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Abstract. This paper introduces two incentive schemes to control peer-
to-peer (P2P) data storage systems. One is a symmetric scheme that
imposes a rule in which the contribution level of each peer (storage space
offered by each peer) is equal to its use of the service (storage space used
for storing its own data). The other is a profit-oriented pricing scheme
that allows an operator, who manages the whole system, to buy and
sell storage space from and to peers so as to maximize its profit. We
show that the storage allocation problems entailed by these schemes
can be formulated as convex minimization problems. We propose two
optimization algorithms, based on distributed convex optimization tech-
niques, for solving these problems. One algorithm works when all peers
act on the basis of the symmetric scheme and finds an optimal storage
allocation that maximizes a performance measure, called social welfare,
in the whole system. The other algorithm works when the operator and
all peers act on the basis of the profit-oriented pricing scheme and finds
an optimal allocation that maximizes the weighted mean of the social
welfare and the operator’s profit. We give numerical results proving
that the algorithms converge to the solutions to the storage allocation
problems.

1. Introduction

Peer-to-Peer (P2P) network models have attracted a great deal of atten-
tion. The concept of the P2P network model is completely different from
that of a conventional client-server network model. While a conventional
server-client network model explicitly distinguishes hosts providing services
(servers) from hosts receiving services (clients), a P2P network model does
not assign fixed roles to hosts. Hosts composing P2P networks, referred to
as peers, can be both servers and clients, and as a result, P2P networks
function as autonomous, distributed systems.

In a P2P data storage system, each peer offers some of its memory ca-
pacity as a service to others and benefits from storing its own data on the
system. An online storage service is valuable only if it gives users reliable
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access to their data. Hence, the system needs to cope with disk failures and
with peers disconnecting their disk from the system. This implies that data
replicates must be spread over several, reliable peers. Accordingly, the sys-
tem requires peers to offer a sufficient part of their disk space to the system
and remain online often enough. However, both of these requirements are
costly to peers. Therefore, the system is at risk of collapse when peers do
not offer enough storage capacity, i.e., when peers behave selfishly.

In this paper, we focus on incentives [21] to make peers contribute to P2P
data storage systems. There are many incentive schemes that are applicable
to the economics of P2P file sharing networks (e.g., wireless local area net-
works (WLANs) [13]), and they can be generally categorized as symmetric
or payment-based scheme (see, e.g., [1, 13] and references therein). However,
these schemes cannot be applied to P2P data storage systems because their
economic implications are essentially incompatible.

To resolve this issue, reference [21] presented two incentive schemes to con-
trol P2P data storage systems. One is a symmetric scheme [21, subsection
II.C 1)] based on the idea that every peer should contribute to the system
in terms of service at least as much as it benefits from others. The other is
a profit-oriented pricing scheme [21, subsection II.C 2)] based on monetary
exchanges where peers can buy storage space and sell some of their disk
capacity. Reference [21] analyzed whether it is socially better to impose the
symmetric scheme or the profit-oriented pricing scheme. The performance
measure is social welfare, defined by the sum of the utility functions of all
peers and an operator, who manages the P2P data storage system.

The main objective of storage allocation in P2P systems is to find optimal
storage capacities of all peers which maximize the social welfare as much as
possible. The analyses in [21] assumed the existence of central authority to
supervise the peers’ behavior; i.e., the central authority knows the private
information of all peers, such as the explicit forms of all peers’ utility func-
tions and strategies. In contrast to such a centralized system control, this
paper discusses distributed system control for P2P systems. Our distributed
mechanisms can be applied to any P2P network without a central authority
(e.g., a pure P2P network such as Winny and Gnutella), and they enable
each peer to find a maximizer of the social welfare without using the private
information of other peers, such as their utility functions and strategy sets.

In this paper, we first show that the storage allocation problems (prob-
lems of maximizing the social welfare) caused by the two incentive schemes
can be formulated as convex minimization problems over the fixed point sets
of nonexpansive mappings. We then propose two distributed convex op-
timization algorithms, based on fixed point theory [2], [3, Chapter 4], [14,
Chapter 3], [15, Chapter 1], for solving them.

A number of distributed convex optimization algorithms have been pre-
sented (see [7, Subchapter 8.2], [8, 9, 11, 12, 16, 18, 19, 20, 22, 23, 24, 25, 27,
30] and reference therein). However, the literature does not seem to have
any algorithm for solving convex minimization problems over the fixed point
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sets. While the previously reported results in [21] presented useful mathe-
matical models of P2P data storage systems, to our knowledge, there are no
references on distributed control algorithms for controlling these systems.

Our main contribution is to devise distributed convex optimization tech-
niques to solve storage allocation problems of P2P data storage systems
through incentive schemes. We believe that our distributed approach is good
for optimal control problems [10, 17, 26], network flow problems [5, 6, 20, 29],
and resource allocation problems [28, Chapters 4 and 5]. This is because
it can be applied to the more general problem of minimizing the sum of
strongly convex objective functions over the intersection of fixed point sets
of nonexpansive mappings. Therefore, we believe that the results in this pa-
per will provide a glimpse into the inherent connection between distributed
algorithms and control problems in networked systems.

This paper is organized as follows. Section 2 gives the mathematical pre-
liminaries. Section 3 shows that the storage allocation problems entailed
by the two incentive schemes (symmetric scheme and profit-oriented pric-
ing scheme) can be formulated as convex minimization problems over the
fixed point sets of certain nonexpansive mappings. Section 4 discusses the
distributed control under the symmetric scheme. Section 5 discusses the
distributed control under the profit-oriented pricing scheme. We show that
the algorithms presented in sections 4 and 5 converge to the solutions to the
storage allocation problems under realistic assumptions. Section 6 applies
the algorithms to concrete storage allocation problems and provides numer-
ical results showing they converge to the solutions. Section 7 concludes the
paper.

2. Preliminaries

This section describes the basic model of a P2P data storage system
studied in [21], which was the first study to propose incentive schemes for
controlling P2P data storage systems.

Consider a P2P data storage system network in which peer i (i ∈ I :=

{1, 2, . . . ,K}) offers a storage capacity c
(i)
o that is to be shared with other

peers and demands a storage capacity c
(i)
s that is to be used for storing its

own data.
The supply and demand functions of peer i are defined as follows: there

exist a(i), b(i), p
(i)
max (> 0), and p

(i)
min (≥ 0) such that, for all p ≥ 0,

s(i)(p) := a(i)
[
p− p

(i)
min

]+
, d(i)(p) := b(i)

[
p(i)max − p

]+
,(2.1)

where x+ := max{0, x} (x ∈ R). Peer i is entirely described by four param-

eters, a(i), b(i), p
(i)
max, and p

(i)
min. The two price parameters, p

(i)
min and p

(i)
max,

respectively represent the minimum value of the unit price po that peer i
will sell some of its own disk space and the maximum value of the unit price
ps that it will pay for storage space, and a(i) and b(i) correspond to the
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increase in sold capacity with the unit price po (≥ p
(i)
min) and the decrease in

bought storage space with the unit price ps (≤ p
(i)
max). For a given p (≥ 0),

s(i)(p) (resp. d(i)(p)) is the amount of storage capacity that peer i would
choose to sell (resp. buy) if peer i were paid (resp. charged) a unit price p
for it.

When the supply and demand functions are defined as in (2.1), the utility

function U (i) of peer i is of the following form (see [21, Section II] for the
details),

V (i)
(
c(i)s

)
:=

1

b(i)

−
(
c
(i)
s ∧ b(i)p

(i)
max

)2

2
+ b(i)p(i)max

(
c(i)s ∧ b(i)p(i)max

) ,

O(i)
(
c(i)o

)
:=

1

a(i)

(
c
(i)
o

)2

2
, P (i)

(
c(i)o

)
:= O(i)

(
c(i)o

)
+ p

(i)
minc

(i)
o ,

ε(i) := psc
(i)
s − poc

(i)
o ,

U (i)
(
c(i)s , c(i)o , ε(i)

)
:= V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)
− ε(i),

(2.2)

where x ∧ y := min{x, y} (x, y ∈ R), V (i)(c
(i)
s ) is peer i’s valuation obtained

when it uses c
(i)
s (i.e., the price that it is willing to pay to store an amount

of data c
(i)
s ), O(i)(c

(i)
o ) is the opportunity cost of offering c

(i)
o for other peers

without using c
(i)
o for itself, p

(i)
minc

(i)
o is the data transfer cost, P (i)(c

(i)
o ) stands

for the overall non-monetary cost of peer i for offering c
(i)
o , and ε(i) is the

monetary price paid by peer i.
On the other hand, the operator (denoted by peer 0), which manages the

P2P data storage system, tries to maximize its revenue, which is the total
amount that the peers are charged. Since the monetary price paid by peer i

is ε(i) = psc
(i)
s − poc

(i)
o , c

(i)
s = d(i)(ps), and c

(i)
o = s(i)(po), the utility function

of the operator can be represented by

U (0)(ps, po) :=
∑
i∈I

ε(i) = ps
∑
i∈I

d(i) (ps)− po
∑
i∈I

s(i) (po) .(2.3)

We define a performance measure, called social welfare, as the sum of
the utility functions of all peers and the operator. From (2.2) and (2.3),

social welfare can be expressed as, for all cs := (c
(1)
s , c

(2)
s , . . . , c

(K)
s )T , co :=

(c
(1)
o , c

(2)
o , . . . , c

(K)
o )T ∈ RK ,

W (cs, co) :=
∑
i∈I

U (i)
(
c(i)s , c(i)o , ε(i)

)
+ U (0)(ps, po)

=
∑
i∈I

[
V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)]
,

(2.4)
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where xT denotes the transpose of the vector x. It is desirable to maximize
W defined by (2.4) because it makes the whole system stable and reliable.

We call W (i) : R× R → R defined for all (c
(i)
s , c

(i)
o ) ∈ R× R by

W (i)
(
c(i)s , c(i)o

)
:= V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)
the welfare of peer i.

3. Main Problems

Here, we describe the two incentive schemes [21, Sections II and III], a
symmetric scheme and a profit-oriented pricing scheme, for controlling the
P2P data storage system and point out their storage allocation problems.

3.1. Symmetric scheme. The symmetric management scheme is based on
the idea that every peer should contribute to the system in terms of service
at least as much as it benefits from others. It imposes a rule that the
contribution of each peer (the storage space offered by each peer) should
be equal to its use of the system (the storage space it uses to store its own
data). This scheme can work without an operator, and hence, does not

use monetary transactions. Here, peer i tries to choose c
(i)
s and c

(i)
o so as

to maximize its welfare W (i) subject to c
(i)
o ≥ c

(i)
s (≥ 0). Therefore, the

constrained set, denoted by C(i) (⊂ RK × RK), and the objective function,

denoted by f (i) : RK × RK → R, of peer i (i ∈ I) can be expressed as,

C(i) := RK
+ × RK

+ ∩
{
(cs, co) ∈ RK × RK : c(i)o ≥ c(i)s

}
,(3.1)

f (i) (cs, co) := −W (i)
(
c(i)s , c(i)o

)
= −

[
V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)]
(3.2)

for all cs := (c
(1)
s , c

(2)
s , . . . , c

(K)
s )T , co := (c

(1)
o , c

(2)
o , . . . , c

(K)
o )T ∈ RK , where

V (i) and P (i) are defined as in (2.2) and RK
+ := {(x(1), x(2), . . . , x(K))T ∈

RK : x(i) ≥ 0 (i = 1, 2, . . . ,K)}. f (i) (i ∈ I) defined by (3.2) satisfies the

strong convexity condition1 because V (i) and P (i) have quadratic forms.
Let T (i) : RK × RK → RK × RK (i ∈ I) be a mapping defined for all

cs, co ∈ RK by

T (i) (cs, co) :=
1

2

[
(cs, co) + PRK

+×RK
+

{
PĈ(i) (cs, co)

}]
,(3.3)

where Ĉ(i) := {(cs, co) ∈ RK×RK : c
(i)
o ≥ c

(i)
s } and PD stands for the metric

projection onto a closed convex set D (⊂ RK×RK).2 PRK
+×RK

+
and PĈ(i) can

be easily computed within a finite number of arithmetic operations because

1f : Rm → R is called a strongly convex function with α (α-strongly convex function)
if α > 0 exists such that, for all x,y ∈ Rm and for all λ ∈ [0, 1], f(λx + (1 − λ)y) ≤
λf(x) + (1− λ)f(y)− (1/2)αλ(1− λ)∥x− y∥2, where ∥ · ∥ stands for the norm of Rm.

2The metric projection onto a closed convex set D (⊂ Rm) is defined as follows:
PD(x) ∈ D and ∥x−PD(x)∥ = infy∈D ∥x−y∥ (x ∈ Rm). PD satisfies the nonexpansivity

condition [2, Proposition 2.10]; i.e., ∥PD(x)− PD(y)∥ ≤ ∥x− y∥ for all x,y ∈ Rm.
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RK
+×RK

+ and Ĉ(i) are half-spaces of RK×RK [2, p. 406], [3, Subchapter 28.3].

T (i) (i ∈ I) defined by (3.3) satisfies the firm nonexpansivity condition3

because PRK
+×RK

+
and PĈ(i) are nonexpansive.

4 Moreover, C(i) (i ∈ I) defined
by (3.1) can be represented as the fixed point set of T (i) defined by (3.3);
i.e.,

Fix
(
T (i)

)
:=

{
(cs, co) ∈ RK × RK : T (i) (cs, co) = (cs, co)

}
= C(i).

This is because Fix(T (i)) = Fix(PRK
+×RK

+
PĈ(i)) = RK

+ × RK
+ ∩ Ĉ(i) =: C(i).

The constrained set and objective function of the operator (peer 0) can
be expressed as,

C(0) := RK × RK = Fix (Id) =: Fix
(
T (0)

)
, f (0)(cs, co) := 0

for all (cs, co) ∈ RK×RK , because the operator does not directly control the
system. This means that control algorithms of the symmetric scheme must
be implemented without the operator so as to maximize the social welfare.

Therefore, we can describe the storage allocation problem of the symmet-
ric scheme as follows.

Problem 3.1 (storage allocation problem under symmetric scheme).

Maximize W (cs, co) = −
∑
i∈I

f (i) (cs, co)

subject to (cs, co) ∈
∩
i∈I

{
(cs, co) ∈ RK

+ × RK
+ : c(i)o ≥ c(i)s

}
=

∩
i∈I

Fix
(
T (i)

)
,

where f (i) : RK × RK → R and T (i) : RK × RK → RK × RK (i ∈ I) are
defined as in (3.2) and (3.3), respectively.

Problem 3.1 is one of maximizing the social welfare W defined in (2.4)
under the condition that each peer offers a storage capacity larger than the
capacity used for storing its own data.

Under the symmetric scheme, each peer can communicate with a neigh-
bor peer via the network. Hence, Problem 3.1 can be solved by incremental
optimization algorithms (see, e.g., [7, Subchapter 8.2], [8, 18, 19, 22]) that
allow each peer to use only its own private information5 and the transmit-
ted information from the neighbor peer. Moreover, peer i (i ∈ I) tries to

minimize only f (i) (i.e., maximize only its own welfare W (i)) over its own

3T : Rm → Rm is called a firmly nonexpansive mapping if, for all x,y ∈ Rm, ∥T (x)−
T (y)∥2 ≤ ⟨x−y, T (x)−T (y)⟩, where ⟨·, ·⟩ stands for the inner product of Rm. Fix(T ) :=
{x ∈ Rm : T (x) = x} is closed and convex when T is nonexpansive [15, Proposition 5.3].

4T := (1/2)(Id+S) satisfies the firm nonexpansivity condition when S is nonexpansive
[3, Definition 4.1, Proposition 4.2], where Id stands for the identity mapping.

5Peer i in Problem 3.1 has its own private f (i) defined by (3.2) because the four pa-

rameters, a(i), b(i), p
(i)
max, and p

(i)
min, are its own private information.
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constraint Fix(T (i)) = C(i). Accordingly, each peer never uses informa-
tion including other peers’ objective functions and constrained sets. There-
fore, none of the peers can use the metric projection PC onto the polytope
C :=

∩
i∈I Fix(T

(i)). In this paper, we present an algorithm for solving
Problem 3.1 that is different from the conventional incremental optimiza-
tion algorithms which use PC . We will show that the algorithm converges
to the solution to Problem 3.1 under certain assumptions (Section 4).

3.2. Profit-oriented pricing scheme. A payment-based management scheme
is based on monetary exchanges where peers can buy storage space in the
system for a unit price ps and sell some of their disk capacity for a unit price
po. Assuming that the operator knows that peer i (i ∈ I) will sell s(i)(po)

and buy d(i)(ps), it tries to choose ps and po so as to maximize its profit

U (0)(ps, po). Accordingly, the constrained set and objective function of the
operator (peer 0) are defined as follows.

C(0) := R+ × R+ ∩

{
(ps, po) ∈ R× R :

∑
i∈I

s(i) (po) ≥
∑
i∈I

d(i) (ps)

}
,(3.4)

f (0) (ps, po) := −U (0) (ps, po) = −

[
ps

∑
i∈I

d(i) (ps)− po
∑
i∈I

s(i) (po)

]
(3.5)

for all (ps, po) ∈ R× R.
C(0) defined in (3.4) is an absolute set in which conditions are needed

to control the system. This is because
∑

i∈I c
(i)
s =

∑
i∈I d

(i)(ps), which
is used for storing data, must not exceed the sum offered by peers, i.e.,∑

i∈I c
(i)
o =

∑
i∈I s

(i)(po).

Here, let us define a mapping T (0) : R×R → R×R for all (ps, po) ∈ R×R
by

T (0) (ps, po) :=
1

2

[
(ps, po) + PR+×R+

{
PĈ(0) (ps, po)

}]
,(3.6)

where Ĉ(0) := {(ps, po) ∈ R × R :
∑

i∈I s
(i)(po) ≥

∑
i∈I d

(i)(ps)}. Since s(i)

and d(i) defined as in (2.1) are affine, Ĉ(0) is a half-space, which means
that PĈ(0) can be easily computed within a finite number of arithmetic

operations. T (0) defined in (3.6) satisfies the firm nonexpansivity condition
(see Footnotes 3 and 4), and

Fix
(
T (0)

)
:=

{
(ps, po) ∈ R× R : T (0)(ps, po) = (ps, po)

}
= C(0)

because Fix(T (0)) = Fix(PR+×R+PĈ(0)) = R+ × R+ ∩ Ĉ(0) =: C(0) (see also

the discussion in (3.3)). Moreover, since s(i) and d(i) in (2.1) are affine, f (0)

in (3.5) satisfies the strong convexity condition.
Meanwhile, peer i (i ∈ I) selfishly chooses strategies that maximize its

welfare W (i). Accordingly, the constrained set and objective function of peer
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i (i ∈ I) can be expressed as

C(i) :=
[
p
(i)
min, p

(i)
max

]
×

[
p
(i)
min, p

(i)
max

]
= Fix (PC(i)) =: Fix

(
T (i)

)
,(3.7)

f (i) (ps, po) := −
[
V (i)

(
d(i) (ps)

)
− P (i)

(
s(i) (po)

)]
(3.8)

for all (ps, po) ∈ R × R. Since s(i) and d(i) in (2.1) are affine, and V (i) and

P (i) have quadratic forms, f (i) (i ∈ I) in (3.8) satisfies the strong convexity

condition. T (i) := PC(i) (i ∈ I) in (3.7) is firmly nonexpansive [2, Facts 1.5].
The main objective of the profit-oriented pricing scheme is to determine

optimal prices ps and po so as to maximize the operator’s profit U (0). Mean-
while, it is desirable to maximize the social welfare W to make the whole
system stable and reliable. As such, we can pose the storage allocation
problem under the profit-oriented pricing scheme as one of maximizing the
weighted mean of the operator’s profit and social welfare, λU (0)+(1−λ)W ,
for some weight parameter λ (∈ (0, 1)).

Problem 3.2 (storage allocation problem under profit-oriented pricing scheme).

Maximize λU (0) (ps, po) + (1− λ)W (ps, po) = −

[
λf (0) + (1− λ)

∑
i∈I

f (i)

]
(ps, po)

subject to (ps, po) ∈

{
(ps, po) ∈ R+ × R+ :

∑
i∈I

s(i) (po) ≥
∑
i∈I

d(i) (ps)

}
∩
∩
i∈I

[
p
(i)
min, p

(i)
max

]
×

[
p
(i)
min, p

(i)
max

]
=

∩
i∈{0}∪I

Fix
(
T (i)

)
,

where λ ∈ (0, 1) is a parameter chosen in advance, and f (i) : R×R → R and

T (i) : R× R → R× R (i ∈ {0} ∪ I) are defined as in (3.5), (3.6), (3.7), and
(3.8).

Problem 3.2 can be solved if one assumes the operator can communicate
with all peers and has access to a point computed by f (i) and T (i) of peer
i (i ∈ I). This implies that the operator can use broadcast optimization
algorithms (see, e.g., [11, 12]). In this paper, we will present a broadcast
optimization algorithm for solving Problem 3.2 that is different from the
conventional broadcast optimization algorithms [11, 12] which use the prox-

imity operator of f (i), and show that the proposed algorithm converges to
the solution to Problem 3.2 under certain assumptions (Section 5).

The following propositions will be used to prove the main theorems.

Proposition 3.1. [31, Lemma 3.1] Suppose that f : Rm → R is α-strongly
convex and differentiable, ∇f : Rm → Rm is L-Lipschitz continuous,6 µ ∈

6A : Rm → Rm is said to be L-Lipschitz continuous if ∥A(x) − A(y)∥ ≤ L∥x − y∥
(x,y ∈ Rm).
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(0, 2α/L2), and S := Id− µλ∇f , where λ ∈ [0, 1]. Then, for all x,y ∈ Rm,

∥S(x)−S(y)∥ ≤ (1−τλ)∥x−y∥, where τ := 1−
√

1− µ(2α− µL2) ∈ (0, 1].

Proposition 3.2. [4, Lemma 1.2] Assume that (an)n∈N ⊂ R+ satisfies
an+1 ≤ (1−αn)an+αnβn (n ∈ N), where (αn)n∈N ⊂ (0, 1] and (βn)n∈N ⊂ R
with

∑∞
n=1 αn = ∞ and lim supn→∞ βn ≤ 0. Then, limn→∞ an = 0.

Suppose that T : Rm → Rm is firmly nonexpansive; i.e., ∥T (x)−T (y)∥2 ≤
⟨x−y, T (x)−T (y)⟩ (x,y ∈ Rm). From ⟨x,y⟩ = (1/2){∥x∥2+ ∥y∥2−∥x−
y∥2}, we have ∥T (x)− T (y)∥2 ≤ ⟨x− y, T (x)− T (y)⟩ = (1/2){∥x− y∥2 +
∥T (x)− T (y)∥2 − ∥(x− y)− (T (x)− T (y))∥2} (x,y ∈ Rm). This leads us
to the following.

Proposition 3.3. Suppose that T : Rm → Rm is firmly nonexpansive. Then,
for all x,y ∈ Rm, ∥T (x)−T (y)∥2 ≤ ∥x−y∥2−∥(x−y)− (T (x)−T (y))∥2.

4. Distributed Control under the Symmetric Scheme

This section considers the following problem.

Minimize
∑
i∈I

f (i) (c) subject to c ∈
∩
i∈I

Fix
(
T (i)

)
,(4.1)

where f (i) : Rm → R (i ∈ I := {1, 2, . . . ,K}) is α(i)-strongly convex and dif-

ferentiable, ∇f (i) : Rm → Rm is L(i)-Lipschitz continuous, and T (i) : Rm →
Rm (i ∈ I) is firmly nonexpansive with

∩
i∈I Fix(T

(i)) ̸= ∅. Subsection 3.1
tells us that Problem 3.1 coincides with problem (4.1) when m := 2K and

f (i) and T (i) are defined by (3.2) and (3.3). Moreover, since
∑

i∈I f
(i) is

strongly convex and Lipschitz continuous, and
∩

i∈I Fix(T
(i)) is closed and

convex, problem (4.1) has a unique solution [31, Proposition 2.7].
Here, we assume the following.

Assumption 4.1. Peer i (i ∈ I) uses µ ∈ (0,mini∈I 2α
(i)/L(i)2) and the

sequence (λn)n∈N ⊂ (0, 1) satisfying7

(C1) lim
n→∞

λn = 0, (C2)

∞∑
n=0

λn = ∞, (C3) lim
n→∞

1

λn+1

∣∣∣∣ 1

λn+1
− 1

λn

∣∣∣∣ = 0.

The following algorithm can be used to solve problem (4.1).

Algorithm 4.1 (incremental gradient algorithm).

Step 0. Peer K sets c0 ∈ Rm arbitrarily and transmits c
(0)
0 := c0 to peer

1.
Step 1. Given cn := c

(0)
n ∈ Rm, peer i computes c

(i)
n ∈ Rm cyclically by

c(i)n := T (i)
(
c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
(i = 1, 2, . . . ,K).

Step 2. Peer K sets cn+1 ∈ Rm by cn+1 := c
(K)
n and transmits c

(0)
n+1 :=

cn+1 to peer 1. Put n := n+ 1, and go to Step 1.

7Example of (λn)n∈N satisfying (C1)–(C3) is λn := 1/(n+ 1)a (a ∈ (0, 1/2)).
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We are in the position to perform the convergence analysis on Algorithm
4.1.

Theorem 4.1. Under Assumption 4.1, the sequence (c
(i)
n )n∈N (i ∈ I) gen-

erated by Algorithm 4.1 converges to the solution to problem (4.1).

Theorem 4.1 means that each peer that uses Algorithm 4.1 with f (i)(c) :=

f (i)(cs, co) and T (i)(c) := T (i)(cs, co) defined by (3.2) and (3.3) can solve
the storage allocation problem 3.1 under the symmetric scheme. It would

be difficult for all peers to set µ ∈ (0,mini∈I 2α
(i)/L(i)2) in advance be-

cause µ depends on all α(i)s and L(i)s. Even if µ ≥ mini∈I 2α
(i)/L(i)2 , (C1)

guarantees that n0 ∈ N exists such that µλn < mini∈I 2α
(i)/L(i)2 for all

n ≥ n0. Hence, Theorem 4.1 ensures that (c
(i)
n )n≥n0 (i ∈ I) in Algorithm

4.1 converges to the unique solution to problem (4.1). This implies that
Algorithm 4.1 can solve problem (4.1) without depending on the choice of
µ. See Section 6 for the behaviors of Algorithm 4.1 with different values of
µ.

Proof. We first show that (c
(i)
n )n∈N and (∇f (i)(c

(i−1)
n ))n∈N (i ∈ I) are bounded.

Choose c ∈
∩

i∈I Fix(T
(i)) arbitrarily, and put τ (i) := 1−

√
1− µ(2α(i) − µL(i)2),

τ := mini∈I τ
(i), and M1 := maxi∈I ∥∇f (i)(c)∥. The nonexpansivity of T (i)

guarantees that, for all i ∈ I and for all n ∈ N,

∥∥∥c(i)n − c
∥∥∥ =

∥∥∥T (i)
(
c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
− T (i) (c)

∥∥∥
≤

∥∥∥(c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
− c

∥∥∥
=

∥∥∥(c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
−
(
c− µλn∇f (i) (c)

)
− µλn∇f (i) (c)

∥∥∥
≤

∥∥∥(c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
−
(
c− µλn∇f (i) (c)

)∥∥∥+ µM1λn,

which from µ < 2L(i)/α(i)2 , τ ≤ τ (i), and Proposition 3.1 implies that, for
all i ∈ I and for all n ∈ N,

∥∥∥c(i)n − c
∥∥∥ ≤

(
1− τ (i)λn

)∥∥∥c(i−1)
n − c

∥∥∥+ µM1λn

≤ (1− τλn)
∥∥∥c(i−1)

n − c
∥∥∥+ µM1λn.

(4.2)
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Therefore, for all n ∈ N,

∥cn+1 − c∥ =
∥∥∥c(K)

n − c
∥∥∥

≤ (1− τλn)
∥∥∥c(K−1)

n − c
∥∥∥+ µM1λn

≤ (1− τλn)
{
(1− τλn)

∥∥∥c(K−2)
n − c

∥∥∥+ µM1λn

}
+ µM1λn

≤ (1− τλn)
2
∥∥∥c(K−2)

n − c
∥∥∥+ 2µM1λn

≤ (1− τλn)
K
∥∥∥c(0)n − c

∥∥∥+KµM1λn

≤ (1− τλn) ∥cn − c∥+
(
KµM1

τ

)
τλn.

Induction shows that, for all n ∈ N,

∥cn − c∥ ≤ max

{
∥c0 − c∥ , KµM1

τ

}
.

This means (cn)n∈N (= (c
(0)
n )n∈N) is bounded. Hence, from (4.2) when i = 1,

(c
(1)
n ) is also bounded. Accordingly, induction shows that (c

(i)
n ) (i ∈ I)

is bounded. Moreover, from ∥∇f (i)(c
(i−1)
n ) − ∇f (i)(c)∥ ≤ L(i)∥c(i−1)

n − c∥
(i ∈ I, n ∈ N) and the boundedness of (c

(i)
n ) (i ∈ I), (∇f (i)(c

(i−1)
n ))n∈N

(i ∈ I) is bounded.
The nonexpansivity of T (i) guarantees that, for all i ∈ I and for all n ∈ N,

∥∥∥c(i)n+1 − c(i)n

∥∥∥
=
∥∥∥T (i)

(
c
(i−1)
n+1 − µλn+1∇f (i)

(
c
(i−1)
n+1

))
− T (i)

(
c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))∥∥∥
≤
∥∥∥(c(i−1)

n+1 − µλn+1∇f (i)
(
c
(i−1)
n+1

))
−

(
c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))∥∥∥
≤
∥∥∥(c(i−1)

n+1 − µλn+1∇f (i)
(
c
(i−1)
n+1

))
−

(
c(i−1)
n − µλn+1∇f (i)

(
c(i−1)
n

))∥∥∥
+ µ |λn − λn+1|

∥∥∥∇f (i)
(
c(i−1)
n

)∥∥∥ ,
which from Proposition 3.1 means that, for all i ∈ I and for all n ∈ N,

∥∥∥c(i)n+1 − c(i)n

∥∥∥ ≤ (1− τλn+1)
∥∥∥c(i−1)

n+1 − c(i−1)
n

∥∥∥+M2 |λn − λn+1| ,
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where M2 := maxi∈I(supn∈N µ∥∇f (i)(c
(i−1)
n )∥) < ∞. Therefore, we find

that, for all n ∈ N,

∥cn+1 − cn∥ =
∥∥∥c(K)

n − c
(K)
n−1

∥∥∥
≤ (1− τλn)

∥∥∥c(K−1)
n − c

(K−1)
n−1

∥∥∥+M2 |λn − λn−1|

≤ (1− τλn)
K
∥∥∥c(0)n − c

(0)
n−1

∥∥∥+KM2 |λn − λn−1|

≤ (1− τλn) ∥cn − cn−1∥+KM2 |λn − λn−1| ,
which from M3 := supn∈N ∥cn − cn−1∥ < ∞ and 1 ≤ 1/λn−1 implies

∥cn+1 − cn∥
λn

≤ (1− τλn)
∥cn − cn−1∥

λn
+KM2

|λn − λn−1|
λn

= (1− τλn)
∥cn − cn−1∥

λn−1
+ (1− τλn)

{
∥cn − cn−1∥

λn
− ∥cn − cn−1∥

λn−1

}
+KM2

|λn − λn−1|
λn

≤ (1− τλn)
∥cn − cn−1∥

λn−1
+M3

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣+KM2
|λn − λn−1|

λn

≤ (1− τλn)
∥cn − cn−1∥

λn−1
+M3

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣+KM2
|λn − λn−1|
λnλn−1

= (1− τλn)
∥cn − cn−1∥

λn−1
+ (M3 +KM2)

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣
= (1− τλn)

∥cn − cn−1∥
λn−1

+
M3 +KM2

τ
τλn

1

λn

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣ .
Hence, from (C2), (C3), and Proposition 3.2, we have

lim
n→∞

∥cn+1 − cn∥
λn

= 0.(4.3)

Accordingly, (C1) guarantees that

lim
n→∞

∥cn+1 − cn∥ = 0.(4.4)

Choose c ∈
∩

i∈I Fix(T
(i)) arbitrarily; i.e., c = T (i)(c) (i ∈ I). From

c
(i)
n := T (i)(c

(i−1)
n − µλn∇f (i)(c

(i−1)
n )) and the firm nonexpansivity of T (i),

Proposition 3.3 ensures that, for all i ∈ I and for all n ∈ N,∥∥∥c(i)n − c
∥∥∥2

≤
∥∥∥(c(i−1)

n − µλn∇f (i)
(
c(i−1)
n

))
− c

∥∥∥2
−
∥∥∥((c(i−1)

n − µλn∇f (i)
(
c(i−1)
n

))
− c

)
−

(
c(i)n − c

)∥∥∥2
=

∥∥∥(c(i−1)
n − c

)
− µλn∇f (i)

(
c(i−1)
n

)∥∥∥2 − ∥∥∥(c(i−1)
n − c(i)n

)
− µλn∇f (i)

(
c(i−1)
n

)∥∥∥2 ,
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which from ∥x− y∥2 = ∥x∥2 − 2⟨x,y⟩+ ∥y∥2 (x,y ∈ Rm) implies∥∥∥c(i)n − c
∥∥∥2 ≤ ∥∥∥c(i−1)

n − c
∥∥∥2 − 2µλn

⟨
c(i−1)
n − c,∇f (i)

(
c(i−1)
n

)⟩
−

∥∥∥c(i−1)
n − c(i)n

∥∥∥2
+ 2µλn

⟨
c(i−1)
n − c(i)n ,∇f (i)

(
c(i−1)
n

)⟩
≤

∥∥∥c(i−1)
n − c

∥∥∥2 − ∥∥∥c(i−1)
n − c(i)n

∥∥∥2 +M4λn,

where M4 := maxi∈I(supn∈N 2µ|⟨c−c
(i)
n ,∇f (i)(c

(i−1)
n )⟩|) < ∞. Accordingly,

we find that, for all n ∈ N,

∥cn+1 − c∥2 =
∥∥∥c(K)

n − c
∥∥∥2

≤
∥∥∥c(K−1)

n − c
∥∥∥2 − ∥∥∥c(K−1)

n − c(K)
n

∥∥∥2 +M4λn

≤
∥∥∥c(0)n − c

∥∥∥2 −∑
i∈I

∥∥∥c(i−1)
n − c(i)n

∥∥∥2 +KM4λn

= ∥cn − c∥2 −
∑
i∈I

∥∥∥c(i−1)
n − c(i)n

∥∥∥2 +KM4λn,

which means∑
i∈I

∥∥∥c(i−1)
n − c(i)n

∥∥∥2 ≤ ∥cn − c∥2 − ∥cn+1 − c∥2 +KM4λn

= (∥cn − c∥+ ∥cn+1 − c∥) (∥cn − c∥ − ∥cn+1 − c∥) +KM4λn

≤ M5 ∥cn − cn+1∥+KM4λn,

where M5 := supn∈N(∥cn − c∥ + ∥cn+1 − c∥) < ∞. Equation (4.4) and

(C1) lead us to that limn→∞
∑

i∈I ∥c
(i−1)
n − c

(i)
n ∥2 = 0; i.e., limn→∞ ∥c(i)n −

c
(i−1)
n ∥ = 0 (i ∈ I). Since ∥cn − c

(i−1)
n ∥ = ∥c(0)n − c

(i−1)
n ∥ ≤

∑i−1
j=1 ∥c

(j−1)
n −

c
(j)
n ∥ (i ∈ I, n ∈ N), we have

lim
n→∞

∥∥∥cn − c(i−1)
n

∥∥∥ = 0 (i ∈ I) .(4.5)

Moreover, since ∥cn − c
(i)
n ∥ ≤ ∥cn − c

(i−1)
n ∥+ ∥c(i−1)

n − c
(i)
n ∥ (i ∈ I, n ∈ N),

we also find that limn→∞ ∥cn − c
(i)
n ∥ = 0 (i ∈ I). The nonexpansivity

of T (i) ensures that, for all i ∈ I and for all n ∈ N, ∥c(i)n − T (i)(cn)∥ =

∥T (i)(c
(i−1)
n −µλn∇f (i)(c

(i−1)
n ))−T (i)(cn)∥ ≤ ∥(c(i−1)

n −µλn∇f (i)(c
(i−1)
n ))−

cn∥ ≤ ∥c(i−1)
n − cn∥+ µλn∥∇f (i)(c

(i−1)
n )∥. Equation (4.5), the boundedness

of (∇f (i)(c
(i−1)
n ))n∈N, and (C1) guarantee that limn→∞ ∥c(i)n −T (i)(cn)∥ = 0

(i ∈ I). From ∥cn−T (i)(cn)∥ ≤ ∥cn−c
(i)
n ∥+∥c(i)n −T (i)(cn)∥ (i ∈ I, n ∈ N),

and limn→∞ ∥cn − c
(i)
n ∥ = limn→∞ ∥c(i)n − T (i)(cn)∥ = 0 (i ∈ I), we get

lim
n→∞

∥∥∥cn − T (i) (cn)
∥∥∥ = 0 (i ∈ I) .(4.6)
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The boundedness of (cn)n∈N guarantees the existence of an accumula-
tion point of (cn)n∈N. Let c∗ ∈ Rm be an arbitrary accumulation point of
(cn)n∈N. Accordingly, a subsequence (cnk

)k∈N of (cn)n∈N exists such that

(cnk
)k∈N converges to c∗. Hence, the continuity of T (i) and (4.6) imply that

0 = lim
k→∞

∥∥∥cnk
− T (i) (cnk

)
∥∥∥ =

∥∥∥c∗ − T (i) (c∗)
∥∥∥ (i ∈ I) ;

i.e., c∗ ∈
∩

i∈I Fix(T
(i)).

The nonexpansivity of T (i) guarantees that, for all i ∈ I and for all n ∈ N,∥∥∥c(i)n − c
∥∥∥2

=
∥∥∥T (i)

(
c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
− T (i) (c)

∥∥∥2
≤
∥∥∥(c(i−1)

n − c
)
− µλn∇f (i)

(
c(i−1)
n

)∥∥∥2
=
∥∥∥c(i−1)

n − c
∥∥∥2 + 2µλn

⟨
c− c(i−1)

n ,∇f (i)
(
c(i−1)
n

)⟩
+ µ2λ2

n

∥∥∥∇f (i)
(
c(i−1)
n

)∥∥∥2 .
Since the gradient of f (i) (i ∈ I) at x ∈ Rm satisfies f (i)(y) ≥ f (i)(x) +

⟨y − x,∇f (i)(x)⟩ (y ∈ Rm), we have ⟨c − c
(i−1)
n ,∇f (i)(c

(i−1)
n )⟩ ≤ f (i)(c) −

f (i)(c
(i−1)
n ) (i ∈ I, n ∈ N). Thus, for all i ∈ I and for all n ∈ N,∥∥∥c(i)n − c

∥∥∥2 ≤ ∥∥∥c(i−1)
n − c

∥∥∥2 + 2µλn

[
f (i) (c)− f (i)

(
c(i−1)
n

)]
+M2

2λ
2
n.

Hence, for all n ∈ N,

∥cn+1 − c∥2 ≤
∥∥∥c(K−1)

n − c
∥∥∥2 + 2µλn

[
f (K) (c)− f (K)

(
c(K−1)
n

)]
+M2

2λ
2
n

≤ ∥cn − c∥2 + 2µλn

∑
i∈I

[
f (i) (c)− f (i)

(
c(i−1)
n

)]
+KM2

2λ
2
n

= ∥cn − c∥2 + 2µλn

[∑
i∈I

f (i) (c)−
∑
i∈I

f (i) (cn)

]
+ 2µλn

∑
i∈I

[
f (i) (cn)− f (i)

(
c(i−1)
n

)]
+KM2

2λ
2
n.

Therefore, for all n ∈ N,

2µ

[∑
i∈I

f (i) (cn)−
∑
i∈I

f (i) (c)

]
≤ ∥cn − c∥2 − ∥cn+1 − c∥2

λn
+KM2

2λn

+ 2µ
∑
i∈I

[
f (i) (cn)− f (i)

(
c(i−1)
n

)]
.

(4.7)

Since (1/λn)(∥cn − c∥2 − ∥cn+1 − c∥2) ≤ (M5/λn)∥cn − cn+1∥ (n ∈ N) and
(4.3), we have lim supn→∞(1/λn)(∥cn − c∥2 − ∥cn+1 − c∥2) ≤ 0. Moreover,

from f (i)(cn)−f (i)(c
(i−1)
n ) ≤ ⟨cn−c

(i−1)
n ,∇f (i)(cn)⟩ (i ∈ I, n ∈ N), we have
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f (i)(cn)− f (i)(c
(i−1)
n ) ≤ ∥cn− c

(i−1)
n ∥∥∇f (i)(cn)∥ (i ∈ I, n ∈ N), which from

(4.5) means that lim supn→∞
∑

i∈I [f
(i)(cn)− f (i)(c

(i−1)
n )] ≤ 0. Accordingly,

(4.7) and (C1) guarantee that, for all c ∈
∩

i∈I Fix(T
(i)),

lim sup
n→∞

[∑
i∈I

f (i) (cn)−
∑
i∈I

f (i) (c)

]
≤ 0; i.e., lim sup

n→∞

∑
i∈I

f (i) (cn) ≤
∑
i∈I

f (i) (c) .

Therefore, the convergence of (cnk
)k∈N to c∗ ∈

∩
i∈I Fix(T

(i)) and the con-

tinuity of
∑

i∈I f
(i) ensure that, for all c ∈

∩
i∈I Fix(T

(i)),∑
i∈I

f (i) (c∗) = lim
k→∞

∑
i∈I

f (i) (cnk
) = lim sup

k→∞

∑
i∈I

f (i) (cnk
) ≤

∑
i∈I

f (i) (c) .

This implies that c∗ ∈
∩

i∈I Fix(T
(i)) is the solution to problem (4.1). Since

problem (4.1) has a unique solution, denoted by c⋆, (cnk
)k∈N converges to

the unique solution c⋆. Let c∗ ∈ Rm be an accumulation point of (cn)n∈N.
Then, there exists (cnl

)l∈N (⊂ (cn)n∈N) converging to c∗. A discussion
similar to the one above leads us to conclude that c∗ is the solution to
problem (4.1). Accordingly, since any subsequence of (cn)n∈N converges to

c⋆, we can conclude that (cn)n∈N = (c
(K)
n−1)n∈N converges to c⋆. This implies

from (4.5) that (c
(i−1)
n )n∈N (i ∈ I) also converges to c⋆. Therefore, (c

(i)
n )n∈N

(i ∈ I) generated by Algorithm 4.1 converges to the solution to problem
(4.1). □ □

5. Distributed Control under the Profit-Oriented Pricing
Scheme

This section presents a broadcast optimization algorithm for solving the
following problem that includes Problem 3.2.

Minimize
∑

i∈{0}∪I

f (i) (p) subject to p ∈
∩

i∈{0}∪I

Fix
(
T (i)

)
,(5.1)

where f (i) : Rm → R (i ∈ {0} ∪ I, I := {1, 2, . . . ,K}) is α(i)-strongly con-

vex and differentiable, ∇f (i) : Rm → Rm is L(i)-Lipschitz continuous, and
T (i) : Rm → Rm (i ∈ {0}∪I) is firmly nonexpansive with

∩
i∈{0}∪I Fix(T

(i)) ̸=
∅.

Algorithm 5.1 (broadcast optimization algorithm).
Step 0. The operator (peer 0) sets p0 ∈ Rm arbitrarily and transmits p0

to all peers.

Step 1. Given pn ∈ Rm, peer i (i ∈ {0} ∪ I) computes p
(i)
n+1 ∈ Rm by

p
(i)
n+1 := T (i)

(
pn − µλn∇f (i) (pn)

)
and transmits p

(i)
n+1 to the operator.
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Step 2. The operator computes pn+1 ∈ Rm by

pn+1 :=
1

K + 1

∑
i∈{0}∪I

p
(i)
n+1

and transmits pn+1 to all peers. Put n := n+ 1, and go to Step 1.

Now let us conduct a convergence analysis on Algorithm 5.1.

Theorem 5.1. Under Assumption 4.1, the sequence (pn)n∈N generated by
Algorithm 5.1 converges to the solution to problem (5.1).

From Theorem 5.1, Algorithm 5.1 enables the operator to solve Problem
3.2, i.e., problem (5.1) when f (0) := −λU (0), f (i) := −(1 − λ)W (i) (i ∈
I, λ ∈ (0, 1)), T (0) is defined as in (3.6), and T (i) (i ∈ I) is defined as in
(3.7). Hence, all peers can get the pair of optimal prices (p⋆s, p

⋆
o) in the sense

of maximizing the weighted mean of the operator’s profit and the social
welfare by way of the operator. As a result, peer i (i ∈ I) can find the pair

of optimal storage capacities (c
(i)⋆
s , c

(i)⋆
o ) := (d(i)(p⋆s), s

(i)(p⋆o)) by using its
own supply and demand functions.

Proof. We shall prove that (pn)n∈N is bounded. Choose p ∈
∩

i∈{0}∪I Fix(T
(i))

arbitrarily. The nonexpansivity of T (i) and Proposition 3.1 ensure that, for
all i ∈ {0} ∪ I and for all n ∈ N,∥∥∥p(i)

n+1 − p
∥∥∥ =

∥∥∥T (i)
(
pn − µλn∇f (i) (pn)

)
− T (i) (p)

∥∥∥
≤

∥∥∥(pn − µλn∇f (i) (pn)
)
− p

∥∥∥
≤

∥∥∥(pn − µλn∇f (i) (pn)
)
−

(
p− µλn∇f (i) (p)

)∥∥∥+ µλn

∥∥∥∇f (i) (p)
∥∥∥

≤
(
1− τ (i)λn

)
∥pn − p∥+ µλn

∥∥∥∇f (i) (p)
∥∥∥

≤ (1− τλn) ∥pn − p∥+ µN1λn,

where τ ≤ τ (i) := 1 −
√

1− µ(2α(i) − µL(i)2) (i ∈ {0} ∪ I) and N1 :=

maxi∈{0}∪I ∥∇f (i)(p)∥. The definition of pn means that, for all n ∈ N,

∥∥pn+1 − p
∥∥ =

∥∥∥∥∥∥ 1

K + 1

∑
i∈{0}∪I

(
p
(i)
n+1 − p

)∥∥∥∥∥∥ ≤ 1

K + 1

∑
i∈{0}∪I

∥∥∥p(i)
n+1 − p

∥∥∥ .
(5.2)

Hence, for all n ∈ N,∥∥pn+1 − p
∥∥ ≤ (1− τλn) ∥pn − p∥+ µN1λn.

A similar argument as in the proof of the boundedness of (cn)n∈N in Algo-
rithm 4.1 leads us to conclude that, for all n ∈ N,

∥pn − p∥ ≤ max

{
∥p0 − p∥ , µN1

τ

}
,
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and hence, (pn)n∈N is bounded. Moreover, (p
(i)
n )n∈N (i ∈ {0} ∪ I) is also

bounded from the definition of pn. The Lipschitz continuity of ∇f (i) implies
that ∥∇f (i)(pn) − ∇f (i)(p)∥ ≤ L(i)∥pn − p∥ (i ∈ {0} ∪ I, n ∈ N), which,
from the boundedness of (pn)n∈N, implies that (∇f (i)(pn))n∈N (i ∈ {0}∪I)
is bounded.

The nonexpansivity of T (i) (i ∈ {0} ∪ I) and Proposition 3.1 guarantee
that, for all i ∈ {0} ∪ I and for all n ∈ N,∥∥∥p(i)

n+1 − p(i)
n

∥∥∥ =
∥∥∥T (i)

(
pn − µλn∇f (i) (pn)

)
− T (i)

(
pn−1 − µλn−1∇f (i)

(
pn−1

))∥∥∥
≤

∥∥∥(pn − µλn∇f (i) (pn)
)
−

(
pn−1 − µλn−1∇f (i)

(
pn−1

))∥∥∥
≤

∥∥∥(pn − µλn∇f (i) (pn)
)
−

(
pn−1 − µλn∇f (i)

(
pn−1

))∥∥∥
+ µ |λn−1 − λn|

∥∥∥∇f (i)
(
pn−1

)∥∥∥
≤ (1− τλn)

∥∥pn − pn−1

∥∥+ µN2 |λn − λn−1| ,

where N2 := maxi∈{0}∪I(supn∈N ∥∇f (i)(pn)∥) < ∞. Summing up the above
inequality over all i and going through a similar argument as in (5.2) we
find that, for all n ∈ N,∥∥pn+1 − pn

∥∥ ≤ (1− τλn)
∥∥pn − pn−1

∥∥+ µN2 |λn − λn−1| .

Therefore, in the same manner as in the proof of limn→∞ ∥cn+1−cn∥/λn = 0
(see (4.3)), we find that

lim
n→∞

∥∥pn+1 − pn

∥∥
λn

= 0, lim
n→∞

∥∥pn+1 − pn

∥∥ = 0.(5.3)

Choose p ∈
∩

i∈{0}∪I Fix(T
(i)) arbitrarily; i.e., p = T (i)(p) (i ∈ {0} ∪ I).

From p
(i)
n+1 := T (i)(pn−µλn∇f (i)(pn)), the firm nonexpansivity of T (i), and

Proposition 3.3, we have that, for all i ∈ {0} ∪ I and for all n ∈ N,∥∥∥p(i)
n+1 − p

∥∥∥2
≤

∥∥∥(pn − µλn∇f (i) (pn)
)
− p

∥∥∥2 − ∥∥∥((pn − µλn∇f (i) (pn)
)
− p

)
−

(
p
(i)
n+1 − p

)∥∥∥2
=

∥∥∥(pn − p)− µλn∇f (i) (pn)
∥∥∥2 − ∥∥∥(pn − p

(i)
n+1

)
− µλn∇f (i) (pn)

∥∥∥2 .
From ∥x− y∥2 = ∥x∥2 − 2⟨x,y⟩+ ∥y∥2 (x,y ∈ Rm), we find that

∥∥∥p(i)
n+1 − p

∥∥∥2 ≤ ∥pn − p∥2 − 2µλn

⟨
pn − p,∇f (i) (pn)

⟩
−

∥∥∥pn − p
(i)
n+1

∥∥∥2
+ 2µλn

⟨
pn − p

(i)
n+1,∇f (i) (pn)

⟩
≤ ∥pn − p∥2 −

∥∥∥pn − p
(i)
n+1

∥∥∥2 +N3λn,

(5.4)
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where N3 := maxi∈{0}∪I(supn∈N 2µ|⟨p− p
(i)
n+1,∇f (i)(pn)⟩|) < ∞. Since the

convexity of ∥ · ∥2 ensures that, for all n ∈ N,

∥∥pn+1 − p
∥∥2 =

∥∥∥∥∥∥ 1

K + 1

∑
i∈{0}∪I

(
p
(i)
n+1 − p

)∥∥∥∥∥∥
2

≤ 1

K + 1

∑
i∈{0}∪I

∥∥∥p(i)
n+1 − p

∥∥∥2 ,
(5.5)

summing up (5.4) over all i implies that, for all n ∈ N,∥∥pn+1 − p
∥∥2 ≤ ∥pn − p∥2 − 1

K + 1

∑
i∈{0}∪I

∥∥∥pn − p
(i)
n+1

∥∥∥2 +N3λn.

Hence, for all n ∈ N,
1

K + 1

∑
i∈{0}∪I

∥∥∥pn − p
(i)
n+1

∥∥∥2 ≤ ∥pn − p∥2 −
∥∥pn+1 − p

∥∥2 +N3λn

=
(
∥pn − p∥+

∥∥pn+1 − p
∥∥) (∥pn − p∥ −

∥∥pn+1 − p
∥∥)

+N3λn

≤ N4

∥∥pn − pn+1

∥∥+N3λn,

where N4 := supn∈N(∥pn − p∥ + ∥pn+1 − p∥) < ∞. From (C1) and (5.3),

we find that limn→∞ ∥pn − p
(i)
n+1∥ = 0 (i ∈ {0} ∪ I). The nonexpansivity of

T (i) (i ∈ {0}∪ I) implies that, for all i ∈ {0}∪ I and for all n ∈ N, ∥p(i)
n+1 −

T (i)(pn)∥ ≤ ∥T (i)(pn − µλn∇f (i)(pn)) − T (i)(pn)∥ ≤ µλn∥∇f (i)(pn)∥ ≤
µN2λn. Accordingly, (C1) means that limn→∞ ∥p(i)

n+1 − T (i)(pn)∥ = 0 (i ∈
{0} ∪ I). Hence, from ∥pn − T (i)(pn)∥ ≤ ∥pn − p

(i)
n+1∥+ ∥p(i)

n+1 − T (i)(pn)∥
(i ∈ {0} ∪ I, n ∈ N), we have

lim
n→∞

∥∥∥pn − T (i)(pn)
∥∥∥ = 0 (i ∈ {0} ∪ I) .(5.6)

The boundedness of (pn)n∈N guarantees the existence of an accumulation
point of (pn)n∈N. Let p∗ ∈ Rm be an arbitrary accumulation point of
(pn)n∈N. Accordingly, a subsequence (pnk

)k∈N of (pn)n∈N exists such that
(pnk

)k∈N converges to p∗. In the same manner as in the proof of c∗ ∈∩
i∈I Fix(T

(i)) in Section 4, the continuity of T (i) (i ∈ {0} ∪ I) and (5.6)

guarantee that p∗ ∈
∩

i∈{0}∪I Fix(T
(i)).

From the nonexpansivity of T (i) (i ∈ {0} ∪ I), we find that, for all i ∈
{0} ∪ I and for all n ∈ N,∥∥∥p(i)

n+1 − p
∥∥∥2 = ∥∥∥T (i)

(
pn − µλn∇f (i) (pn)

)
− T (i) (p)

∥∥∥2
≤

∥∥∥(pn − p)− µλn∇f (i) (pn)
∥∥∥2

= ∥pn − p∥2 − 2µλn

⟨
pn − p,∇f (i) (pn)

⟩
+ µ2λ2

n

∥∥∥∇f (i) (pn)
∥∥∥2 ,
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which from the differentiability of f (i) (i ∈ {0} ∪ I) implies that∥∥∥p(i)
n+1 − p

∥∥∥2 ≤ ∥pn − p∥2 + 2µλn

[
f (i) (p)− f (i) (pn)

]
+ µ2N2

2λ
2
n.

Summing up the above inequality over all i and (5.5) lead to∥∥pn+1 − p
∥∥2 ≤ ∥pn − p∥2 + 2µλn

K + 1

∑
i∈{0}∪I

[
f (i) (p)− f (i) (pn)

]
+ µ2N2

2λ
2
n

for all n ∈ N, which means

2µ

K + 1

∑
i∈{0}∪I

[
f (i) (pn)− f (i) (p)

]
≤

∥pn − p∥2 −
∥∥pn+1 − p

∥∥2
λn

+ µ2N2
2λn

≤
N4

∥∥pn+1 − pn

∥∥
λn

+ µ2N2
2λn

for all n ∈ N. Therefore, (C1) and (5.3) guarantee that, for all p ∈∩
i∈{0}∪I Fix(T

(i)),

lim sup
n→∞

∑
i∈{0}∪I

[
f (i) (pn)− f (i) (p)

]
≤ 0.(5.7)

In the same manner as in the proof of Theorem 4.1 and (5.7), we find that
(pn)n∈N generated by Algorithm 5.1 converges to the solution to problem
(5.1). □ □

6. Numerical Examples

We conducted numerical experiments comparing the capabilities of the
proposed algorithms with different parameters for solving Problem 3.1 and
3.2 when K = 100. We used µ = 10−1, 10−3 and λn := 1/(n + 1)0.45.

We randomly chose a(i), b(i) ∈ (0, 5], p
(i)
min ∈ [0, 10], p

(i)
max ∈ [90, 100] (i =

1, 2, . . . , 100). The computer used in the experiment had an Intel Boxed
Core i7 i7-870 2.93 GHz 8M CPU and 8 GB of memory. The language was
MATLAB 7.13.

In the experiment, we set c := c0 = c(i) (i ∈ I) in Algorithm 4.1, selected
one hundred random points c = c(k) (k = 1, 2, . . . , 100), and executed
the algorithm on these points. Let c(k) (∈ R100 × R100) be one of the
randomly selected points and let (cn(k))n∈N (⊂ R100×R100) be the sequence
generated by c(k) and Algorithm 4.1. We employed Dn(k) := ∥cn(k) −
T (100)T (99) · · ·T (1)(cn(k))∥ (k = 1, 2, . . . , 100, n ∈ N) and their mean value,

Dn := (1/100)
∑100

k=1Dn(k) (n ∈ N), where T (i) (i ∈ I) is defined as in
(3.3). If (Dn)n∈N converges to 0, Algorithm 4.1 converges to a point in∩

i∈I Fix(T
(i)).

Figure 1 describes the behaviors of Dn for Algorithm 4.1 when µ = 10−1

and 10−3. Here, (Dn)n∈N converges to 0; i.e., Algorithm 4.1 converges to
a point in the constraint set in Problem 3.1. In particular, it converges
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quickly when µ = 10−3. This is because µλn ∈ (0,mini∈I 2L
(i)/α(i)2), which

is the convergence condition of the algorithm, is satisfied in the early stages

(see Assumption 4.1). Let us define c
(i)
n,s := (1/100)

∑100
k=1 c

(i)
n,s(k) and c

(i)
n,o :=

(1/100)
∑100

k=1 c
(i)
n,o(k) (i ∈ I, n ∈ N), where cn(k) := (cn,s(k), cn,o(k)) ∈

R100 × R100, cn,s(k) := (c
(1)
n,s(k), c

(2)
n,s(k), . . . , c

(100)
n,s (k))T ∈ R100, cn,o(k) :=

(c
(1)
n,o(k), c

(2)
n,o(k), . . . , c

(100)
n,o (k))T ∈ R100 (k = 1, 2, . . . , 100, n ∈ N). Figures 2–

4 show the behaviors of c
(i)
n,s and c

(i)
n,o (i = 20, 40, 60) generated by Algorithm

4.1 with µ = 10−3. We can see from these figures that the convergent point

c⋆ := (c⋆s, c
⋆
o) satisfies c

(i)⋆

o = c
(i)⋆

s (i = 20, 40, 60); i.e., in the symmetric

scheme, peer i offers c
(i)⋆

o equivalent to its own used amount c
(i)⋆

s .
Next, we solved Problem 3.2 with λ := 1/2 by using Algorithm 5.1. We

selected one hundred random points p0 = p(k) (k = 1, 2, . . . , 100) and
executed the algorithm on these points. Let p(k) (∈ R × R) be one of
the randomly selected points, and let (pn(k))n∈N := (pn,s(k), pn,o(k)) (⊂
R×R) be the sequence generated by p(k) and Algorithm 5.1. We employed

dn(k) := ∥pn(k)− T (100)T (99) · · ·T (0)(pn(k))∥ (k = 1, 2, . . . , 100, n ∈ N) and
dn := (1/100)

∑100
k=1 dn(k) (n ∈ N), where T (0) and T (i) (i ∈ I) are defined

as in (3.6) and (3.7). We also employed pn,s := (1/100)
∑100

k=1 pn,s(k) and

pn,o := (1/100)
∑100

k=1 pn,o(k) (n ∈ N).
Figure 5 indicates the behavior of dn for Algorithm 5.1 when µ = 10−1 and

10−3. Since (dn)n∈N converges to 0, we find that Algorithm 5.1 converges
to a point in the constrained set in Problem 3.2. As we pointed out in
the above paragraph (Figure 1), Algorithm 5.1 with µ = 10−3 converges
faster than it does with µ = 10−1. Figure 6 shows the behavior of pn,s
and pn,o for Algorithm 5.1 when µ = 10−3, and the (pn,s)n∈N and (pn,o)n∈N
converge to the same point. This implies that the optimal prices, p⋆s and
p⋆o, for maximizing the mean of the operator’s profit and social welfare are
approximately the same.

7. Conclusion

We discussed the storage allocation problems caused by incentive schemes
(the symmetric scheme and the profit-oriented pricing scheme) for control-
ling P2P data storage systems. We presented two distributed optimization
algorithms, called the incremental gradient algorithm and the broadcast op-
timization algorithm, for solving them and performed convergence analyses.
The incremental gradient algorithm can be applied to the symmetric scheme,
while the broadcast optimization algorithm is for the profit-oriented pricing
scheme. We gave numerical results showing that the algorithms converge to
solutions to the storage allocation problems.
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