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Abstract This paper discusses a stochastic equilibrium problem for which
the function is in the form of the expectation of nonmonotone bifunctions and
the constraint set is closed and convex. This problem includes various appli-
cations such as stochastic variational inequalities, stochastic Nash equilibrium
problems, and nonconvex stochastic optimization problems. For solving this
stochastic equilibrium problem, we propose an inexact stochastic subgradient
projection method. The proposed method sets a random realization of the
bifunction and then updates its approximation by using both its stochastic
subgradient and the projection onto the constraint set. The main contribu-
tion of this paper is to present a convergence analysis showing that, under
certain assumptions, any accumulation point of the sequence generated by the
proposed method using a constant step size almost surely belongs to the so-
lution set of the stochastic equilibrium problem. A convergence rate analysis
of the method is also provided to illustrate the method’s efficiency. Another
contribution of this paper is to show that a machine learning algorithm based
on the proposed method achieves the expected risk minimization for a class
of least absolute selection and shrinkage operator (lasso) problems in statis-
tical learning with sparsity. Numerical comparisons of the proposed machine
learning algorithm with existing machine learning algorithms for the expected
risk minimization using LIBSVM datasets demonstrate the effectiveness and
superior classification accuracy of the proposed algorithm.

Keywords expected risk minimization · least absolute selection and shrinkage
operator · nonconvex stochastic optimization · nonmonotone bifunction ·

This work was supported by JSPS KAKENHI Grant Number JP18K11184.

H. Iiduka
Department of Computer Science, Meiji University 1-1-1 Higashimita, Tama-ku, Kawasaki-
shi, Kanagawa 214-8571, Japan
E-mail: iiduka@cs.meiji.ac.jp



2 Hideaki Iiduka

stochastic equilibrium problem · stochastic variational inequality · stochastic
subgradient projection method

Mathematics Subject Classification (2000) 65K05 · 65K15 · 90C15 ·
90C26

1 Introduction

Equilibrium problems [8,9,17,36,37] are known as central topics for contin-
uous optimization from the fact that they include such important problems
as complementarity problems [21,22], Nash equilibrium problems [20,46,47],
fixed point problems [29,30,64], and variational inequalities [21,22] (see [14,
25,43,45,67] for mathematical programming with (stochastic) equilibrium con-
straints).

In keeping with the importance of equilibrium problems, many iterative
methods have been proposed for solving them. For example, projected subgra-
dient methods [36] were proposed to solve a deterministic equilibrium problem
with one nonmonotone bifunction over a simple closed convex constraint set.
Proximal point algorithms [6,17,63] solve deterministic equilibrium problems
with monotone bifunctions (see (5) for the definition of a monotone bifunc-
tion). The algorithm in [6] can be applied to an equilibrium problem for a
monotone bifunction over the solution set of an equilibrium problem.

Meanwhile, there are useful methods for various types of stochastic pro-
gramming. The stochastic approximation (SA) methods [10,27,28,54] and
their variations [27,48,49,60,61] can solve convex stochastic optimization prob-
lems. The Douglas-Rachford splitting method in [13] can solve two-stage stochas-
tic variational inequalities, and the stochastic accelerated mirror-prox method
[15] was proposed to solve a class of monotone stochastic variational inequali-
ties. In [42], three methods were presented for computing confidence intervals
for components of the solution to a stochastic variational inequality. The reg-
ularized smoothed SA method was proposed in [70] to solve stochastic vari-
ational inequalities with monotone and non-Lipschitz continuous mappings.
In [35], stochastic extragradient methods were proposed to solve stochastic
variational inequalities with pseudomonotone and Lipschitz continuous map-
pings. In [52,58], best-response schemes were proposed to solve stochastic Nash
equilibrium problems.

The present paper considers a stochastic equilibrium problem for which the
function is in the form of the expectation of nonmonotone continuous bifunc-
tions and the constraint set is a closed convex set onto which the projection
can be efficiently computed (the constraint set is, for example, a closed ball,
an affine subspace, a halfspace, or a hyperslab [4, Chapter 28]). Thanks to the
useful results in [36,37], we can show that the stochastic equilibrium problem
includes practical applications such as nonconvex stochastic optimization prob-
lems, stochastic variational inequalities, stochastic complementarity problems,
and stochastic Nash equilibrium problems. Each random realization of the bi-
function in the equilibrium problem considered here is allowed to be convex in
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the second argument. This implies that stochastic subgradients of the convex
function can be efficiently used to solve the equilibrium problem. Therefore, in
this paper, we propose a stochastic subgradient projection method for solving
the equilibrium problem and perform a convergence analysis of the method.
Through the convergence analysis, we show that, under certain assumptions,
any accumulation point of the sequence generated by the method almost surely
belongs to the solution set of the equilibrium problem. The convergence analy-
sis shows the almost sure convergence of the proposed method to the solution
to the stochastic equilibrium problem with strictly pseudomonotone bifunc-
tions over a bounded closed convex constraint set.

The proposed method is related to the inexact subgradient projection
methods [36] for solving the deterministic equilibrium problem. The meth-
ods in [36] use projection methods for solving convex feasibility problems [3]
and control sequences based on the remotest set control, the approximately
remotest set control, and the most violated constraint control [36, p.304, (a)–
(c)]. These control sequences require us to use inexact solutions of certain opti-
mization problems. The framework of the proposed method is based on the SA
methods [10,27,28,54] using stochastic subgradients to enable us to consider
stochastic programming. Blending a stochastic subgradient update with the
most violated constraint control [36] leads to the proposed inexact stochastic
subgradient method for solving the stochastic equilibrium problem. Therefore,
the proposed method enables the solution of practical stochastic problems such
as nonconvex stochastic optimization problems, stochastic variational inequal-
ities, stochastic complementarity problems, and stochastic Nash equilibrium
problems, which cannot be solved by the deterministic method [36] (see Sub-
section 3.1 for the detailed differences between the deterministic method [36]
and the proposed stochastic method).

When iterative methods with diminishing step sizes are applied to com-
plicated optimization, the step sizes are approximately zero for a number of
iterations, which implies that using diminishing step sizes would not be im-
plementable in practice. Even if the methods with diminishing step sizes were
made to work, we would need to empirically select suitable step sizes to in-
crease the convergence speed of the methods. However, it is too difficult to
select in advance suitable diminishing step sizes that guarantee sufficiently
quick convergence. This is because what step sizes are suitable depends on
various factors, such as the number of iterations, the number of dimensions,
the shapes of objective functions and constraint sets, and the selection of sub-
gradients (see [34] for iterative methods based on line search to resolve the
issue of selecting suitable diminishing step sizes). The advantage of the pro-
posed stochastic subgradient method is that it uses a constant step size rather
than a diminishing step size. This, together with the results of our convergence
analysis, implies that the proposed method can solve the stochastic equilibrium
problem from the viewpoints of both theory and practice. We also determine
the rate of convergence of the proposed method to establish its performance.

The second contribution of this paper is to show that a machine learning
algorithm based on the proposed inexact stochastic subgradient projection
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method can solve the expected risk minimization problems in machine learn-
ing. In this paper, focusing on the case of statistical learning with sparsity,
we apply the proposed machine learning algorithm to the pseudomonotone
stochastic variational inequality in the capped-ℓ1 norm coupled nonconvex
overlapping group least absolute selection and shrinkage operator (lasso) [16,
(25)], [71, C.3.1]. We are able to demonstrate through our convergence analysis
that the proposed machine learning algorithm can solve the pseudomonotone
stochastic variational inequality. We also numerically compare the performance
of the machine learning algorithm based on each of three existing methods,
the SA method [10,27,28,54], the stochastic extragradient method [35, Algo-
rithm 1], and an existing machine learning algorithm [16, Algorithm 2] called
IncrePA-ncvx, with that of the proposed machine learning algorithm for con-
crete classification problems with LIBSVM datasets [12] and show that the
proposed machine learning algorithm has higher classification accuracy than
the machine learning algorithms based on the three existing methods.

The remainder of this paper is organized as follows. Section 2 gives the
mathematical preliminaries and states the main problem with examples. Sec-
tion 3 presents convergence and convergence rate analyses of the proposed
stochastic subgradient projection method under certain assumptions. Section
4 considers concrete classification problems and numerically compares the be-
haviors of the proposed and existing machine learning algorithms. Section 5
concludes the paper with a brief summary and mentions future directions of
research for improving the proposed method.

2 Mathematical preliminaries

2.1 Notation and definitions

Let N be the set of zero and all positive integers. Let RN be an N -dimensional
Euclidean space with inner product ⟨·, ·⟩ and associated norm ∥ ·∥. Let B(r) ⊂
RN denote the closed ball with radius r > 0 centered at the origin. Let P[X]
and E[X] denote respectively the probability and the expectation of a random
variable X. For the random process ξ0, ξ1, . . ., let E[X|ξ[n]] denote the condi-
tional expectation of X given ξ[n] = (ξ0, ξ1, . . . , ξn). Let (xn)n∈N and (yn)n∈N
be positive real sequences. O and o denote Landau’s symbols; i.e., yn = O(xn)
if there exist c > 0 and n0 ∈ N such that yn ≤ cxn for all n ≥ n0, and
yn = o(xn) if, for all ϵ > 0, there exists n0 ∈ N such that yn ≤ ϵxn for all
n ≥ n0.

Given a nonempty closed convex set C ⊂ RN , the metric projection onto
C [4, Subchapter 4.2, Chapter 28], denoted by PC , is defined for all x ∈ RN

by PC(x) ∈ C and ∥x−PC(x)∥ = d(x,C) := infy∈C ∥x− y∥. For example, the
metric projection onto an affine subspace, a half-space, or a hyperslab can be
easily computed within a finite number of arithmetic operations [4, Chapter
28]. The mapping PC satisfies the nonexpansivity condition [4, Proposition
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4.8, (4.8)], i.e., for all x, y ∈ RN ,

∥PC(x)− PC(y)∥ ≤ ∥x− y∥ .

Let S : RN ⇒ RN be a set-valued mapping and let x̄ ∈ RN . S is said
to be continuous [55, Definition 5.4] at x̄ if both lim supx→x̄ S(x) ⊂ S(x̄) and
lim infx→x̄ S(x) ⊃ S(x̄) hold, where lim supx→x̄ S(x) :=

⋃
xn→x̄ lim supn→+∞ S(xn)

and lim infx→x̄ S(x) :=
⋂

xn→x̄ lim infn→+∞ S(xn).

Suppose that f : RN → R is continuous and x̄ ∈ RN satisfies f(x̄) < +∞.
A point v ∈ RN is said to be a regular subgradient [55, Definition 8.3(a)] of f
at x̄ if

v ∈ ∂̂f(x̄) :=
{
v ∈ RN : f(x) ≥ f(x̄) + ⟨x− x̄, v⟩+ o(∥x− x̄∥)

(
x ∈ RN

)}
.

A point v ∈ RN is referred to as a subgradient [55, Definition 8.3(b)] of f at x̄
if

there exist (xn)n∈N ⊂ RN and (vn)n∈N ⊂ ∂̂f(xn)

such that lim
n→+∞

xn = x̄ and lim
n→+∞

vn = v.
(1)

A point v being a subgradient of f at x̄ (defined by (1)) is denoted by

v ∈ ∂f(x̄). (2)

Proposition 8.12 in [55] means that, for any convex function f : RN → R and
for any point x ∈ RN ,

∂f(x̄) =
{
v ∈ RN : f(x) ≥ f(x̄) + ⟨x− x̄, v⟩

(
x ∈ RN

)}
= ∂̂f(x̄).

If f is differentiable at x̄, then ∂̂f(x̄) = {∇f(x̄)} and ∇f(x̄) ∈ ∂f(x̄) [55,
Exercise 8.8(a)], where ∇f is the gradient of f . When f is continuous on
dom(f) := {x ∈ RN : f(x) < +∞}, ∂f : RN ⇒ RN is continuous [55, Exercise
13.29].

A bifunction F : RN×RN → R is said to be pseudomonotone if, for all x, y ∈
RN , F (x, y) ≥ 0 implies F (y, x) ≤ 0. F is said to be strictly pseudomonotone
if, for all x, y ∈ RN with x ̸= y, F (x, y) ≥ 0 implies F (y, x) < 0. A : RN ⇒ RN

is pseudomonotone [21, Definition 2.3.1], [38, Definition 3.2], [56, Definition
3.4] if, for all x, y ∈ RN , all u ∈ A(x), and all v ∈ A(y), ⟨y − x, u⟩ ≥ 0 implies
⟨x − y, v⟩ ≤ 0. A : RN ⇒ RN is strictly pseudomonotone [23, Definition 4.2],
[69, Definition 3.1] if, for all x, y ∈ RN with x ̸= y, all u ∈ A(x), and all
v ∈ A(y), ⟨y − x, u⟩ ≥ 0 implies ⟨x − y, v⟩ < 0. Suppose that A : RN ⇒ RN

is pseudomonotone (resp. strictly pseudomonotone) and F : RN × RN → R is
defined for all (x, y) ∈ RN × RN by

F (x, y) := max
a(x)∈A(x)

⟨y − x, a(x)⟩ .

Then F is pseudomonotone (resp. strictly pseudomonotone).
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A functional f : RN → R is said to be pseudoconvex on a convex set C ⊂ RN

[51, NR 4.2-4] if, for all x, y ∈ C with f(x) > f(y), there exist α > 0 and
τ ∈ (0, 1] such that, for all t ∈ [0, τ ],

f ((1− t)x+ ty) ≤ f(x)− tα. (3)

f is called a strictly pseudoconvex functional [51, NR 4.2-4] if (3) holds when-
ever f(x) ≥ f(y) with x ̸= y. Any convex functional is pseudoconvex. Let
f : RN → R be locally Lipschitz continuous [55, p.350] on a nonempty, open,
convex set C ⊂ RN . Theorem 4.1 in [23] and Subchapter 8.J in [55] ensure that
f is strictly pseudoconvex on C if and only if ∂f is strictly pseudomonotone
on C, where ∂f is defined by (1) and (2).

2.2 Stochastic equilibrium problem with examples

The constraint set and bifunction considered in this paper satisfy the following.

Assumption 2.1

(A1) C ⊂ RN is a nonempty closed convex set onto which the metric projection
can be efficiently computed.

(A2) Let Ξ ⊂ RM and let F : RN ×RN ×Ξ → R satisfy the following conditions:
(i) F ((x, x); ξ) = 0 for all x ∈ RN and all ξ ∈ Ξ;
(ii) F ((·, y); ξ) is continuous for all y ∈ RN and all ξ ∈ Ξ;
(iii) F ((x, ·); ξ) is convex for all x ∈ RN and all ξ ∈ Ξ.

(A3) f : RN × RN → R is a bifunction defined for all (x, y) ∈ RN × RN by

f(x, y) := E [F ((x, y); ξ)] ,

where ξ is a random vector whose probability distribution P is supported
on Ξ and E[F ((x, y); ξ)] ∈ R is well defined for all x, y ∈ RN .

Assumption (A1) is satisfied when C ⊂ RN is, for example, a closed ball, an
affine subspace, a half-space, or a hyperslab onto which the metric projection
can be computed within a finite number of arithmetic operations [4, Chapter
28]. Assumptions (A2) and (A3) indicate that f is the expectation of the func-
tion F ((·, ·); ξ) satisfying standard conditions (i)–(iii) [36, p.301] (see, e.g., [36,
Examples (a)–(f)] for examples of F ((·, ·); ξ) satisfying (i)–(iii)). Subsection 4.2
provides an example of F ((·, ·); ξ) satisfying (i)–(iii) and E[F ((x, y); ξ)] ∈ R
((x, y) ∈ RN × RN ) is well defined.

The main objective of this paper is to solve the following stochastic equi-
librium problem.1

Problem 2.1 Under Assumption 2.1, find

x⋆ ∈ EP(C, f) := {x⋆ ∈ C : f(x⋆, y) ≥ 0 for all y ∈ C} .
1 The existence of a solution to Problem 2.1 is guaranteed under the assumptions in

Theorem 3.1 (see the proof of Theorem 3.1 for details).
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Problem 2.1 when F does not depend on ξ, i.e., the deterministic equilibrium
problem of finding

x⋆ ∈ EP(C,F ) := {x⋆ ∈ C : F (x⋆, y) ≥ 0 for all y ∈ C} , (4)

was examined in [6,9,36,37,63]. The proximal point algorithm [63] was pre-
sented for solving problem (4) when F is monotone [63, (A1)], i.e., F is defined
for all x, y ∈ RN by

F (x, y) + F (y, x) ≤ 0. (5)

The proximal point algorithm [6, Section 6] was proposed for solving problem
(4) when C is replaced with EP(D, F̂ ), where D is closed and convex, and
F and F̂ are monotone. Meanwhile, problem (4) for the case where F is not
always monotone was examined in [9,36,37]. Examples (a)–(f) in [36] indicate
that problem (4) with a nonmonotone bifunction includes important nonlin-
ear problems, such as complementarity problems, nonmonotone variational
inequalities, fixed point problems, and vector minimization problems (see [37]
for examples of problem (4) on a real Hausdorff topological vector space).
The present paper clarifies how to consider stochastic equilibrium problem 2.1
when F ((·, ·); ξ) (ξ ∈ Ξ) is not always monotone.

A particularly interesting application of Problem 2.1 is the case that, for
x, y ∈ RN and almost every ξ ∈ Ξ,

F ((x, y); ξ) := max
a(x;ξ)∈A(x;ξ)

⟨y − x, a(x; ξ)⟩ , (6)

where A : RN ×Ξ ⇒ RN is continuous in the first argument. Problem 2.1 with
F defined by (6) is equivalent to finding a solution to the stochastic variational
inequality [13,40,42,53] (see also [11, Subchapter 8.3], [21, Chapter 1], [39,
Chapters I and II]) for A over C, i.e., to find

x⋆ ∈ C and u⋆ ∈ E [A(x⋆; ξ)] such that ⟨y − x⋆, u⋆⟩ ≥ 0 for all y ∈ C. (7)

We will show that any solution of Problem 2.1 with F defined by (6) satisfies
(7). F defined by (6) satisfies Assumption (A2). Let x⋆ ∈ C be a solution of
Problem 2.1 with F defined by (6) and let y ∈ C be fixed arbitrarily. From
the definition of (6), there exists u(x⋆; ξ) ∈ A(x⋆; ξ) such that

E [⟨y − x⋆, u(x⋆; ξ)⟩] = E
[

max
a(x⋆;ξ)∈A(x⋆;ξ)

⟨y − x⋆, a(x⋆; ξ)⟩
]
≥ 0,

which implies that there exists u⋆ := E[u(x⋆; ξ)] such that

⟨y − x⋆, u⋆⟩ ≥ 0, i.e., x⋆ is a solution of (7).

Problem (7) whenA(·; ξ) is the subdifferential of a continuous function θξ : RN →
R (ξ ∈ Ξ)2 is to find

x⋆ ∈ C and u⋆ ∈ E[∂θξ(x⋆)] such that ⟨y − x⋆, u⋆⟩ ≥ 0 for all y ∈ C. (8)

2 In this paper, we sometimes write θξ(·) for a functional θ(·; ξ) : RN → R (ξ ∈ Ξ).
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Here, let us consider the case where θξ is differentiable for almost every
ξ ∈ Ξ. Under the standard assumptions [59, p.423, (A1)–(A4)], we have
∇E[θξ(x)] = E[∇xθξ(x)] for all x ∈ RN [59, Theorem 7.49]. Hence, the point
x⋆ satisfying (8) is a stationary point of the constrained nonconvex optimiza-
tion problem of minimizing E[θξ(·)] over C. Reference [2] presented proximal
alternating and projection methods for deterministic nonconvex optimization
problems and applied them to a nonconvex optimization problem of minimiz-
ing a weighted ℓ1 norm over a convex constraint set [2, Problem (33)]. Section
4 applies the proposed method to the stochastic variational inequality (8) in
machine learning [16, (25)], [71, C.3.1] and provides the performances of the
proposed method for the concrete classification problems.

Another interesting application of Problem 2.1 is a stochastic Nash equi-
librium problem [20,46,47,52] in noncooperative games. Let I := {1, 2, . . . , I}
be the set of players, let Ci ⊂ Rni (i ∈ I) be the strategy set of player i,
which is nonempty, closed, and convex, and let C :=

∏
i∈I Ci. Suppose that

the loss function of player i, denoted by fi :
∏

i∈I Rni × Ξ → R, is continu-
ous on

∏
i∈I Rni and convex on Rni (i ∈ I) for almost every ξ ∈ Ξ. Then

the stochastic Nash equilibrium problem in noncooperative games is stated as
follows:

find x⋆ ∈ C such that, for each i ∈ I,
E [fi(x

⋆; ξ)] ≤ E
[
fi
((
yi, x

⋆
−i

)
; ξ
)]

for all yi ∈ Ci,
(9)

where (yi, x−i) := (x1, x2, . . . , xi−1, yi, xi+1, . . . , xI) for x := (x1, x2, . . . , xI),
y := (y1, y2, . . . , yI) ∈

∏
i∈I Rni . Here, we define F :

∏
i∈I Rni ×

∏
i∈I Rni ×

Ξ → R for x := (x1, x2, . . . , xI), y := (y1, y2, . . . , yI) ∈
∏

i∈I Rni and almost
every ξ ∈ Ξ by

F ((x, y); ξ) :=
∑
i∈I

[fi ((yi, x−i) ; ξ)− fi(x; ξ)] . (10)

An observation stated in Example (d) of [36] implies that Problem 2.1 with F
defined by (10) is equivalent to the Nash equilibrium problem (9).

3 Inexact Stochastic Subgradient Projection Method

3.1 Algorithm

The following conditions are needed in the presentation of the proposed method.

Assumption 3.1

(C1) There is an independent identically distributed sample ξ0, ξ1, . . . of realiza-
tions of the random vector ξ.

(C2) There is an oracle which, for a given input point ((x, y), ξ) ∈ RN ×RN ×Ξ,
returns a stochastic subgradient Gx(y; ξ) ∈ ∂F ((x, ·); ξ)(y).
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Conditions (C1) and (C2) are based on the basic assumptions for convex
stochastic optimization [49, Assumptions (A1) and (A2)], [66, Assumption
8]. The history of the process ξ0, ξ1, . . . up to time n is denoted by ξ[n] =
(ξ0, ξ1, . . . , ξn). Unless stated otherwise, all relations between random variables
are supported to hold almost surely.

Algorithm 1 is the inexact stochastic subgradient projection method for
solving Problem 2.1 under Assumption 3.1.

Algorithm 1 Inexact stochastic subgradient projection method for Problem
2.1
Require: n ∈ N, (λn)n∈N ⊂ (0, 2), (ϵn)n∈N ⊂ [0,+∞)
1: n← 0, w0 ∈ C, ρ0 := ∥w0∥
2: repeat
3: Kn := C ∩B(ρn + 1)
4: vn ∈ Kn such that F ((vn, wn); ξn) ≥ 0 and
5: max

v∈Kn

F ((v, wn); ξn) ≤ F ((vn, wn); ξn) + ϵn (inexact step)

6: if Gvn (wn; ξn) ̸= 0 then

7: wn+1 := PC

[
wn − λn

F ((vn, wn); ξn)

∥Gvn (wn; ξn)∥2
Gvn (wn; ξn)

]
8: else
9: wn+1 := wn

10: end if
11: ρn+1 := max {ρn, ∥wn+1∥}
12: n← n+ 1
13: until stopping condition is satisfied

The way in which the point vn satisfying step 5 in Algorithm 1 is chosen
is based on the most violated constraint control [36, (4), (20)] under problem
(4): given wn ∈ RN , vn ∈ C is chosen so that F (vn, wn) ≥ 0 and

max
v∈C∩B(ρn+1)

F (v, wn) ≤ F (vn, wn) + ϵn. (11)

Step 5 in Algorithm 1 can be obtained by replacing F in (11) with a randomly
chosen bifunction F ((·, ·); ξn) at each iteration n. Assumption (A2)(i) and the
condition wn ∈ Kn (from steps 3, 7, 9, and 11) imply that vn defined by
step 5 satisfies F ((vn, wn); ξn) ≥ 0 (for details, see the proof of Lemma 3.1).
Since there are useful iterative methods (see, e.g., [1,2,24,26,32,33,41]) for
constrained nonconvex optimization, these can be used to compute maximizers
of a nonconcave function F ((·, wn); ξn) (see Assumption (A2)(ii)) over the
intersection of simple closed convex sets C and B(ρn+1), i.e., we can compute
vn ∈ Kn satisfying step 5. See Subsection 4.3 for the computation method of
vn used in the experiments called Sequential Least SQuares Programming
(SLSQP) [41].

For problem (4), the condition 0 ∈ ∂F (vn, ·)(wn) guarantees that 0 ≤
F (vn, wn) ≤ F (vn, y) (y ∈ C), which implies that vn ∈ EP(C,F ). Accordingly,
a stopping condition of algorithms for solving problem (4) is 0 ∈ ∂F (vn, ·)(wn)



10 Hideaki Iiduka

[36, (c’), (c”)]. For such a stopping condition, the following subgradient projec-
tion method for problem (4) was presented in [36, (21), (22)]: given wn ∈ RN

and vn ∈ RN with (11), compute gn ∈ ∂F (vn, ·)(wn). If gn ̸= 0, then compute
wn+1 by

zn := wn − λn
F (vn, wn)

∥gn∥2
gn,

wn+1 := zn + λn (PC(zn)− zn) ,

(12)

where (λn)n∈N ⊂ [α, 1] ⊂ (0, 1] for some α > 0. In contrast, the condition
Gvn(wn; ξn) = 0 cannot be used as a stopping condition for Algorithm 1 since
Problem 2.1 is a stochastic equilibrium problem for f(x, y) := E[F ((x, y); ξ)].
Hence, if Gvn(wn; ξn) = 0, Algorithm 1 uses step 9. When Gvn(wn; ξn) ̸= 0,
Algorithm 1 uses step 7. Step 11 is needed to show wn ∈ Kn (n ∈ N) and the
convergence of (wn)n∈N generated by Algorithm 1 to a solution to Problem
2.1 (see the proofs of Lemma 3.1 and Theorem 3.1 for details of using step
11). The stopping condition in step 13 is, for example, n equals some adequate
number.

We rewrite step 7 in Algorithm 1 by using the stochastic subgradient
Gvn(wn; ξn) of a convex functional F ((vn, ·); ξn) : RN → R at wn ∈ C,

wn+1 := PC

[
wn − λn

F ((vn, wn); ξn)

∥Gvn(wn; ξn)∥2
Gvn(wn; ξn)

]
.

This step is based on (12) and the following SA method [10,27,28,54] for
minimizing Θ := E[θξ] for a convex functional θξ : RN → R (ξ ∈ Ξ) over a
closed convex set C ⊂ RN : given w0 ∈ RN and (αn)n∈N ⊂ (0,+∞),

wn+1 := PC [wn − αnG(wn, ξn)] (n ∈ N), (13)

where there is an oracle which, for a given (x, ξ) ∈ RN×Ξ, returns a stochastic
subgradient G(x, ξ) such that E[G(x, ξ)] ∈ ∂Θ(x). Let (νt)

n
t=1 ⊂ [0,+∞) satisfy∑n

t=1 νt = 1 and let us define

w̃n
i :=

n∑
t=i

νtwt, (14)

where i ≤ n and wt (t = 1, 2, . . . , n) is defined as in (13). If αn is constant, then
the result in [49, (2.21)] implies that the sequence generated by (14) satisfies

E[Θ(w̃n
1 )−Θ⋆] = O

(
1√
n

)
, (15)

where Θ⋆ denotes the optimal value of the minimization problem for Θ := E[θξ]
over C. If αn is a diminishing step size such that αn = c/

√
n, where c > 0,

then the results in [49, (2.26), (2.27)] imply that, for i ≤ n,

E[Θ(w̃n
i )−Θ⋆] = O

(
1√
n

)
. (16)
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The next section provides a convergence analysis showing that, under certain
assumptions, any accumulation point of the sequence (wn)n∈N generated by
Algorithm 1 with a constant step size almost surely belongs to EP(C, f) and a
convergence rate analysis showing that, under certain assumptions, Algorithm
1 achieves a convergence rate of O(1/

√
n).

3.2 Convergence analysis of Algorithm 1

Let us first prove the following lemma.

Lemma 3.1 Under Assumptions 2.1 and 3.1, Algorithm 1 is well defined.

Proof From w0 ∈ C and ρ0 := ∥w0∥, w0 ∈ K0 := C ∩ B(ρ0 + 1) holds.
Assume that almost surely wn ∈ Kn for some n ∈ N and define ρn :=
max{ρn−1, ∥wn∥}. From the closedness of C (see Assumption (A1)) and the
boundedness and closedness of B(ρn + 1), Kn is compact. Accordingly, As-
sumption (A2)(ii) ensures that there exists v̄n ∈ Kn such that almost surely

F ((v̄n, wn); ξn) = max
v∈Kn

F ((v, wn); ξn).

Assumption (A2)(i) and the condition wn ∈ Kn imply that

F ((v̄n, wn); ξn) ≥ F ((wn, wn); ξn) = 0.

Therefore, there exists vn ∈ Kn satisfying steps 4 and 5 in Algorithm 1. Fur-
thermore, Assumptions (C2) and (A2)(iii) imply the existence of Gvn(wn; ξn) ∈
∂F ((vn, ·); ξn)(wn). Hence, wn+1 ∈ C can be defined by step 7 or step 9 in Al-
gorithm 1. If we define ρn+1 := max{ρn, ∥wn+1∥} andKn+1 := C∩B(ρn+1+1),
then wn+1 ∈ Kn+1 almost surely. This implies Algorithm 1 is well defined. ⊓⊔

Suppose that ((wn, vn); ξn)n∈N is the sequence generated by Algorithm 1.
Here, let us define L(vn; ξn) ⊂ C for n ∈ N by

L(vn; ξn) := {u ∈ C : F ((vn, u); ξn) ≤ 0 almost surely} . (17)

The proof of [36, Corollary 2.4] ensures that the nonempty condition of
⋂+∞

n=0 L(vn; ξn)
is satisfied if (vn)n∈N ⊂ RN is almost surely bounded3 and if F ((·, ·); ξ) is pseu-
domonotone for almost every ξ ∈ Ξ; i.e., for all x, y ∈ RN ,

F ((x, y); ξ) ≥ 0 implies F ((y, x); ξ) ≤ 0. (18)

Suppose that A(·; ξ) : RN ⇒ RN is pseudomonotone for almost every ξ ∈ Ξ,
i.e., for all x, y ∈ RN , all a(x; ξ) ∈ A(x; ξ), and all a(y; ξ) ∈ A(y; ξ),

⟨y − x, a(x; ξ)⟩ ≥ 0 implies ⟨x− y, a(y; ξ)⟩ ≤ 0.

3 The sequence (vn)n∈N ⊂ RN is said to be almost surely bounded if sup{∥vn∥ : n ∈ N} <
+∞ holds almost surely [10, (2.1.4)].
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Then, F ((·, ·), ξ) (ξ ∈ Ξ) defined by (6) obviously satisfies the pseudomono-
tonicity condition (18). Subchapter 2.3 in [21] describes the detailed properties
in variational inequalities for continuous pseudomonotone operators.

Here, let us provide the relationship between the nonempty condition of⋂+∞
n=0 L(vn; ξn) for F ((·, ·), ξ) (ξ ∈ Ξ) defined by (6) and the Minty variational

inequality (see, e.g., [18] and [19, Definition 2.5]) to find

u ∈ C such that ⟨u− v, a(v; ξ)⟩ ≤ 0 for all v ∈ C and all a(v; ξ) ∈ A(v; ξ).
(19)

Let u ∈ C satisfy (19). Then, for all n ∈ N,

F ((vn, u); ξn) = max
a(vn;ξn)∈A(vn;ξn)

⟨u− vn, a(vn; ξn)⟩ ≤ 0,

which implies that u ∈
⋂+∞

n=0 L(vn; ξn). Hence, the relationship between the

solution set S of the Minty variational inequality (19) and
⋂+∞

n=0 L(vn; ξn) is

S ⊂
+∞⋂
n=0

L(vn; ξn). (20)

Therefore, we can see that, if S is nonempty, then the nonempty condition of⋂+∞
n=0 L(vn; ξn) is satisfied.
The following assumption is needed to analyze the convergence of Algo-

rithm 1.

Assumption 3.2

(A4) There exists a positive real number M such that, for all n ∈ N, ∥Gvn(wn; ξn)∥ ≤
M almost surely;

(A5) (λn)n∈N ⊂ [a, b], where a, b ∈ R with 0 < a ≤ b < 2.

Assumptions (C2) and (A2)(iii) ensure the existence of the sequence (Gvn(wn; ξn))n∈N
generated by Algorithm 1 (see also the proof of Lemma 3.1). Assumption (A4)
is the stochastic subgradient boundedness (see, e.g., [60, Assumption 3], [61,
Lemma 4.1], and [68, Assumption 1(c)]). The discussion in [36, Assumption
(A), Proposition 4.3] shows that, if F : RN ×RN ×Ξ → R satisfying Assump-
tion (A2) is restricted on C × C × Ξ, where C is a closed convex set defined
as in Assumption (A1), then Assumption (A4) holds. Assumption (A5) allows
us to use a constant step size λn := λ ∈ (0, 2).

The following lemma provides the basic properties of Algorithm 1.

Lemma 3.2 Suppose that Assumptions 2.1, 3.1, and 3.2 hold. Let (wn)n∈N
and (vn)n∈N be the sequences generated by Algorithm 1 and suppose that L(vn; ξn)
is defined for n ∈ N by (17). Then the following hold:

(i) For all n ∈ N and all u ∈
⋂+∞

n=0 L(vn; ξn), almost surely

∥wn+1 − u∥2 ≤ ∥wn − u∥2 − a(2− b)

M2
F ((vn, wn); ξn)

2,

where a, b ∈ (0, 2) and M > 0 are defined as in Assumption 3.2.
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(ii) For all n ∈ N and all u ∈
⋂+∞

n=0 L(vn; ξn), (∥wn − u∥)n∈N converges almost
surely.

(iii) If
⋂+∞

n=0 L(vn; ξn) is nonempty, then (wn)n∈N and (vn)n∈N are almost surely
bounded. Moreover, if (ϵn)n∈N ⊂ [0,+∞) is a sequence converging to zero,
then lim supn→+∞ E[f(v, wn)] ≤ 0 for all v ∈ Ĉ, where Ĉ ⊂ RN is a closed
convex set satisfying that there exists n0 ∈ N such that, for all n ≥ n0,
Ĉ ⊂ Kn.

Proof (i) Choose n ∈ N arbitrarily and let u ∈
⋂+∞

n=0 L(vn; ξn). In the case
where Gvn(wn; ξn) ̸= 0, step 7 in Algorithm 1 and the nonexpansivity condition
of PC with u = PC(u) ensure that

∥wn+1 − u∥2 =

∥∥∥∥∥PC

[
wn − λn

F ((vn, wn); ξn)

∥Gvn(wn; ξn)∥2
Gvn(wn; ξn)

]
− PC(u)

∥∥∥∥∥
2

≤

∥∥∥∥∥(wn − u)− λn
F ((vn, wn); ξn)

∥Gvn(wn; ξn)∥2
Gvn(wn; ξn)

∥∥∥∥∥
2

,

(21)

which, together with ∥x − y∥2 = ∥x∥2 − 2⟨x, y⟩ + ∥y∥2 (x, y ∈ RN ), implies
that

∥wn+1 − u∥2 ≤ ∥wn − u∥2 − 2λn
F ((vn, wn); ξn)

∥Gvn(wn; ξn)∥2
⟨wn − u,Gvn(wn; ξn)⟩

+ λ2
n

F ((vn, wn); ξn)
2

∥Gvn(wn; ξn)∥2
.

Assumption (A2)(iii), u ∈ L(vn; ξn), and Gvn(wn; ξn) ∈ ∂F ((vn, ·); ξn)(wn)
imply that almost surely

0 ≥ F ((vn, u); ξn) ≥ F ((vn, wn); ξn) + ⟨u− wn,Gvn(wn; ξn)⟩ . (22)

Accordingly, from F ((vn, wn); ξn) ≥ 0 and Assumptions (A4) and (A5), almost
surely

∥wn+1 − u∥2 ≤ ∥wn − u∥2 − 2λn
F ((vn, wn); ξn)

2

∥Gvn(wn; ξn)∥2
+ λ2

n

F ((vn, wn); ξn)
2

∥Gvn(wn; ξn)∥2

≤ ∥wn − u∥2 − a(2− b)
F ((vn, wn); ξn)

2

∥Gvn(wn; ξn)∥2

≤ ∥wn − u∥2 − a(2− b)

M2
F ((vn, wn); ξn)

2. (23)

In the case where Gvn(wn; ξn) = 0, (22) and the condition F ((vn, wn); ξn) ≥ 0
guarantee that almost surely F ((vn, wn); ξn) = 0. Since step 9 in Algorithm 1
implies that almost surely ∥wn+1 − u∥2 = ∥wn − u∥2, (23) holds.
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(ii) Taking the expectation in (23) conditioned on ξ[n] guarantees that, for

all n ∈ N and all u ∈
⋂+∞

n=0 L(vn; ξn),

E
[
∥wn+1 − u∥2

∣∣∣ξ[n]] ≤ ∥wn − u∥2 − a(2− b)

M2
E
[
F ((vn, wn); ξn)

2
∣∣ξ[n]]

≤ ∥wn − u∥2 − a(2− b)

M2
E
[
F ((vn, wn); ξn)

∣∣ξ[n]]2 , (24)

where the second inequality comes from Jensen’s inequality. The supermartin-
gale convergence theorem [7, Proposition 8.2.10] thus ensures that (∥wn −
u∥)n∈N converges almost surely.

(iii) Choose an arbitrary u ∈
⋂+∞

n=0 L(vn; ξn), which is assumed to be
nonempty. Lemma 3.2(ii) implies the existence of limn→+∞ ∥wn − u∥, which
in turn implies that there exists Ξ̂ ⊂ Ξ with P[Ξ̂] = 1 such that, for all ξ ∈ Ξ̂,
limn→+∞ ∥wn(ξ)−u∥ < +∞ holds. This implies that there exists M1 ∈ R such
that ∥wn(ξ)∥ ≤ M1 for all n ∈ N and almost every ξ ∈ Ξ̂. Hence, (wn)n∈N
satisfies that almost surely ∥wn∥ ≤ M1 for all n ∈ N. Step 11 thus implies that
almost surely ρn = max{∥w1∥, ∥w2∥, . . . , ∥wn∥} ≤ M1 for all n ∈ N. Hence,
vn ∈ Kn ⊂ B(ρn + 1) ⊂ B(M1 + 1), i.e., (vn)n∈N is almost surely bounded.

Taking total expectation in (24), together with Jensen’s inequality, implies
that, for all n ∈ N and all u ∈

⋂+∞
n=0 L(vn; ξn),

E
[
∥wn+1 − u∥2

]
≤ E

[
∥wn − u∥2

]
− a(2− b)

M2
E
[
E
[
F ((vn, wn); ξn)

∣∣ξ[n]]]2 .
Accordingly, summing the above inequality from n = 0 to n = m ∈ N guaran-
tees that, for all u ∈

⋂+∞
n=0 L(vn; ξn),

a(2− b)

M2

m∑
n=0

E
[
E
[
F ((vn, wn); ξn)

∣∣ξ[n]]]2 ≤ E
[
∥w0 − u∥2

]
< +∞, (25)

which implies that
∑+∞

n=0 E[E[F ((vn, wn); ξn)|ξ[n]]]2 < +∞, and hence,

lim
n→+∞

E
[
E
[
F ((vn, wn); ξn)

∣∣ξ[n]]] = 0. (26)

The definition of ρn (step 11 in Algorithm 1) ensures that ρn = max{∥w1∥, ∥w2∥, . . . , ∥wn∥},
which, together with the almost sure boundedness of (wn)n∈N, implies that
(ρn)n∈N is almost surely bounded. Defining ρ⋆ := supn∈N ρn < +∞, the
monotone increasing condition of (ρn)n∈N implies that, for all δ ∈ (0, 1),
there exists n0 ∈ N such that ρn ≥ ρ⋆ − δ for all n ≥ n0. Accordingly,
C ∩ B(ρ⋆ + 1 − δ) ⊂ Kn := C ∩ B(ρn + 1) for all n ≥ n0 almost surely. Step
5 in Algorithm 1 ensures that, for all n ≥ n0 and all v ∈ C ∩ B(ρ⋆ + 1 − δ),
almost surely

F ((v, wn); ξn) ≤ F ((vn, wn); ξn) + ϵn.

Hence, we have that, for all n ≥ n0 and all v ∈ C ∩B(ρ⋆ + 1− δ),

E
[
E
[
F ((v, wn); ξn)

∣∣ξ[n]]] ≤ E
[
E
[
F ((vn, wn); ξn)

∣∣ξ[n]]]+ ϵn.
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The definition of f with Assumption (A3) and the condition wn = wn(ξ[n−1])
guarantee that, for all n ≥ n0 and all v ∈ C ∩B(ρ⋆ + 1− δ),

E[f(v, wn)] ≤ E
[
E
[
F ((vn, wn); ξn)

∣∣ξ[n]]]+ ϵn. (27)

Accordingly, (26) and limn→+∞ ϵn = 0 imply that, for all v ∈ C∩B(ρ⋆+1−δ),

lim sup
n→+∞

E[f(v, wn)] ≤ lim
n→+∞

E
[
E
[
F ((vn, wn); ξn)

∣∣ξ[n]]]+ lim
n→+∞

ϵn ≤ 0. (28)

This completes the proof. ⊓⊔

The following theorem establishes the almost sure convergence of Algo-
rithm 1.

Theorem 3.1 Suppose that (wn)n∈N and (vn)n∈N are the sequences gener-
ated by Algorithm 1 under Assumptions 2.1, 3.1, and 3.2 and that (ϵn)n∈N ⊂
[0,+∞) is a sequence converging to zero. Then the following hold:

(i) If
⋂+∞

n=0 L(vn; ξn) is nonempty, then any accumulation point of (wn)n∈N
almost surely belongs to EP(C, f).

(ii) If C ⊂ RN is bounded and F ((·, ·); ξ) is pseudomonotone for almost every
ξ ∈ Ξ, then any accumulation point of (wn)n∈N almost surely belongs to
EP(C, f).

(iii) If C ⊂ RN is bounded and F ((·, ·); ξ) is strictly pseudomonotone for almost
every ξ ∈ Ξ, then (wn)n∈N converges almost surely to the unique point in
EP(C, f).

Proof (i) Let A(wn)n∈N be the set of accumulation points of (wn)n∈N. The
almost sure boundedness of (wn)n∈N implies that A(wn)n∈N ̸= ∅. We shall
prove that A(wn)n∈N ⊂ EP(C, f) almost surely. The closedness of C and
(wn)n∈N ⊂ C ensure that any accumulation point x⋆ of (wn)n∈N is in C
almost surely. The proof of Lemma 3.2(iii) ensures that there exists n0 ∈ N
such that, for all n ≥ n0, ∥wn∥ ≤ ρ⋆ < ρ⋆ + 1 − δ almost surely. Since there
exists (wnk

)k∈N which converges almost surely to x⋆, the continuity of ∥ · ∥
guarantees that

∥x⋆∥ ≤ lim inf
k→+∞

∥wnk
∥ ≤ ρ⋆ + 1− δ; i.e., x⋆ ∈ C ∩B (ρ⋆ + 1− δ) .

Since Assumption (A2)(iii) implies that F ((v, ·); ξ) is continuous for all v ∈ C
and all ξ ∈ Ξ, (28) ensures that, for all v ∈ C ∩B(ρ⋆ + 1− δ),

f(v, x⋆) ≤ lim inf
k→+∞

E [f(v, wnk
)] ≤ lim sup

k→+∞
E [f(v, wnk

)]

≤ lim sup
n→+∞

E [f(v, wn)] ≤ 0.
(29)

Let us prove that f(x⋆, y) ≥ 0 for all y ∈ C ∩ B(ρ⋆ + 1 − δ). Fix y ∈ C ∩
B(ρ⋆ + 1 − δ) arbitrarily and define wt := ty + (1 − t)x⋆ for t ∈ (0, 1). From
x⋆ ∈ C ∩ B(ρ⋆ + 1 − δ) and the convexity of C (see Assumption (A1)), wt ∈
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C∩B(ρ⋆+1−δ) holds. Accordingly, f(wt, x
⋆) ≤ 0 for all t ∈ (0, 1). Assumptions

(A2)(i) and (iii) thus imply that, for all n ∈ N and all t ∈ (0, 1), almost surely

0 = F ((wt, wt); ξn) ≤ tF ((wt, y); ξn) + (1− t)F ((wt, x
⋆); ξn),

which implies that, for all t ∈ (0, 1),

0 ≤ tf(wt, y) + (1− t)f(wt, x
⋆) ≤ tf(wt, y); i.e., 0 ≤ f(wt, y).

Hence, Assumptions (A2)(ii) and (A3) imply that 0 ≤ f(x⋆, y). Let us prove

that x⋆ ∈ EP(C, f). Define f̂ : RN → R ∪ {+∞} for y ∈ RN by f̂(y) :=
f(x⋆, y) + IC(y), where IC denotes the indicator function of C. Assumptions

(A2)(i) and (iii) imply that f̂ is convex and f̂(x⋆) = 0. Furthermore, from

f(x⋆, y) ≥ 0 for all y ∈ C∩B(ρ⋆+1−δ), f̂(x⋆) ≤ f̂(y) for all y ∈ B(ρ⋆+1−δ),

which implies that x⋆ is a local minimizer of f̂ . The convexity of f̂ thus ensures
that x⋆ is a global minimizer of f̂ , which implies that 0 = f(x⋆, x⋆) ≤ f(x⋆, y)
for all y ∈ C, i.e., x⋆ ∈ EP(C, f). Therefore, A(wn)n∈N ⊂ EP(C, f) almost
surely.

(ii) The boundedness of both C and (wn)n∈N ⊂ C implies that (wn)n∈N is
almost surely bounded. Accordingly, the proof of Lemma 3.2(iii) implies the
almost sure boundedness of (vn)n∈N. Since F ((·, ·), ξ) (ξ ∈ Ξ) is pseudomono-
tone, the proof of Corollary 2.4 in [36] guarantees that

⋂+∞
n=0 L(vn; ξn) ̸= ∅.

Therefore, Theorem 3.1(i) implies the assertion in Theorem 3.1(ii).
(iii) The strict pseudomonotonicity of F ((·, ·), ξ) (ξ ∈ Ξ) ensures the ex-

istence and uniqueness of a solution to Problem 2.1. Theorem 3.1(ii) thus
guarantees that any accumulation point of (wn)n∈N is equal to the solution
to Problem 2.1, which implies that (wn)n∈N converges almost surely to the
solution. This completes the proof. ⊓⊔

Regarding the application of Algorithm 1 to the deterministic equilibrium
problem, we remark as follows.

Remark 3.1 Let us consider the deterministic equilibrium problem (4) and
prove that Theorem 3.1(i) implies that the whole sequence (wn)n∈N converges
to a point in EP(C,F ). Let x⋆ be an accumulation point of (wn)n∈N. Then
there exists (wnk

)k∈N ⊂ (wn)n∈N ⊂ C converging to x⋆ ∈ C. It can be deduced
from (29) that

F (v, x⋆) ≤ 0 for all v ∈ C ∩B(ρ⋆ + 1− δ),

where ρ⋆ := supn∈N ρn < +∞. The arbitrariness of δ and the continuity of F
ensure that

F (v, x⋆) ≤ 0 for all v ∈ C ∩B(ρ⋆ + 1).

Condition vn ∈ Kn (n ∈ N) implies that F (vn, x
⋆) ≤ 0 for all n ∈ N, i.e.,

x⋆ ∈
⋂+∞

n=0{u ∈ C : F (vn, u) ≤ 0}. Hence, Lemma 3.2(i) and Theorem 3.1(i)
guarantee that

0 = lim
k→+∞

∥wnk
− x⋆∥ = lim

n→+∞
∥wn − x⋆∥ ,

which implies that the whole sequence (wn)n∈N converges to a point in EP(C,F ).
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An example of Problem 2.1 for which the if-condition in Theorem 3.1(iii)
holds is the stochastic variational inequality problem (38) (see also (7) and (8))
in expected risk minimization in machine learning. See Subsection 4.2 for the
proof that the variational inequality problem (38) is an example of Problem
2.1.

3.3 Convergence rate analysis of Algorithm 1

Theorem 3.1 and its proof (see (28) and (29)) guarantee that any accumulation
point, denoted by x⋆, of (wn)n∈N generated by Algorithm 1 satisfies that, for
all v ∈ C ∩B(ρ⋆ + 1− δ),

f(v, x⋆) ≤ lim sup
n→+∞

E[f(v, wn)] ≤ 0 and x⋆ ∈ EP(C, f).

Accordingly, we shall evaluate the rate of convergence of (E[f(v, wn)])n∈N (v ∈
C ∩B(ρ⋆ +1− δ)). We can show the following proposition by referring to the
proof of [35, Theorem 3.22].

Proposition 3.1 Suppose that the assumptions in Theorem 3.1 are satisfied
and that

⋂+∞
n=0 L(vn; ξn) is nonempty.4 Then, for all ϵ > 0, there exists Nϵ ∈ N

such that, for all v ∈ C ∩B(ρ⋆ + 1− δ),

E [f(v, wNϵ)] <
K1√
Nϵ

+ ϵNϵ
,

where B(ρ⋆ + 1 − δ) is defined as in the proof of Lemma 3.2(iii) and K1 :=

M

√
E[∥w0 − u∥2]/(a(2− b)) for some u ∈

⋂+∞
n=0 L(vn; ξn).

Proof Inequality (25) guarantees that, for all n ∈ N,
n∑

k=0

E
[
E
[
F ((vk, wk); ξk)

∣∣ξ[k]]]2 ≤ M2E[∥w0 − u∥2]
a(2− b)︸ ︷︷ ︸

=:K2
1

. (30)

Given ϵ > 0, we define Nϵ ∈ N ∪ {+∞} by

Nϵ := inf
{
n ∈ N : E

[
E
[
F ((vn, wn); ξn)

∣∣ξ[n]]]2 ≤ ϵ
}
. (31)

Then, for all n < Nϵ, E[E[F ((vn, wn); ξn)|ξ[n]]]2 > ϵ, which implies that, for
all n < Nϵ,

n∑
k=0

E
[
E
[
F ((vk, wk); ξk)

∣∣ξ[k]]]2 > (n+ 1)ϵ. (32)

4 This condition holds when C is bounded and F ((·, ·); ξ) is pseudomonotone (see the
proof of Theorem 3.1(ii)) or when F ((·, ·); ξ) is defined by (6) and the solution set of the
Minty variational inequality (19) is nonempty (see (20)).
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We shall show that Nϵ < +∞. Assume that Nϵ = +∞. Then, (30) and (32)
hold for all n ∈ N, which implies that

+∞ =

+∞∑
k=0

E
[
E
[
F ((vk, wk); ξk)

∣∣ξ[k]]]2 ≤ K2
1 < +∞.

Since we have a contradiction, the condition Nϵ < +∞ holds. Inequalities (30)
and (32) with n = Nϵ − 1 guarantee that

ϵ <
K2

1

Nϵ
.

Accordingly, (31) ensures that

E
[
E
[
F ((vNϵ

, wNϵ
); ξNϵ

)
∣∣ξ[Nϵ]

]]2 ≤ ϵ <
K2

1

Nϵ
.

Inequality (27), together with F ((vn, wn); ξn) ≥ 0 (n ∈ N), thus implies that,
for all v ∈ C ∩B(ρ⋆ + 1− δ),

E [f(v, wNϵ)] ≤ E
[
E
[
F ((vNϵ , wNϵ); ξNϵ)

∣∣ξ[Nϵ]

]]
+ ϵNϵ <

K1√
Nϵ

+ ϵNϵ .

This completes the proof. ⊓⊔
Let us consider the convex stochastic optimization problem of minimizing

Θ := E[θξ] for a convex functional θξ : RN → R (ξ ∈ Ξ) over a closed convex
set C ⊂ RN which satisfies Assumption (A1). Define F : RN × RN × Ξ → R
for x, y ∈ RN and almost every ξ ∈ Ξ by

F ((x, y); ξ) := θξ(y)− θξ(x). (33)

Then F defined by (33) satisfies Assumptions (A2) and (A3) and the mono-
tonicity condition (5). Accordingly, when C is bounded [49, p.1574], we can
check that Assumption (A4) and the if-condition of Theorem 3.1(ii) hold.
Proposition 3.1, together with wn ∈ C (n ∈ N) and v := x⋆ ∈ C∩B(ρ⋆+1−δ),
implies that Algorithm 1 with F defined by (33) satisfies that

E [Θ(wNϵ)−Θ⋆] ≤ K1√
Nϵ

,

where Θ⋆ denotes the optimal value of the convex stochastic optimization
problem and ϵn (n ∈ N) simply equals zero (see (15) and (16) for the rate of
convergence of the SA method defined by (13) and (14)).

Regarding the application of Algorithm 1 to the deterministic equilibrium
problem, we remark as follows.

Remark 3.2 While algorithms were presented in [36,63] for solving the deter-
ministic equilibrium problem (4), to the best of our knowledge, no convergence
rate analyses have been performed for these algorithms. Since problem (4) is
a special case of Problem 2.1, Proposition 3.1 indicates that Algorithm 1 for
problem (4) satisfies that

F (v, wNϵ
) <

K1√
Nϵ

+ ϵNϵ
.
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4 Application to expected risk minimization in machine learning

4.1 Capped-ℓ1 norm coupled nonconvex overlapping group lasso and an
existing machine learning algorithm called IncrePA-ncvx

Let {(xi, yi)}Mi=1 ⊂ RN ×R be a training set and let X be a matrix with rows
xi. The lasso problem [31, Chapters 2 and 4] in statistical learning [65] with
sparsity is to

find w⋆ ∈ argmin
w∈RN

1

2M
∥y −Xw∥2 + λ ∥w∥1 ,

where λ ≥ 0 and ∥ · ∥1 denotes the ℓ1 norm. In this section, we consider
a capped-ℓ1 norm coupled nonconvex overlapping group lasso [16, (25)], [71,
C.3.1] defined as follows:

find w⋆ ∈ argmin
w∈RN

1

2M
∥y −Xw∥2︸ ︷︷ ︸

=
∑

i∈M(yi−⟨xi,w⟩)2

=:
∑

i∈M li(w)

+

K∑
k=1

ωk min {∥wgk∥ , c}︸ ︷︷ ︸
=:rk(w)︸ ︷︷ ︸

=:r(w)

, (34)

where, for gk ⊂ {1, 2, . . . , N} (k = 1, 2, . . . ,K) and any w ∈ RN , wgk denotes
the vector whose entries are the same as those of w for the elements in gk and
0 for other elements, c is a constant defining the ℓ1 norm, M := {1, 2, . . . ,M},
and ωk ⊂ [0,+∞) (k = 1, 2, . . . ,K) satisfies

∑K
k=1 ωk = 1.

The IncrePA-ncvx algorithm [16, Algorithm 2], which uses the proximal
average (PA) [5] and incremental gradient methods, can be applied to the

following surrogate problem in which r(w) :=
∑K

k=1 ωkrk(w) is approximated
by its PA r̂(w):

find w⋆ ∈ argmin
w∈RN

1

2M

∑
i∈M

li(w) + r̂(w), (35)

where, for all w ∈ RN ,

Mη
rk
(w) := min

y∈RN

{
1

2η
∥w − y∥2 + rk(y)

}
(k = 1, 2, . . . ,K, η > 0)

and r̂ satisfies that, for all w ∈ RN ,

Mη
r̂ (w) :=

K∑
k=1

αkM
η
rk
(w),

where (αk)
K
k=1 ⊂ [0,+∞) with

∑K
k=1 αk = 1. The proximal map of PA r̂ is

defined for all w ∈ RN by

P η
r̂ (w) :=

K∑
k=1

αkP
η
rk
(w),
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where

P η
rk
(w) := argmin

y∈RN

{
1

2η
∥w − y∥2 + rk(y)

}
(k = 1, 2, . . . ,K, η > 0).

IncrePA-ncvx is shown in Algorithm 2. Under certain assumptions, IncrePA-
ncvx converges almost surely to the asymptotic stationary point of the surro-
gate problem (35) [16, Theorem 3].

Algorithm 2 IncrePA-ncvx for problem (35) [16, Algorithm 2]

Require: n ∈ N, η > 0, (αk)
K
k=1 ⊂ [0,+∞) with

∑K
k=1 αk = 1,M := {1, 2, . . . ,M}

1: n← 0, w0 ∈ RN , ϕ0,i ∈ RN , ∇li(ϕ0,i) ∈ RN (i ∈M)
2: repeat
3: i(n) ∈M (randomly chosen)

4: ∇li(ϕn+1,i) :=

{
∇li(wn) if i = i(n)

∇li(ϕn,i) if i ̸= i(n)
(i ∈M)

5: ϕn+1,i :=

{
wn if i = i(n)

ϕn,i if i ̸= i(n)
(i ∈M)

6: Gn := 1
M

∑
i∈M∇li(ϕn,i)

7: vn+1 := 1
M

∑
i∈M ϕn,i − ηGn

8: wn+1 := P η
r̂ (vn+1) =

∑K
k=1 αkP

η
rk (vn+1)

9: n← n+ 1
10: until stopping condition is satisfied

4.2 Stochastic variational inequality in expected risk minimization and the
existing and proposed machine learning algorithms

To satisfy the boundedness condition on C in Theorem 3.1(iii), we set C in
Algorithm 1 as a sufficiently large closed ball (see [57, Fig.1] for the existing
machine learning algorithm using the projection onto a bounded set). Since
PC can be easily computed, (A1) holds. For all i ∈ M, θi : RN → R is defined
for w ∈ RN by

θi(w) :=
1

M

{
1

2
li(w) +

K∑
k=1

ωk min {∥wgk∥ , s ∥wgk∥+ (1− s)c}︸ ︷︷ ︸
=:r̃(w)

}
, (36)

where s > 0 is sufficiently small. The functional θi (i ∈ M) defined by (36)
is an approximation function5 of (1/M)((1/2)li(w) + r(w)). Since r̃ is strictly

5 When s is sufficiently small, r̃(w) :=
∑K

k=1 ωk min{∥wgk∥, s∥wgk∥+(1−s)c} ≈ r(w) :=∑K
k=1 ωk min{∥wgk∥, c} in the sense of the norm of R.
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pseudoconvex6 [23, Definition 4.1(ii)], [51, NR 4.2-4] and li (i ∈ M) is convex,
θi (i ∈ M) is strictly pseudoconvex. Here, we define F : RN × RN ×M → R
by (6) with A(·; ξ) := ∂θξ(·); i.e., for w, y ∈ RN and for ξ ∈ M,

F ((w, y); ξ) := max
a(w;ξ)∈∂θξ(w)

⟨y − w, a(w; ξ)⟩ . (37)

It is obvious that F ((w,w); ξ) = 0 (ξ ∈ M, w ∈ RN ) and F ((w, ·); ξ) (ξ ∈
M, w ∈ RN ) is convex. The continuity of ∂θξ (ξ ∈ M) implies that F ((·, y); ξ)
(ξ ∈ M, y ∈ RN ) is continuous. Hence, F defined by (37) satisfies (A2). Since
θξ (ξ ∈ M) is strictly pseudoconvex, A(·; ξ) := ∂θξ(·) (i ∈ M) is strictly
pseudomonotone [23, Theorem 4.1], which implies that F ((·, ·); ξ) (ξ ∈ M) is
strictly pseudomonotone (see also the if-condition of Theorem 3.1(iii)). The-
orem 7.47 in [59] and the continuity of F ((·, ·); ξ) (ξ ∈ M) guarantee that
f(w, y) := E[F ((w, y); ξ)] ∈ R is well defined for all w, y ∈ RN , which implies
that (A3) holds. Therefore, Assumption 2.1 and the if-condition of Theorem
3.1(iii) are satisfied for C and F considered in this subsection.

The useful machine learning algorithms [57] randomly choose training ex-
amples and improve their approximations by using (sub)gradients of objec-
tive functions corresponding to the chosen examples. Moreover, the convexity
of F ((w, ·); ξ) (ξ ∈ M, w ∈ RN ) defined by (37) ensures that Gw(y; ξ) ∈
∂F ((w, ·); ξ)(y) can be determined when ((w, y), ξ) is given. Accordingly, As-
sumption 3.1 holds.

The discussion in Subsection 2.2 implies that Problem 2.1 with F defined
by (37) is the stochastic variational inequality problem for ∂θξ with θξ defined
by (36) over C to find

w⋆ ∈ C and u⋆ ∈ E [∂θξ(w
⋆)] such that ⟨y − w⋆, u⋆⟩ ≥ 0 for all y ∈ C. (38)

The sequences (wn)n∈N and (vn)n∈N generated by Algorithm 1 with w0 ∈
C and F defined by (37) satisfy that (wn)n∈N, (vn)n∈N ⊂ C almost surely.
Accordingly, we may assume without loss of generality that F is defined on
C×C×M. This implies that Algorithm 1 satisfies (A4). Therefore, the above
discussion and Theorem 3.1(iii), together with (A5), imply the following result:

– The sequence (wn)n∈N generated by Algorithm 1 with F defined by (37)
and λn := λ ∈ (0, 2) (Algorithm 3) converges almost surely to the solution
to the stochastic variational inequality (38) in the capped-ℓ1 norm coupled
nonconvex overlapping group lasso problem (34).

The stochastic extragradient (SE) method [35, Algorithm 1] can solve
stochastic pseudomonotone variational inequalities. This implies that the SE
method can be applied to problem (38). The SE method is shown in Algo-
rithm 4. Under certain assumptions, every accumulation point of (wn)n∈N

6 The function r defined by (34) is quasiconvex [62, Theorems 4.1 and 4.3] rather than
pseudoconvex. Accordingly, we modify (1/M)((1/2)li(w) + r(w)) with θi so that F defined
by (37) can satisfy the strict pseudomonotonicity condition that is needed to guarantee the
almost sure convergence of Algorithm 1 to the solution to Problem 2.1 with F defined by
(37) (see Theorem 3.1(iii)).
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Algorithm 3 ISSP (Algorithm 1 with F ((w, y); ξ) :=
maxa(w;ξ)∈∂θξ(w) ⟨y − w, a(w; ξ)⟩)
Require: n ∈ N, (λn)n∈N ⊂ (0, 2), (ϵn)n∈N ⊂ [0,+∞)
1: n← 0, w0 ∈ C, ρ0 := ∥w0∥
2: repeat
3: Kn := C ∩B(ρn + 1)
4: vn ∈ Kn such that F ((vn, wn); ξn) ≥ 0 and
5: max

v∈Kn

F ((v, wn); ξn) ≤ F ((vn, wn); ξn) + ϵn (inexact step)

6: if Gvn (wn; ξn) ̸= 0 then

7: wn+1 := PC

[
wn − λn

F ((vn, wn); ξn)

∥Gvn (wn; ξn)∥2
Gvn (wn; ξn)

]
8: else
9: wn+1 := wn

10: end if
11: ρn+1 := max {ρn, ∥wn+1∥}
12: n← n+ 1
13: until stopping condition is satisfied

generated by the SE method almost surely belongs to the solution set of
problem (38) [35, Theorem 3.18]. Moreover, the SE method satisfies that,
for all ϵ > 0, there exists Nϵ ∈ N such that E[rα(wNϵ

)2] ≤ K/Nϵ, where
rα(w) := ∥w − PC [w − E[∂θξ(w)]]∥2 (w ∈ RN ) and K < +∞ [35, Theorem
3.22] (see Proposition 3.1 for the convergence rate of Algorithm 3).

Algorithm 4 Stochastic extragradient (SE) method for problem (38) [35,
Algorithm 1]

Require: n ∈ N, (αn)n∈N ⊂ (0,+∞), (Nn)n∈N ⊂ (0,+∞), (ξn,j)
Nn
j=1, (ηn,j)

Nn
j=1 ⊂M

1: n← 0, w0 ∈ RN

2: repeat
3: G(wn, ξn,j) ∈ ∂θξn,j

(wn) (j = 1, 2, . . . , Nn)

4: zn := PC

wn −
αn

Nn

Nn∑
j=1

G(wn, ξn,j)


5: G(zn, ηn,j) ∈ ∂θηn,j (zn) (j = 1, 2, . . . , Nn)

6: wn+1 := PC

wn −
αn

Nn

Nn∑
j=1

G(zn, ξn,j)


7: n← n+ 1
8: until stopping condition is satisfied

4.3 Numerical comparisons of existing machine learning algorithms with the
proposed machine learning algorithm

This subsection numerically compares the performance of the existing machine
learning algorithm based on each of Algorithm 2 (IncrePA), Algorithm 4 (SE),
and the SA method (SA) defined by (13) and (14) with G(wn, ξn) ∈ ∂θξn(wn)
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with that of the proposed machine learning algorithm based on Algorithm
3 (inexact stochastic subgradient projection method, ISSP) for the capped-
ℓ1 norm coupled nonconvex overlapping group lasso (see Subsections 4.1 and
4.2 for details of the methods). In the experiments, we used the following
parameters, which are based on those in [16, Subsection 6.3]: w0 = ϕ0,i := 0
(i ∈ M), K ∈ {1, 5, 10, 15, 20}, ωk := 1/K (k = 1, 2, . . . ,K), c := 0.1, and
s := 10−8. The machine learning algorithms used in the experiments are as
follows:

– IncrePA: Machine learning algorithm based on Algorithm 2 [16, Algo-
rithm 2] with η and αk satisfying [16, (2), (29)]

– SE: Machine learning algorithm based on Algorithm 4 [35, Algorithm 1]
with αn satisfying [35, Assumption 3.7] and Nn := Θ(n + µ)1+a(ln(n +
µ))1+b [35, p.696], where Θ,µ, a > 0 and b ≥ −1

– SA: Machine learning algorithm based on the SA method (13) and (14)
with αn and νt satisfying [49, (2.25), p.1579] and G(wn, ξn) ∈ ∂θξn(wn)

– ISSP(C1): Machine learning algorithm based on Algorithm 1 with F de-
fined by (37) (Algorithm 3) and λn := 0.5

– ISSP(C2): Machine learning algorithm based on Algorithm 1 with F de-
fined by (37) (Algorithm 3) and λn := 1.0

– ISSP(C3): Machine learning algorithm based on Algorithm 1 with F de-
fined by (37) (Algorithm 3) and λn := 1.5

The computer used in the experiments was a MacPro (Late 2013) com-
puter with a 3 GHz 8-Core Intel Xeon E5 CPU, 32 GB 1,866 MHz DDR3
memory, and 500 GB flash storage. The operating system was MacOS Sierra
(version 10.14.6). The evaluation programs were run in Python 3.7.4 with
NumPy 1.17.0, SciPy 1.3.1, and scikit-learn 0.21.3. The experiments used the
datasets from the LIBSVM [12], for which information is shown in Table 1.
The index group of features gk ⊂ {1, 2, . . . , N} (k = 1, 2, . . . ,K) was set by
using the numpy.random.randint function in NumPy 1.17.0, which returns
random integers 0 and 1 from the discrete uniform distribution. For example,
the following K × N matrix for the “breast-cancer” dataset (N = 10) with
K = 5 was set by using the numpy.random.randint function:

0 1 1 0 1 1 1 1 1 0
1 1 0 0 1 0 0 0 0 1
0 1 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 1 0
0 1 1 0 0 1 0 1 1 1

 =


g̃1
g̃2
g̃3
g̃4
g̃5

 ,

which implies that

g1 = {2, 3, 5, 6, 7, 8, 9}, g2 = {1, 2, 5, 10}, g3 = {2, 4, 5, 8, 9},
g4 = {1, 2, 4, 6, 8, 9}, g5 = {2, 3, 6, 8, 9, 10}.

The point vn satisfying steps 4 and 5 in Algorithm 1 (Algorithm 3) was com-
puted by using the SLSQP [41] optimization solver with max iter = 5 and the
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initial point vn−1 in the SciPy 1.3.1 package. The point P η
rk
(vn+1) defined in

step 8 in Algorithm 2 was computed by using BFGS [50, Chapter 6] in the
SciPy 1.3.1 package. The stopping condition for the algorithms was n = 100. In
the experiments, 10-fold cross-validation for the datasets was performed using
the sklearn.model selection.StratifiedKFold class. Multiclass classifiers
were conducted using the sklearn.multiclass.OneVsRestClassifier class,
which provides a construction of one-versus-the-rest (OvR) multiclass classi-
fiers.

Table 1 Datasets used for classification [12]

Dataset Classes Data points Features
breast-cancer 2 683 10
german.numer 2 1,000 24
ionosphere 2 351 34
iris 3 150 4
wine 3 178 13
vehicle 4 846 18
covtype 7 581,012 54
pendigits 10 7,494 + 3,498 16
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Table 2 shows the classification accuracies and the elapsed times for the
machine learning algorithms used in the experiments. We first consider the re-
sults of the binary classification. For the “breast-cancer” dataset with a fixed
K, ISSP(C1), ISSP(C2), and ISSP(C3) performed better than IncrePA, SE,
and SA from the viewpoint of accuracy. The elapsed times for IncrePA and
SE were almost the same as those for ISSP(C2) and ISSP(C3). For the “ger-
man.numer” dataset with K = 1, the accuracy of SE was higher than those
of other algorithms. For the “german.numer” dataset with K = 5, 10, 15, 20,
the accuracies of IncrePA, SE, and ISSP(C2) were about 70%. For the “iono-
sphere” dataset with a fixed K, SE and ISSP(C3) had high accuracies on
average.

We next consider the results of the multiclass classification. For the “iris”,
“wine”, “vehicle”, and “pendigits” datasets with a fixed K, the accuracy of
each of ISSP(C1), ISSP(C2), and ISSP(C3) was higher than those of other al-
gorithms. In particular, for the “vehicle” dataset with a fixedK, the accuracies
of ISSP(C1), ISSP(C2), and ISSP(C3) were about 60%, while the accuracies
of other algorithms were less than 40%. The elapsed times of IncrePA and
SE were almost the same as those of ISSP(C1), ISSP(C2), and ISSP(C3).
For the “covtype” dataset, IncrePA, ISSP(C1), ISSP(C2), and ISSP(C3) had
high accuracies. The elapsed time of SE was longer than that of other al-
gorithms. This is because the computation of

∑Nn

j=1 G(·, ξn,j) in SE (Algo-
rithm 4) became more time-consuming with the increase of the value of Nn :=
Θ(n+ µ)1+a(ln(n+ µ))1+b.

The average accuracies of IncrePA, SE, SA, ISSP(C1), ISSP(C2), and
ISSP(C3) were respectively 47.0%, 42.6%, 53.5%, 72.1%, 72.5%, and 71.0%.
The average elapsed times of IncrePA, SE, SA, ISSP(C1), ISSP(C2), and
ISSP(C3) were respectively 0.06 s, 0.21 s, 0.12 s, 0.09 s, 0.06 s, and 0.06 s.
Therefore, we can see that the average performances of the different settings
of the proposed machine learning algorithm were almost the same.

The average accuracies and elapsed times of the existing algorithms (In-
crePA, SE, and SA) were compared to the average accuracies and elapsed
times of the proposed algorithms (ISSP(C1), ISSP(C2), and ISSP(C3)) by
using an analysis of variance (ANOVA) test and Tukey-Kramer’s honestly
significant difference (HSD) test. The scipy.stats.f oneway method in the
SciPy library was used as the implementation of the ANOVA test, and the
statsmodels.stats.multicomp.pairwise tukeyhsdmethod in the StatsMod-
els package was used as the implementation of Tukey-Kramer’s HSD test. The
ANOVA test examines whether the hypothesis that the given groups have the
same population mean is rejected. Tukey-Kramer’s HSD test can be used to
find specifically which pair has a significant difference in groups. The signifi-
cance level was 5% (0.05) for the ANOVA and Tukey-Kramer’s HSD tests.

Let us evaluate the accuracies on the datasets in Table 1. The p-value com-
puted by the ANOVA test was about 4.50× 10−20 (< 0.05). This implies that
there is a significant difference in terms of accuracy between the algorithms
used in the experiments for every dataset. Here, let us check the results of the
Tukey-Kramer’s HSD test, as shown in Table 3. Table 3 indicates that the ad-
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justed p-value between each of the proposed algorithms (ISSP(C1), ISSP(C2),
and ISSP(C3)) and each of the existing algorithms (IncrePA, SE, and SA) was
0.001 (< 0.05), which implies that the accuracies of the proposed algorithms
were significantly better than those of the existing algorithms. It also shows
that the adjusted p-value between the proposed algorithms was 0.9 (> 0.05).
Accordingly, the proposed algorithms had almost the same performances in the
sense of accuracy. We can also check that there was not a significant difference
in accuracy between the existing algorithms.

Finally, let us evaluate the elapsed time on the datasets in Table 1. The p-
value computed by the ANOVA test was about 0.01 (< 0.05). Table 4 indicates
that there is a significant difference in the sense of the elapsed time between
each of IncrePA, ISSP(C2), and ISSP(C3) and SE. Specifically, it shows that
IncrePA, ISSP(C2), and ISSP(C3) ran significantly faster than SE.

Table 3 Multiple comparison for accuracies for the machine learning algorithms applied to
the datasets in Table 1 using Tukey-Kramer’s HSD test with the 5% significant level (“me-
andiffs” indicates the pairwise mean differences between Groups 1 and 2, “p-adj” indicates
the adjusted p-value, and “Lower” (resp. “Upper”) indicates the lower (resp. upper) value
of the confidence interval for the pairwise mean differences.)

Group 1 Group 2 meandiffs p-adj Lower Upper Reject
ISSP(C1) ISSP(C2) 0.4673 0.9 -10.7066 11.6412 False
ISSP(C1) ISSP(C3) -1.0669 0.9 -12.2408 10.107 False
ISSP(C1) IncrePA -25.0972 0.001 -36.2711 -13.9233 True
ISSP(C1) SE -29.5122 0.001 -40.6861 -18.3383 True
ISSP(C1) SA -18.5863 0.001 -29.7601 -7.4124 True
ISSP(C2) ISSP(C3) -1.5341 0.9 -12.708 9.6398 False
ISSP(C2) IncrePA -25.5645 0.001 -36.7384 -14.3906 True
ISSP(C2) SE -29.9795 0.001 -41.1534 -18.8056 True
ISSP(C2) SA -19.0535 0.001 -30.2274 -7.8796 True
ISSP(C3) IncrePA -24.0304 0.001 -35.2042 -12.8565 True
ISSP(C3) SE -28.4453 0.001 -39.6192 -17.2715 True
ISSP(C3) SA -17.5194 0.001 -28.6933 -6.3455 True
IncrePA SE -4.415 0.8524 -15.5889 6.7589 False
IncrePA SA 6.511 0.5431 -4.6629 17.6849 False
SE SA -10.926 0.0595 -22.0998 0.2479 False

From the above discussion, we can conclude that the proposed machine
learning algorithm is superior for solving the capped-ℓ1 norm coupled noncon-
vex overlapping group lasso.

5 Conclusion and future work

This paper presented an inexact stochastic subgradient projection method for
solving the stochastic equilibrium problem with nonmonotone bifunctions. A
convergence analysis showed that, under certain assumptions, any accumula-
tion point of the sequence generated by the proposed method almost surely be-
longs to the solution set of the stochastic equilibrium problem. A convergence
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Table 4 Multiple comparison for elapsed time for the machine learning algorithms applied
to the datasets in Table 1 using Tukey-Kramer’s HSD test with the 5% significant level
(“meandiffs” indicates the pairwise mean differences between Groups 1 and 2, “p-adj” indi-
cates the adjusted p-value, and “Lower” (resp. “Upper”) indicates the lower (resp. upper)
value of the confidence interval for the pairwise mean differences.)

Group 1 Group 2 meandiffs p-adj Lower Upper Reject
ISSP(C1) ISSP(C2) -0.0236 0.9 -0.1558 0.1085 False
ISSP(C1) ISSP(C3) -0.0241 0.9 -0.1562 0.1081 False
ISSP(C1) IncrePA -0.0209 0.9 -0.1531 0.1112 False
ISSP(C1) SE 0.1207 0.0954 -0.0115 0.2528 False
ISSP(C1) SA 0.0374 0.9 -0.0948 0.1695 False
ISSP(C2) ISSP(C3) -0.0004 0.9 -0.1326 0.1317 False
ISSP(C2) IncrePA 0.0027 0.9 -0.1294 0.1349 False
ISSP(C2) SE 0.1443 0.0233 0.0122 0.2765 True
ISSP(C2) SA 0.061 0.7428 -0.0711 0.1932 False
ISSP(C3) IncrePA 0.0031 0.9 -0.129 0.1353 False
ISSP(C3) SE 0.1447 0.0227 0.0126 0.2769 True
ISSP(C3) SA 0.0614 0.7376 -0.0707 0.1936 False
IncrePA SE 0.1416 0.0278 0.0094 0.2737 True
IncrePA SA 0.0583 0.7766 -0.0739 0.1904 False
SE SA 0.0833 0.4618 -0.0488 0.2155 False

rate analysis was also shown that supported the efficiency of the proposed
method. The machine learning algorithm based on the proposed method was
numerically compared to existing machine learning algorithms with respect to
the capped-ℓ1 norm coupled nonconvex overlapping group lasso. The numerical
results using LIBSVM datasets demonstrated that the average performances
of the existing machine learning algorithms are significantly different from the
average performance of the proposed machine learning algorithm and that the
proposed machine learning algorithm is useful for solving the capped-ℓ1 norm
coupled nonconvex overlapping group lasso.

However, the numerical results also showed that, for a dataset with many
data points, the proposed machine learning algorithm did not always have a
high accuracy. This is because the machine learning algorithms could not use
much training data before the stopping condition was reached. In the future,
we should consider developing stochastic optimization methods based on other
useful learning methods, such as ensemble leaning [72], to improve accuracy.
Moreover, the numerical results showed that, in the case where the stopping
condition was n = 100, the classification accuracies seemed not to be closely
related to the parameter K values. As a result, the numerical results did not
directly suggest an explanation about the effects of parameterK. In the future,
we should investigate the relationship between the grouping information for
datasets and parameter K, e.g., the relationship between the classification
accuracies and K in the case that the stopping conditions are, for example,
n = M̂/2, M̂ , 2M̂ , where M̂ is the number of training data needed for each
classifier to learn the weights. Additionally, problem (34) is related to partial
sparse optimization [44]. When our focus is sparse optimization, we should
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implement not only stochastic optimization algorithms but also the algorithms
in [44, Section 5] and evaluate their performances.
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