = {x ∈ RI :
∑

i∈I xi ≤ p} when it tries to limit the transmission
rates of all sources. It can also set C(0) = {x ∈ RI :

∑
i∈I ω(i)P(i)(xi) ≤ p} (ω(i) ≥ 0

(i ∈ I), P(i) : R → R is nondifferentiable) when the network is controlled by P(x) :=∑
i∈I ω(i)P(i)(xi). If the network’s performance increases when source i’s transmission rate

is more than a certain value x0 (> 0), P(i)(x) can be, for example, expressed as 0 (0 ≤
x ≤ x0) or x − x0 (x ≥ x0). Given the network’s performance measure P(x) and its
optimal value P⋆, the operator attempts to allocate bandwidth to all sources so as to satisfy
P(x) = P⋆ as much as possible. When it is sufficient to only satisfy P(x) − P⋆ ≤ ϵ for
some ϵ ∈ R to make the network stable, the operator determines an appropriate ϵ and sets
C(0) := {x ∈ RI : P(x) ≤ P⋆ + ϵ}.

The operator (user 0) can define its utility as a function of the transmission rates allo-
cated to all the sources, i.e.,

U (0) (x1, x2, . . . , xI) . (4.5)

The operator can set U (0) to allocate the bandwidth fairly and effectively (e.g., for all
x := (x1, x2, . . . , xI) ∈ RI , U (0)(x) := (1/I)

∑
i∈I xi).

Therefore, the objective in bandwidth allocation is to solve the following problem:¶

Maximize U (0) (x) +
∑
i∈I

U (i) (xi) subject to x ∈ RI
+ ∩ C(0) ∩

∩
i∈I

C(i), (4.6)

where U (i), C(i) (i ∈ I) (i ∈ I), C(0), and U (0) are defined as in (4.1), (4.3), (4.4), and (4.5).

¶Conventional bandwidth allocation problem is to maximize
∑

i∈I U (i)(xi) subject to x ∈ RI
+ ∩

∩
i∈I C(i)

[42].
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Here, a mapping Q(i) : RI → RI (i ∈ I) is defined by

Q(i)(x) := PRI
+

∏
l∈L(i)

PCl
, (4.7)

where PD stands for the metric projection onto a nonempty, closed convex set D (⊂ RI).
Since RI

+ and Cl (l ∈ L) are half-space, PRI
+

and PCl
can be computed within a finite number

of arithmetic operations [1, p. 406], [4, Subchapter 28.3],∥ which means Q(i) can be easily
calculated. Moreover, from [1, Proposition 2.10, Theorem 4.17, Corollary 4.18], Q(i) (i ∈ I)
in (4.7) satisfies the nonexpansivity condition and the fixed point closedness condition, and

Fix
(
Q(i)

)
= C(i) := RI

+ ∩
∩

l∈L(i)

Cl.

The subgradient projection relative to P(·) − p is defined by

Q(0)(x) :=

x − P(x) − p

∥P ′(x)∥2
P ′(x) if P(x) > p,

x otherwise,
(4.8)

where P ′(x) ∈ ∂P(x) := {z ∈ RI : (P(y) − p) ≥ (P(x) − p) + ⟨y − x, z⟩(y ∈ RI)}. From
subsection 2.1, Q(0) in (4.8) satisfies the quasi-firm nonexpansivity condition, and

Fix
(
Q(0)

)
= C(0) :=

{
x ∈ RI : P(x) ≤ p

}
.

The set C(0) := {x ∈ RI : P(x) ≤ p} with a nonsmooth P can be represented as the fixed
point set of a quasi-nonexpansive mapping, not a nonexpansive mapping [3, Proposition 2.3].
This means that optimization problems with nonsmooth constraints cannot be formulated
as optimization problems with fixed point constraints of nonexpansive mappings.∗∗

The function f (i) := −U (i) (i ∈ I) defined by (4.1) is convex on RI
+, and ∇f (i) (i ∈ I)

is strongly monotone and Lipschitz continuous on a compact, convex set X(i) (⊂ RI
+).

Since source i knows the explicit form of C(i), source i can set X(i) (⊃ Fix(Q(i)) = C(i))
onto which the projection can be easily computed (e.g., X(i) is a closed ball with a large
enough radius or a box constraint set). Assume that the gradient of f (0) := −U (0) satisfies
the strong monotonicity and Lipschitz continuity conditions (e.g., U (0)(x1, x2, . . . , xI) :=
(1/I)

∑
i∈I xi). Problem (4.6) can thus be expressed as Problem 2.1 with f (i) := −U (i)

(i ∈ I) defined by (4.1) and (4.5) and with Q(i) (i ∈ I) defined by (4.7) and (4.8).
Assumption (A2) requires the strong monotonicity and Lipschitz continuity conditions

of ∇f (i) (i ∈ I) on the whole space. However, since the constraint set of Problem 2.1 is
X :=

∩
i∈I Fix(Q(i)), it is sufficient that ∇f (i) (i ∈ I) is strongly monotone and Lipschitz

continuous on X(i) (⊃ Fix(Q(i)) ⊃ X). This means that Q
(i)
α (xn) (i ∈ I, n ∈ N) in Algorithm

3.1 must be is in X(i). Therefore, Algorithm 3.1 for problem (4.6) can be represented as
x0 ∈ RI ,

x
(i)
n := PX(i)

[
Q

(i)
α (xn)

]
− µλn∇f (i)

(
PX(i)

[
Q

(i)
α (xn)

]) (
i ∈ I

)
,

xn+1 :=
1

I + 1

∑
i∈I

x(i)
n .

(4.9)

∥The metric projection onto a half-space H := {x ∈ RI : ⟨a, x⟩ ≤ b}, where a (̸= 0) ∈ RI and b ∈ R, is
expressed as PH(x) := x − [max{0, ⟨a, x⟩ − b}/∥a∥2]a (x ∈ RI).
∗∗Suppose that C is a nonempty, closed convex set of RI , P : RI → R is convex and differentiable, and
∇P : RI → RI is L-Lipschitz continuous. Thus, T := PC(Id − λ∇P) (λ ∈ [0, 2/L]) is nonexpansive and
Fix(T ) = argminx∈C P(x) [17, subsection 2.1, Proposition 2.3].
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Algorithm (4.9) can be used to solve problem (4.6), as indicated by the results in section
3.††

5. Summary and Future Work

This paper proposed the parallel optimization algorithm minimizes the sum of convex func-
tions over the intersection of the fixed point sets of quasi-nonexpansive mappings. An
investigation of the convergence properties for a constant step-size rule and a diminishing
step-size rule showed that, with a small constant step size, the algorithm may give an ap-
proximate solution to the minimization problem and that, with a diminishing sequence, it
converges to the solution. A potential application of the algorithm is to network bandwidth
allocation with operational constraints, while the existing bandwidth allocation algorithms
in [31, section III] and [42, Chapters 2 and 3] can be applied to only conventional bandwidth
allocation problems (without operational constraints).

The numerical experiments and theoretical analyses for bandwidth allocation in [31, 42]
were discussed for networks with single-digit numbers of links and sources. (The networks
they discussed [31, Figure 2] and [42, Figure 2.1] consisted of two links and three sources.)
Future work includes application of the algorithm to specific bandwidth allocation problems
in such networks and numeric evaluation of the convergence and stability of the algorithm.
It also includes numerical comparison of the proposed parallel algorithm with a centralized
algorithm [22] for bandwidth allocation with operational constraints and evaluation of the
performance of the algorithm.

The problem of minimizing the sum of nondifferentiable functions or nonconvex func-
tions over the intersection of the fixed point sets of quasi-nonexpansive mappings includes
important and practical engineering problems. For example, the power control problem is
one of maximizing the sum of differentiable, nonconvex functions over the fixed point sets
of certain nonexpansive mappings [18], and the minimal antenna-subset selection problem
is one of minimizing the sum of nondifferentiable, convex functions over the fixed point
sets of certain quasi-nonexpansive mappings [46]. Therefore, we need to devise distributed
optimization algorithms for nonsmooth convex optimization and for smooth nonconvex op-
timization with fixed point constraints of quasi-nonexpansive mappings.
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