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Abstract This paper considers a stochastic optimization problem over the
fixed point sets of quasinonexpansive mappings on Riemannian manifolds. The
problem enables us to consider Riemannian hierarchical optimization problems
over complicated sets, such as the intersection of many closed convex sets, the
set of all minimizers of a nonsmooth convex function, and the intersection of
sublevel sets of nonsmooth convex functions. We focus on adaptive learning
rate optimization algorithms, which adapt step-sizes (referred to as learning
rates in the machine learning field) to find optimal solutions quickly. We then
propose a Riemannian stochastic fixed point optimization algorithm, which
combines fixed point approximation methods on Riemannian manifolds with
the adaptive learning rate optimization algorithms. We also give convergence
analyses of the proposed algorithm for nonsmooth convex and smooth non-
convex optimization. The analysis results indicate that, with small constant
step-sizes, the proposed algorithm approximates a solution to the problem.
Consideration of the case in which step-size sequences are diminishing demon-
strates that the proposed algorithm solves the problem with a guaranteed
convergence rate. This paper also provides numerical comparisons that demon-
strate the effectiveness of the proposed algorithms with formulas based on the
adaptive learning rate optimization algorithms, such as Adam and AMSGrad.
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1 Introduction

In light of developments in machine learning and image/signal processing (see,
e.g., [5,15,26,29] and references therein), Riemannian optimization has at-
tracted a great deal of attention. Useful iterative algorithms thus have been
presented for Riemannian optimization. For example, nonlinear Riemannian
conjugate gradient methods have been widely studied in [15,28,31,32] for un-
constrained optimization. First-order methods [6,36] and proximal point algo-
rithms [11,22] have been reported for unconstrained/constrained Riemannian
optimization. Riemannian stochastic gradient methods were proposed in [7,
17,33] for Riemannian stochastic optimization.

For training deep neural networks, adaptive learning rate optimization al-
gorithms based on using stochastic subgradients and exponential moving av-
erages have a strong presence since they have fast convergence for stochastic
optimization in Euclidean space. For example, AdaGrad [10] and RMSProp
[34] take advantage of efficient learning rates (referred to as step-sizes in the
field of optimization) derived from element-wise squared stochastic gradients.
Adam [18] and AMSGrad [27] are also useful algorithms using exponential
moving averages of stochastic gradients and of element-wise squared stochas-
tic gradients.

Recently, Riemannian AMSGrad (RAMSGrad) was studied in [5], which is
a modification of AMSGrad for Euclidean space to be applicable to a product
of Riemannian manifolds. RAMSGrad uses the metric projection onto a con-
straint convex set so as to satisfy that the sequence generated by RAMSGrad
belongs to the constraint set. Accordingly, RAMSGrad can be applied to only
Riemannian convex optimization with simple constraints in the sense that the
metric projection can be easily computed.

In contrast to [5], this paper tries to consider a Riemannian optimization
problem with complicated constraints, such as the intersection of many convex
sets [1,6,36], the set of minimizers of a convex function [11,22], and the inter-
section of sublevel sets of convex functions [36]. The problem is a hierarchical
constrained optimization problem with three stages, as follows. The first stage
is to find points in Riemannian manifolds (e.g., to find points in nonconvex
constraints in Euclidean space). The second stage is to find fixed points of
quasinonexpansive mappings on Riemannian manifolds. Complicated convex
sets, such as those mentioned above, can be expressed as the fixed point set
of a quasinonexpansive mapping on a Riemannian manifold (Proposition 2.2).
The third stage is to optimize an objective function over the second stage.
For example, the third stage includes the case of trying to find a stationary



Riemannian Stochastic Fixed Point Optimization Algorithm 3

point of a smooth nonconvex function over the set of minimizers of a convex
function over a Riemannian manifold.

The reason why the above problem should be considered is to enable us
to resolve unsolved optimization problems on Riemannian manifolds. For ex-
ample, in the natural language processing for hierarchical representations of
symbolic data, embeddings into a Poincaré ball perform better than embed-
dings into a Euclidean space [26]. This implies that a Riemannian optimization
problem should be considered for natural language processing. As seen above,
we expect to gain new insights from re-considering several problems with com-
plicated constraints in the Hilbert/Euclidean space setting as Riemannian op-
timization. In addition, a classifier ensemble problem with sparsity leaning can
be expressed as a Euclidean convex optimization problem over the sublevel set
of a convex function [16]. Since the results in this paper enable us to consider a
Riemannian optimization problem over the sublevel set of a convex function,
there is a possibility that the results will lead to new Riemannian learning
methods which can outperform the existing methods in [16] by a wide margin.

We first define quasinonexpansive mappings of which fixed point sets are
equal to complicated constraint sets. Thanks to the previously reported results
in [11,21,22], we can define quasinonexpansive mappings for the cases where
the constraint sets are those mentioned above: the intersection of many closed
convex sets, the set of all minimizers of a nonsmooth convex function, and the
intersection of sublevel sets of convex functions (Proposition 2.3). Accordingly,
the Riemannian optimization problem with such complicated constraints can
be expressed as a Riemannian optimization problem over the fixed point sets
of quasinonexpansive mappings (Problem 1). Next, we combine the ideas of
adaptive learning rate optimization algorithms (see the second and third para-
graphs of this section) with the fixed point methods [21]. We then propose a
Riemannian stochastic fixed point optimization algorithm (Algorithm 1) for
solving the problem.

The intellectual contribution of this paper is that the proposed methodol-
ogy enables one to deal with Riemannian optimization over the fixed point sets
of quasinonexpansive mappings, especially in contrast to recent papers [5,29]
that discussed Riemannian convex optimization over simple constraints. To
clarify this contribution, let us consider the case where a constraint set is the
intersection of many closed convex sets on a Riemannian manifold (Proposi-
tion 2.3(ii), Example 1). Even if the metric projection onto each closed convex
set can be easily computed within a finite number of arithmetic operations,
the metric projection onto the intersection of many closed convex sets would
not be implemented in practice. This is because, for each iteration, we must
solve a subproblem of minimizing the distance function over the intersection to
find the nearest point to the intersection. Meanwhile, we can use a computable
mapping which consists of the product of the metric projections (see Example
1 for the details), since the metric projection onto each closed convex set can
be easily implemented. This computable mapping satisfies the quasinonexpan-
sivity condition and that the fixed point set of this mapping coincides with the
intersection of many closed convex sets. Therefore, the proposed algorithm (Al-
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gorithm 1) using this computable quasinonexpansive mapping can be applied
to Riemannian optimization over the intersection of many closed convex sets,
in contrast to [5,29], which discussed Riemannian convex optimization over
simple constraints. This paper also gives other examples of Problem 1, namely,
Riemannian optimization over the set of minimizers of a convex function (Ex-
ample 2) and Riemannian optimization over the intersection of sublevel sets
of convex functions (Example 3).

The theoretical contribution of this paper is its analysis of the proposed
algorithm (Algorithm 1) for solving the Riemannian optimization problem
over the fixed point sets of quasinonexpansive mappings (Problem 1). The
analysis indicates that the proposed algorithm with small constant step-sizes
can approximate a solution to the main problem (Theorems 1 and 3). The
analysis also shows that the proposed algorithm with diminishing step-sizes
can solve the main problem with a guaranteed convergence rate (Theorems 2
and 4, and Corollary 1).

The practical contribution of this paper is a presentation of numerical re-
sults demonstrating that the proposed algorithm can be applied to Riemannian
optimization over fixed point constraints. In this paper, we consider two cases
for the constraint conditions. The first case is a consistent case such that the
intersection of finite closed balls on the Poincaré disk is nonempty (Subsec-
tion 6.2). The second case is an inconsistent case such that the intersection is
empty (Subsection 6.3). For the second case, we define a generalized convex
feasible set as a subset of the absolute constrained set with the elements clos-
est to the subsidiary constraint set. Numerical results show that the proposed
algorithms with formulas based on Adam and AMSGrad perform well.

2 Mathematical Preliminaries

Let N be the set of all positive integers including zero, RI be an I-dimensional
Euclidean space, RI

+ := {(xi)Ii=1 ∈ RI : xi ≥ 0 (i = 1, 2, . . . , I)}, and RI
++ :=

{(xi)Ii=1 ∈ RI : xi > 0 (i = 1, 2, . . . , I)}. Let E[X] denote the expectation
of random variable X. Unless stated otherwise, all relations between random
variables are supported to hold almost surely.

2.1 Riemannian manifold and Hadamard manifold

Let M be a connected m-dimensional smooth manifold. Let TxM be the tan-
gent space of M at x ∈ M and TM =

⋃
x∈M TxM be the tangent bundle of

M . A Riemannian metric at x ∈M is denoted by ⟨·, ·⟩x : TxM×TxM → R and
its induced norm is defined for all u ∈ TxM by ∥u∥x :=

√
⟨u, u⟩x. Manifold M

endowed with Riemannian metric ⟨·, ·⟩ := (⟨·, ·⟩x)x∈M is called a Riemannian
manifold.

Given a piecewise smooth curve γ : [a, b] →M joining p to q (i.e., γ(a) = p

and γ(b) = q), the length L(γ) of γ is defined by L(γ) :=
∫ b

a
∥γ̇(t)∥γ(t)dt,
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where γ̇ denotes the derivative of γ. The distance function d: M ×M → R+

is defined for all p, q ∈M by the minimal length over the set of all such curves
joining p to q.

A complete, simply connected Riemannian manifold of nonpositive sec-
tional curvature is called an Hadamard manifold. Anm-dimensional Hadamard
manifoldM is diffeomorphic to the Euclidean space Rm [30, Chapter V, Corol-
lary 3.5]. An exponential mapping at a point x in an Hadamard manifold M
is denoted by expx : TxM → M . The mapping expx is well-defined on TxM ,
which is guaranteed by the Hopf-Rinow theorem [30, Chapter III, Theorem
1.1]. The mapping expx maps u ∈ TxM to y := expx(u) ∈ M such that
there exists a geodesic γ : [a, b] → M satisfying γ(a) = x, γ(b) = y, and
γ̇(a) = u. The Hadamard-Cartan theorem [30, Chapter V, Theorem 4.1] guar-
antees that expx is diffeomorphic, that is, there exists an inverse mapping
exp−1

x : M → TxM . For all x, y ∈M , φx→y denotes an isometry from TxM to
TyM .

Let M i be an mi-dimensional Hadamard space and M be the Cartesian
product of theM is, i.e.,M :=M1×M2×· · ·×M I . The tangent space ofM at
x = (x1, x2, . . . , xI) ∈M is defined by TxM := Tx1M1⊕Tx2M2⊕· · ·⊕TxIM I ,
where ⊕ stands for the direct sum of vector spaces. For all x = (xi)

I
i=1 ∈ M ,

we define ψ ∈ TxM by ψ = (ψi)Ii=1 = (ψ1, ψ2, . . . , ψI), where ψi ∈ TxiM i. An
exponential mapping at a point xi ∈M i is denoted by expixi , and an isometry
from TxiM i to TyiM i is denoted by φi

xi→yi .

2.2 Convexity, monotonicity, and related mappings

Let M be an Hadamard manifold. A set C ⊂ M is referred to as a convex
set (see, e.g., [11, Subsection 3.1] and references therein) if, for any pair of
points in C, the geodesic joining those two points is contained in C. Suppose
that C ⊂ M is nonempty, closed, and convex, and x ∈ M . Then there exists
a unique point [11, Corollary 3.1], denoted by PC(x), such that

PC(x) ∈ C and d(x, PC(x)) = inf
y∈C

d(x, y) =: d(x,C).

We call PC the metric projection onto C.

A function f : M → R is said to be convex (see, e.g., [11, Subsection 3.2]
and references therein) if, for any geodesic γ of M , f ◦ γ : R → R is convex.
Accordingly, any convex function onM is continuous. Suppose that f : M → R
is convex. Theorem 3.3 in [11] guarantees that, for all x ∈ M , there exists
ux ∈ TxM such that, for all y ∈M ,

f(y) ≥ f(x) + ⟨ux, exp−1
x (y)⟩x.

The tangent vector ux is called a subgradient of f at x. When f is smooth,
the vector ux is called the Riemannian gradient of f at x and is denoted by
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gradf(x). The subdifferential vector field ∂f : M ⇒ TM of a convex function
f : M → R is defined by the set of all subgradients of f , i.e., for all x ∈M ,

∂f(x) :=
{
u ∈ TxM : f(y) ≥ f(x) + ⟨u, exp−1

x (y)⟩x (y ∈M)
}
̸= ∅.

The subgradient projection Pf,λ relative to a convex function f : M → R and
λ > 0 is defined for all x ∈M by

Pf,λ(x) :=

x (x ∈ lev≤0(f) := {x ∈M : f(x) ≤ 0}) ,

expx

(
−λ f(x)

∥ux∥x
ux

)
(x /∈ lev≤0(f)),

where ux is any tangent vector in ∂f(x). The results in [2, Lemma 3.1], [3,
Proposition 2.3], and [35, Subchapter 4.3] provide the definition and properties
of the subgradient projection under the Hilbert space setting.

Let A : M ⇒ TM be a set-valued vector field such that, for all x ∈ D(A) :=
{x ∈ M : A(x) ̸= ∅}, A(x) ⊂ TxM . A is said to be monotone (see, e.g., [22,
Definition 2] and references therein) if, for all x, y ∈ D(A), all u ∈ A(x), and all
v ∈ A(y), ⟨u, exp−1

x (y)⟩x ≤ ⟨v,− exp−1
y (x)⟩y. A is said to be maximal (see, e.g.,

[22, Definition 2] and references therein) if A is monotone and the following
holds: for all x ∈ M and all u ∈ TxM , ⟨u, exp−1

x (y)⟩x ≤ ⟨v,− exp−1
y (x)⟩y

(y ∈ D(A), v ∈ A(y)) implies that u ∈ A(x). The subdifferential vector field
∂f of a convex function f : M → R with D(f) := {x ∈M : f(x) < +∞} =M
is maximal monotone [20, Theorem 5.1]. We call the set of zeros of a set-valued
vector field A : M ⇒ TM the zero point set, which is defined by zer(A) :=
{x ∈ D(A) : 0 ∈ A(x)}.

Let λ > 0. The resolvent Jλ : M ⇒ M [22, Definition 6] of a set-valued
vector field A : M ⇒ TM is defined for all x ∈M by

Jλ(x) := {z ∈M : x ∈ expz (λA(z))} .

Jλ is single-valued when A is monotone [22, Theorem 4]. The Moreau-Yosida

regularization Rf
λ : M ⇒M [11, (20)], [22, (60)] of a convex function f : M →

R is defined for all x ∈M by

Rf
λ(x) := argmin

y∈M

{
f(y) +

1

2λ
d(x, y)2

}
.

Rf
λ is single-valued and D(Rf

λ) =M [11, Lemma 4.2].

2.3 Nonexpansivity and fixed point set

Let C be a nonempty subset of a Riemannian manifold M with the distance
function d and let T : C →M be a mapping. The fixed point set of T is defined
by

Fix(T ) := {x ∈ C : T (x) = x} .
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T is said to be firmly nonexpansive [22, Definition 1], [12, Subchapter 1.11] if,
for all x, y ∈ C, the function Φ : [0, 1] → R+ defined by

Φ(t) := d
(
expx[t exp

−1
x (T (x))], expy[t exp

−1
y (T (y))]

)
is decreasing. (1)

T is said to be nonexpansive if

d(T (x), T (y)) ≤ d(x, y) (x, y ∈ C). (2)

T is said to be quasinonexpansive if

d(T (x), y) ≤ d(x, y) (x ∈ C, y ∈ Fix(T )). (3)

T is said to be strictly quasinonexpansive if

d(T (x), y) < d(x, y) (x ∈ C\Fix(T ), y ∈ Fix(T )). (4)

Finally, T is said to be firmly quasinonexpansive if

d(T (x), y)2 + d(T (x), x)2 ≤ d(x, y)2 (x ∈ C, y ∈ Fix(T )). (5)

The following proposition is true.

Proposition 2.1 Suppose that C is a nonempty, closed convex set of an
Hadamard manifold M and T : C → C is quasinonexpansive.

(i) [8, Theorem 1.3] If Fix(T ) is nonempty, then Fix(T ) is closed and convex;
(ii) [19, Theorem 13] If C is bounded and T is nonexpansive, then Fix(T ) is

nonempty.

The relationships between the above mappings are given in the following
proposition (the proof is given in Supplementary Material).

Proposition 2.2 Let C be a nonempty subset of an m-dimensional Hadamard
manifold M with the distance function d and let T : C → M be a mapping.
Then,

(i) (1) implies (2), and (2) implies (3);
(ii) (1) implies (5), (5) implies (4), and (4) implies (3).

Let T : C → M be quasinonexpansive and α ∈ (0, 1). Here, we define
Sα : C →M as follows: for all x ∈M ,

Sα(x) := expx[(1− α) exp−1
x (T (x))].

Then, the condition Fix(T ) = Fix(Sα) holds from the facts that expx is bijec-
tive and expx(0x) = x, where 0x denotes the zero element of TxM . Moreover,
the discussion in [21, p.553] guarantees that, for all x ∈ C\Fix(T ) and all
y ∈ Fix(T ),

d(Sα(x), y)
2 ≤ d(x, y)2 − α(1− α)d(T (x), x)2 < d(x, y)2, (6)

that is, Sα is strictly quasinonexpansive.
The following proposition suggests some examples of quasinonexpansive

mappings (the proof is given in Supplementary Material).
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Proposition 2.3 Let M be an m-dimensional Hadamard manifold, Cj (j =
1, . . . , J) be a nonempty, closed convex subset of M , and λ > 0. Suppose
that Pj := PCj is the metric projection onto Cj, A : M ⇒ TM is monotone,
g : M → R is convex, and Pg,λ is the subgradient projection. Then, the follow-
ing hold:

(i) The metric projection Pj is firmly nonexpansive with Fix(Pj) = Cj;

(ii) Under
⋂J

j=1 Cj ̸= ∅, the mapping T := P1P2 · · ·PJ is nonexpansive with

Fix(T ) =
⋂J

i=1 Ci;
(iii) The resolvent Jλ of A is firmly nonexpansive with Fix(Jλ) = zer(A);
(iv) The Moreau-Yosida regularization Rg

λ of g is firmly nonexpansive with
Fix(Rg

λ) = argminx∈M g(x);
(v) The subgradient projection Pg,λ satisfies that Fix(Pg,λ) = lev≤0(g).

Moreover, suppose that M has its sectional curvature lower-bounded by κ ≤ 0,
that C has a diameter bounded by D, and that hj : C → R (j = 1, 2, . . . , J) is
convex with D(hj) = C. Then, the following also hold:

(vi) The subgradient projection Phj ,λ with λ ∈ (0, 2/ζ) is strictly quasinonex-
pansive with Fix(Phj ,λ) = lev≤0(hj), where ζ is a positive number depend-
ing on κ and D;

(vii) Under
⋂J

j=1 lev≤0(hj) ̸= ∅, the mapping T := Ph1,λPh2,λ · · ·PhJ ,λ with

λ ∈ (0, 2/ζ) is strictly quasinonexpansive with Fix(T ) =
⋂J

j=1 lev≤0(hj).

3 Stochastic Optimization over Fixed Point Set on Riemannian
Manifold

This paper considers the following problem.

Problem 1 Let M i (i ∈ I := {1, 2, . . . , I}) be an mi-dimensional Hadamard
manifold with sectional curvature lower-bounded by κi ≤ 0 and distance func-
tion di and M be the Cartesian product of the M is, i.e., M := M1 ×M2 ×
· · · ×M I . Assume that

(A1) T i : M i → M i (i ∈ I) is quasinonexpansive with Fix(T i) ̸= ∅ (i ∈ I), and
X := Fix(T 1)× Fix(T 2)× · · · × Fix(T I);

(A2) A function f : M → R is defined for all x ∈M by f(x) := E[F (x, ξ)], where
F (·, ξ) : M → R and ξ is a random vector whose probability distribution
P is supported on a set Ξ ⊂ RM .

Then, we would like to find a point x⋆ in X⋆ defined by

X⋆ :=
{
x⋆ ∈ X :

〈
exp−1

x⋆
(x), g(x⋆)

〉
x⋆

≥ 0 (x ∈ X)
}
,

where g(x) = (gi(x))i∈I denotes the (sub)gradient of f .

The relationship between Problem 1 and the problem of minimizing f over
X is expressed by the following proposition.
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Proposition 3.1 Suppose that Assumptions (A1) and (A2) hold.

(i) If f : M → R is smooth, then

X⋆ ⊃ argmin
x∈X

f(x) :=

{
x⋆ ∈ X : f(x⋆) = f⋆ := inf

x∈X
f(x)

}
;

(ii) If f : M → R is convex, then

X⋆ = argmin
x∈X

f(x).

Proposition 2.1(i) and Proposition 3.1 in [23] imply Proposition 3.1(i),
which in turn implies that Problem 1 when f is smooth and nonconvex is a
stationary point problem associated with the nonconvex optimization problem
to minimize f over X. Meanwhile, when f is nonsmooth and convex, from
the definition of the subdifferential vector field ∂f , we can prove Proposition
3.1(ii), i.e., that Problem 1 coincides with the nonconvex optimization problem
to minimize f over X.

Proposition 2.3(i) and (ii) suggest the following example of Problem 1.

Example 1 (Optimization over the intersection of convex sets) Let Ci
j (i ∈

I, j ∈ J i := {1, 2, . . . , J i}) be a nonempty, closed convex subset of M i with⋂
j∈J i Ci

j ̸= ∅ and P i
j (j ∈ J i) be the metric projection onto Ci

j . Then,

Problem 1 with a mapping T i := P i
1P

i
2 · · ·P i

Ji (i ∈ I) is to find a point x⋆ in
X⋆ with

X =
⋂

j∈J 1

C1
j ×

⋂
j∈J 2

C2
j × · · · ×

⋂
j∈J I

CI
j .

Let us compare the convex optimization problem considered in [5, Section
4] with Example 1. Example 1 when J i = 1 (i ∈ I) and f is a convex function
coincides with the problem in [5, Section 4] that is to

minimize f(x) subject to x ∈ C1 × C2 × · · · × CI , (7)

where Ci := Ci
1 (i ∈ I) is simple in the sense that P i := P i

1 can be easily
computed. Meanwhile, Example 1 has three stages as follows: The first stage
is to find points of M . The second stage is to find points of complicated sets⋂

j∈J i Ci
j (i ∈ I), which are each the intersection of many convex sets. The

problem in the second stage is called a convex feasibility problem [1], [4, p.99],
[6,36]. The third stage is to minimize a function over the second stage. Hence,
Problem 1 includes optimization problems with complicated constraints, as
seen in Example 1.

From Proposition 2.3(iii) and (iv), we also have the following.

Example 2 (Optimization over the zero point sets) Let Ai : M i ⇒ TM i (i ∈ I)
be a monotone set-valued vector field with zer(Ai) ̸= ∅ and J i

λi : M i → M i
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(i ∈ I) be the resolvent of Ai with λi > 0. Then, Problem 1 with a mapping
T i := J i

λi (i ∈ I) is to find a point x⋆ in X⋆ with

X = zer
(
A1
)
× zer

(
A2
)
× · · · × zer

(
AI
)
.

In the case where Ai := ∂gi (i ∈ I), where gi : M → R is convex, the problem
is to find a point in X⋆ with

X = argmin
x1∈M1

g1(x1)× argmin
x2∈M2

g2(x2)× · · · × argmin
xI∈MI

gI(xI).

References [11] and [22] presented proximal point algorithms which use the
resolvents of a monotone vector field A for finding a zero of A,

x∗ ∈ zer(A).

Thanks to the results in [11] and [22] for the resolvents and Moreau-Yosida
regularizations, Problem 1 includes Example 2 that is to minimize not only
convex functions gi (using the resolvents of ∂gi) but also a function f over the
sets of minimizers of the gis.

Proposition 2.3 (v)–(vii) suggest the following example:

Example 3 (Optimization over the sublevel sets of convex functions) Let Ci

be a nonempty, closed convex subset of M i which has a diameter bounded by
Di and gij : C

i → R (i ∈ I, j ∈ J i) be a convex function with D(gij) = Ci

(j ∈ J i) and
⋂

j∈J i lev≤0(g
i
j) ̸= ∅. Then, Problem 1 with a mapping T i :=

Pgi
1,λ

iPgi
2,λ

i · · ·Pgi
Ji ,λ

i (i ∈ I) is to find a point x⋆ in X⋆ with

X =
⋂

j∈J 1

lev≤0

(
g1j
)
×
⋂

j∈J 2

lev≤0

(
g2j
)
× · · · ×

⋂
j∈J I

lev≤0

(
gIj
)
,

where λi ∈ (0, 2/ζi) and ζi :=
√
|κi|Di/ tanh(

√
|κi|Di) (i ∈ I).

References [6] and [36] proposed Riemannian subgradient algorithms for
finding a point x∗ in the intersection of sublevel sets of convex functions gj
(j = 1, 2, . . . , J) defined on a Riemannian manifold, i.e.,

x∗ ∈
J⋂

j=1

lev≤0 (gj) .

Algorithm 3.1 in [36] converges linearly to x∗ without assuming that the do-
main of gj has a bounded diameter. Meanwhile, under the assumption that
the domain of gj has a bounded diameter, Example 3 enables us to consider
the three-stage Riemannian optimization problem such that the first stage is
to find points inM , the second stage is to find points in sublevel sets of convex
functions, and the third stage is to minimize a function over the second stage.

This section ends with a statement of the conditions for being able to solve
Problem 1 (see, e.g., [25, (A1), (A2), (2.5)]).
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(C1) There is an independent and identically distributed sample ξ0, ξ1, . . . of
realizations of the random vector ξ;

(C2) There is an oracle which, for a given input point (x, ξ) ∈ M × Ξ, returns
a stochastic (sub)gradient G(x, ξ) = (Gi(x, ξ))i∈I such that

g(x) = (gi(x))i∈I := E[G(x, ξ)]

{
∈ ∂f(x) (f is nonsmooth and convex),

= gradf(x) (f is smooth and nonconvex);

(C3) For all i ∈ I, there exists a positive number Bi such that, for all x ∈ M ,

E[∥Gi(x, ξ)∥2xi ] ≤ Bi2.

4 Riemannian Stochastic Fixed Point Optimization Algorithm

Let i ∈ I. Given a quasinonexpansive mapping T i : M i → M i in Problem 1
and αi ∈ (0, 1), we define Si

αi : M i →M i for all xi ∈M i by

Si
αi(xi) := expixi

[(
1− αi

) (
expixi

)−1 (
T i(xi)

)]
. (8)

The discussion in Subsection 2.3 (see (6)) ensures that Si
αi is strictly quasi-

nonexpansive with Fix(T i) = Fix(Si
αi). Moreover, we define

Qi
αi := P iSi

αi , (9)

where P i is the metric projection onto a nonempty, closed convex set Ci sat-
isfying

Ci ⊃ Fix
(
Si
αi

)
= Fix

(
T i
)
. (10)

Algorithm 1 is the proposed algorithm for solving Problem 1. The tangent
vectors mn and m̂n generated by steps 3 and 4 in Algorithm 1 are based on
so-called momentum terms [13, Subchapter 8.3.2]. Step 8 in Algorithm 1 is
expressed as

xin+1 := Qi
αi

[
expixi

n

(
− αn

(1− β̂n+1)hin
m̂i

n

)]
,

which implies that Algorithm 1 adapts the step-size αn/((1 − β̂n+1)hin) for
each i ∈ I and each n ∈ N. Hence, we can see that Algorithm 1 is based on
so-called adaptive learning rate optimization algorithms, such as AdaGrad [10],
Adam [18], and AMSGrad [27] defined on Euclidean space and RAMSGrad [5]
defined on a Riemannian manifold. Examples of hin are included in Examples
4 and 5.

The following conditions are assumed to analyze Algorithm 1.

Assumption 4.1 The sequence (Hn)n∈N := ((hin)i∈I)n∈N and a nonempty,
closed convex set Ci ⊃ Fix(T i) in Algorithm 1 satisfy the following conditions:
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Algorithm 1 Riemannian stochastic fixed point optimization algorithm

Require: (αn)n∈N ⊂ (0, 1), (αi)i∈I ⊂ (0, 1), (βn)n∈N ⊂ [0, 1), β̂ ∈ [0, 1)
1: n← 0, x0 ∈M , τ−1 = m−1 ∈ Tx0M , (hi0)i∈I ⊂ RI

++
2: loop
3: mn := βnτn−1 + (1− βn)G(xn, ξn)

4: m̂n :=
(
1− β̂n+1

)−1
mn

5: (hin)i∈I ⊂ RI
++

6: for i = 1, 2, . . . , I do

7: din = −
m̂i

n

hin

8: xi
n+1 := Qi

αi

[
expi

xi
n

(
αnd

i
n

)]
9: τ in := φi

xi
n→xi

n+1

(mi
n)

10: n← n+ 1
11: end for
12: end loop

(A3) For all i ∈ I, Ci has a diameter bounded by Di;
(A4) For all n ∈ N and all i ∈ I, almost surely hin+1 ≥ hin;

(A5) For all i ∈ I, there exists a positive number B̂i such that, for all n ∈ N,
E[hin] ≤ B̂i.

Assumption (A3) will be needed to analyze Algorithm 1 since the previ-
ously reported results were analyzed under Assumption (A3) (see, e.g., [25,
p.1574] and [27, p.2] for convex stochastic optimization on Euclidean space,
and see, e.g., [5, Section 4], [24, Subsection 3.2], and [38, Subsection 3.2] for
convex stochastic optimization on a Riemannian manifold). For example, let
us consider the Poincaré model of a hyperbolic space defined by a mani-
fold Dmi

:= {xi ∈ Rmi

: ∥xi∥ < 1} equipped with the Riemannian metric

ρxi := (1/(1 − ∥xi∥2)2)ρExi , where ∥ · ∥ is the Euclidean norm, xi ∈ Dmi

,
and ρExi is the Euclidean metric tensor (the Poincaré embedding has been
used for natural language processing [5, Section 5], [29, Section 4]). In [29,

Section 4], Ci := {xi ∈ Dmi

: ∥xi∥ ≤ 1 − 10−5}, which has a bounded di-
ameter, was used to evaluate the performance of RAMSGrad for natural lan-
guage processing. In the case of Example 1, Assumption (A3) is satisfied when
at least one of Ci

j (j ∈ J i) has a bounded diameter. In Example 3, since

Fix(T i) =
⋂

j∈J i lev≤0(g
i
j) ⊂ Ci and Ci has a bounded diameter, Assumption

(A3) is satisfied. Assumption (A3) implies that, for all i ∈ I,

Di := sup
{
di
(
xi, yi

)
: (xi)i∈I , (y

i)i∈I ∈ X
}
< +∞, (11)

where di : M i ×M i → R+ is the distance function of M i.

Under Assumption (A3), we provide some examples of (Hn)n∈N satisfying
Assumptions (A4) and (A5). The following examples are based on adaptive
learning rate optimization algorithms, such as Adam [18] and AMSGrad [27],
defined on Euclidean space.
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Example 4 (Hn based on Adam [18]) Let us define hin and vin for all i ∈ I and
all n ∈ N by

vin := β̄vin−1 + (1− β̄)
∥∥Gi(xn, ξn)

∥∥2
xi
n
,

v̄in :=
vin

1− β̄n+1
, v̂in := max

{
v̂in−1, v̄

i
n

}
,

hin :=
√
v̂in,

(12)

where vi−1, v̂
i
−1 ∈ R+ and β̄ ∈ [0, 1). From (12), Hn satisfies Assumption (A4).

Moreover, (8), (9), and (10) mean that (xin)n∈N ⊂ Ci, which, together with
Assumption (A3), implies that (∥Gi(xn, ξn)∥xi

n
)n∈N is almost surely bounded

[14, Lemma 3.3]. For all i ∈ I, we define

U i := max
{
vi−1, sup

{∥∥Gi(xn, ξn)
∥∥2
xi
n
: n ∈ N

}}
< +∞.

Induction, together with the definitions of vin, v̄
i
n, and β̄ ∈ [0, 1), implies that,

for all n ∈ N, vin ≤ U i and v̄in ≤ U i/(1 − β̄). Accordingly, induction ensures
that

E
[
hin
]
≤

√
max

{
v̂i−1,

U i

1− β̄

}
,

which implies that Assumption (A5) holds.

Example 5 (Hn based on AMSGrad [5,27]) Let us define hin and vin for all
i ∈ I and all n ∈ N by

vin := β̄vin−1 + (1− β̄)
∥∥Gi(xn, ξn)

∥∥2
xi
n
,

v̂in := max
{
v̂in−1, v

i
n

}
,

hin :=
√
v̂in,

(13)

where vi−1, v̂
i
−1 ∈ R+ and β̄ ∈ [0, 1). The same discussion as in Example 4

ensures that hin defined by (13) satisfies Assumptions (A4) and (A5), i.e.,

E
[
hin
]
≤
√
max

{
v̂i−1, U

i
}
.

5 Convergence analyses of Algorithm 1

5.1 Nonsmooth convex optimization

This subsection considers Problem 1 when f is nonsmooth and convex. The
following is a convergence analysis of Algorithm 1 with constant step-sizes (the
proof of the following theorem is given in Supplementary Material).
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Theorem 1 Suppose that Assumptions (A1)–(A5) and Conditions (C1)–(C3)
hold. Then, Algorithm 1 with αn := α and βn := β satisfies that, for all i ∈ I,

lim sup
n→+∞

E
[
di
(
yin, x

i
n

)2] ≤ B̃i
2

(1− β̂)2(hi0)
2
α2, (14)

lim inf
n→+∞

E
[
di
(
T i(yin), y

i
n

)2] ≤ 1

α̂i

{
2B̃iDi

(1− β̂)hi0
α+

ζiB̃i
2

(1− β̂)2(hi0)
2
α2

}
, (15)

and

lim inf
n→+∞

E [f(xn)− f⋆] ≤
∑

i∈I ζ
iB̃i

2
(hi0)

−1

2(1− β)(1− β̂)
α+

∑
i∈I B̃

iDi

(1− β)(1− β̂)
β, (16)

where α̂i := αi(1−αi) and B̃i
2
:= max{∥τ−1∥2xi

0
, Bi2}. Moreover, for all i ∈ I

and all n ≥ 1,

E

[
1

n

n∑
k=1

di
(
T i(yik), y

i
k

)2] ≤ Di

α̂i

1

n
+

2B̃iDi

α̂iĥi0
α+

ζiB̃i
2

α̂i(ĥi0)
2
α2, (17)

where ĥi0 := (1− β̂)hi0. Let us define x̄n for all n ≥ 1 by

x̄n := expx̄n−1

(
1

n
exp−1

x̄n−1
(xn)

)
, (18)

where x̄0 := x0. Then, for all n ≥ 1,

E [f(x̄n)− f⋆] ≤
∑

i∈I B̂
iDi2

2(1− β1)

1

αn
+

∑
i∈I ζ

iB̃i
2
(hi0)

−1

2(1− β̂)(1− β1)
α+

∑
i∈I B̃

iDi

1− β1
β.

(19)

If (A1)’ T i : M i →M i (i ∈ I) is nonexpansive with Fix(T i) ̸= ∅, then

E

[
1

n

n∑
k=1

di
(
T i(xik), x

i
k

)2] ≤ 2Di

α̂i

1

n
+

4B̃iDi

α̂iĥi0
α+

2B̃i
2

(ĥi0)
2

{
ζi

α̂i
+

4

(1− β̂)2

}
α2.

(20)

The following is a convergence analysis of Algorithm 1 with diminishing
step-sizes (the proof of the theorem is given in Supplementary Material).

Theorem 2 Suppose that Assumptions (A1)–(A5) and Conditions (C1)–(C3)
hold and assume that (αn)n∈N is monotone decreasing and (αn)n∈N and (βn)n∈N
satisfy that

+∞∑
n=0

αn = +∞,

+∞∑
n=0

α2
n < +∞, and

+∞∑
n=0

αnβn < +∞. (21)
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Then, Algorithm 1 satisfies that, for all i ∈ I,

lim
n→+∞

E
[
di
(
yin, x

i
n

)2]
= 0, lim inf

n→+∞
E
[
di
(
T i(yin), y

i
n

)2]
= 0, (22)

and

lim inf
n→+∞

E [f(xn)− f⋆] ≤ 0.

Suppose that Assumptions (A1)–(A5) and Conditions (C1)–(C3) hold and as-
sume that (αn(1− βn))n∈N and (βn)n∈N are monotone decreasing and satisfy
the following:

lim
n→+∞

1

nαn
= 0, lim

n→+∞

1

n

n∑
k=1

αk = 0, and lim
n→+∞

1

n

n∑
k=1

βk = 0. (23)

Then, Algorithm 1 satisfies that

lim
n→+∞

E

[
1

n

n∑
k=1

∑
i∈I

di
(
T i(yik), y

i
k

)2]
= 0 (24)

and

lim sup
n→+∞

E [f(x̄n)− f⋆] ≤ 0 (25)

with the rate of convergence expressed as follows:

E

[
1

n

n∑
k=1

di
(
T i(yik), y

i
k

)2] ≤ 1

α̂i

{
Di

n
+

2B̃iDi

ĥi0

1

n

n∑
k=1

αk +
ζiB̃i

2

(ĥi0)
2

1

n

n∑
k=1

α2
k

}
,

E

[
1

n

n∑
k=1

di
(
yik, x

i
k

)2] ≤ B̃i
2

(1− β̂)2(ĥi0)
2

1

n

n∑
k=1

α2
k,

and

E [f(x̄n)− f⋆] ≤
∑

i∈I B̂
iDi2

2(1− β1)

1

nαn
+

∑
i∈I ζ

iB̃i
2
(hi0)

−1

2(1− β̂)(1− β1)

1

n

n∑
k=1

αk

+

∑
i∈I B̃

iDi

1− β1

1

n

n∑
k=1

βk,

where x̄n is defined by (18). Under Assumption (A1)’, we have

E

[
1

n

n∑
k=1

di
(
T i(xik), x

i
k

)2]

≤ 2

α̂i

Di

n
+

4B̃iDi

α̂iĥi0

1

n

n∑
k=1

αk +
2B̃i

2

(ĥi0)
2

{
ζi

α̂i
+

4

(1− β̂)2

}
1

n

n∑
k=1

α2
k.
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Theorem 2 yields the following corollary.

Corollary 1 Suppose that Assumptions (A1)–(A5) and Conditions (C1)–(C3)
hold. Then, Algorithm 1 with αn := 1/nη (η ∈ (1/2, 1], n ≥ 1) and (βn)n∈N
such that

∑+∞
n=1 αnβn < +∞1 satisfies that, for all i ∈ I, E[di(yin, xin)2] =

O(n−2η),

lim inf
n→+∞

E
[
di
(
T i(yin), y

i
n

)2]
= 0, and lim inf

n→+∞
E [f(xn)− f⋆] ≤ 0. (26)

Moreover, Algorithm 1 with αn := 1/nη (η ∈ [1/2, 1)) and (βn)n∈N such that∑+∞
n=1 βn < +∞2 satisfies that, for all n ≥ 1,

E

[
1

n

n∑
k=1

∑
i∈I

di
(
T i(yik), y

i
k

)2]
= O

(
1

nη

)
and

E [f(x̄n)− f⋆] ≤ O
(

1

n1−η

)
, (27)

where x̄n is defined by (18). Under Assumption (A1)’, we have

E

[
1

n

n∑
k=1

∑
i∈I

di
(
T i(xik), x

i
k

)2]
= O

(
1

nη

)
.

5.2 Smooth nonconvex optimization

This subsection considers Problem 1 when f is smooth and nonconvex. The
following is a convergence analysis of Algorithm 1 with constant step-sizes (the
proof of the theorem is given in Supplementary Material).

Theorem 3 Suppose that Assumptions (A1)–(A5) and Conditions (C1)–(C3)
hold. Then, Algorithm 1 with αn := α and βn := β satisfies that, for all i ∈ I,
(14) and (15) hold, and

lim sup
n→+∞

E
[〈
exp−1

xn
(x), gradf(xn)

〉
xn

]
≥ −

∑
i∈I ζ

iB̃i
2

2γhi0
α−

∑
i∈I B̃

iDi

γ
β,

(28)

1 The step-sizes βn := λn and αn := 1/nη (n ≥ 1, λ ∈ (0, 1), η ∈ (1/2, 1]) satisfy∑+∞
n=1 αn = +∞,

∑+∞
n=1 α

2
n < +∞, and

∑+∞
n=1 αnβn < +∞.

2 The step-sizes βn := 1/2n and αn := 1/nη (n ≥ 1, η ∈ [1/2, 1)) are used to implement
adaptive learning rate optimization algorithms, such as Adam [18], AMSGrad [27], and
RAMSGrad [5]. These step-sizes satisfy

∑+∞
n=1 βn = 1 and (αn(1 − βn))n∈N is monotone

decreasing.
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where γ := (1 − β)(1 − β̂). Moreover, for all i ∈ I and all n ≥ 1, (17) holds
and

E

[
1

n

n∑
k=1

〈
exp−1

xk
(x), gradf(xk)

〉
xk

]

≥ −
∑

i∈I B̂
iDi2

2(1− β1)

1

αn
−
∑

i∈I ζ
iB̃i

2
(hi0)

−1

2(1− β̂)(1− β1)
α−

∑
i∈I B̃

iDi

1− β1
β.

(29)

Under Assumption (A1)’, (20) holds.

The following is a convergence analysis of Algorithm 1 with diminishing
step-sizes (the proof of the theorem is given in Supplementary Material).

Theorem 4 Suppose that Assumptions (A1)–(A5) and Conditions (C1)–(C3)
hold and assume that (αn)n∈N is monotone decreasing and (αn)n∈N and (βn)n∈N
satisfy (21). Then, Algorithm 1 satisfies that, for all i ∈ I, (22) holds and

lim sup
n→+∞

E
[〈
exp−1

xn
(x), gradf(xn)

〉
xn

]
≥ 0.

Suppose that Assumptions (A1)–(A5) and Conditions (C1)–(C3) hold and as-
sume that (αn(1− βn))n∈N and (βn)n∈N are monotone decreasing and satisfy
(23). Then, Algorithm 1 satisfies that (24) holds and

lim inf
n→+∞

E

[
1

n

n∑
k=1

〈
exp−1

xk
(x), gradf(xk)

〉
xk

]
≥ 0

with

E

[
1

n

n∑
k=1

〈
exp−1

xk
(x), gradf(xk)

〉
xk

]

≥ −
∑

i∈I B̂
iDi2

2(1− β1)

1

nαn
−
∑

i∈I ζ
iB̃i

2
(hi0)

−1

2(1− β̂)(1− β1)

1

n

n∑
k=1

αk −
∑

i∈I B̃
iDi

1− β1

1

n

n∑
k=1

βk

and the same convergence rate of di(T i(yik), y
i
k) and di(T i(xik), x

i
k) (under As-

sumption (A1)’) as in Theorem 2.

A discussion similar to the one for obtaining Corollary 1 implies that Algo-
rithm 1 with αn := 1/nη (η ∈ [1/2, 1)) and (βn)n∈N such that

∑+∞
n=1 βn < +∞

satisfies that, under Assumption (A1)’,

E

[
1

n

n∑
k=1

∑
i∈I

di
(
T i(xik), x

i
k

)2]
= O

(
1

nη

)
and

E

[
1

n

n∑
k=1

〈
exp−1

xk
(x), gradf(xk)

〉
xk

]
≥ −O

(
1

n1−η

)
.
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6 Numerical Comparisons

6.1 Preliminaries

The m-dimensional Poincaré disk model of hyperbolic space is defined by

Dm := {x ∈ Rm : ∥x∥ < 1} ,

where ∥ · ∥ denotes the Euclidean norm of Rm. Let us also define M :=
Dm ×Dm × · · · × Dm︸ ︷︷ ︸

I

. Let j ∈ J i := {1, 2, . . . , J i} (i ∈ I := {1, 2, . . . , I}).

We define a closed ball with center cij ∈ Dm and radius rij > 0 in Dm by

Bi
j :=

{
x ∈ Dm : d

(
cij , x

)
≤ rij

}
, (30)

where d: Dm×Dm → R denotes the distance function of Dm. Then, the metric
projection onto the closed convex set Bi

j can be expressed as follows:

P i
j (x) :=


expi

cij

 rij

(
expi

ci
j

)−1

(x)∥∥∥∥(expi

ci
j

)−1

(x)

∥∥∥∥
ci
j

 if x /∈ Bi
j ,

x if x ∈ Bi
j .

We used the nonexpansive mapping T i : Dm → Dm (i ∈ I) defined by

T i := P i
1P

i
2 · · ·P i

Ji (31)

and the smooth, nonconvex function f : M → R defined for all x ∈M by

f(x) =
1

I

I∑
i=1

{
e(x

i)⊤xj

+ (xi)⊤xj
}

︸ ︷︷ ︸
=F (x,i)

, where j := (i mod I) + 1.

We implemented the following algorithms, all with αi := 0.5:

– Algorithm 1 with constant step-sizes
CSD: Algorithm 1 with hin defined by Stochastic Gradient Descent [7]

(i.e., hin := 1), αn := 10−2, and βn = β̂ := 0
CAG: Algorithm 1 with hin defined by AdaGrad [10], αn := 10−2, and

βn = β̂ := 0
CAM1: Algorithm 1 with hin defined by AMSGrad (13), αn := 10−2,

βn = 0.9, β̂ := 0, and β̄ := 0.999
CAM2: Algorithm 1 with hin defined by AMSGrad (13), αn := 10−2,

βn = 10−3, β̂ := 0, and β̄ := 0.999
CAD1: Algorithm 1 with hin defined by Adam (12), αn := 10−2, βn = 0.9,

β̂ := 0.9, and β̄ := 0.999 (β̂ := 0.9 and β̄ := 0.999 were used in [18,27])
CAD2: Algorithm 1 with hin defined by Adam (12), αn := 10−2, βn =

10−3, β̂ := 0.9, and β̄ := 0.999
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– Algorithm 1 with diminishing step-sizes
DSD: Algorithm 1 with hin defined by Stochastic Gradient Descent [7]

(i.e., hin := 1), αn := 10−1/
√
n, and βn = β̂ := 0

DAG: Algorithm 1 with hin defined by AdaGrad [10], αn := 10−1/
√
n,

and βn = β̂ := 0
DAM1: Algorithm 1 with hin defined by AMSGrad (13), αn := 10−1/

√
n,

βn = 0.5n, β̂ := 0, and β̄ := 0.999
DAM2: Algorithm 1 with hin defined by AMSGrad (13), αn := 10−1/

√
n,

βn = 0.9n, β̂ := 0, and β̄ := 0.999
DAD1: Algorithm 1 with hin defined by Adam (12), αn := 10−1/

√
n,

βn = 0.5n, β̂ := 0.9, and β̄ := 0.999
DAD2: Algorithm 1 with hin defined by Adam (12), αn := 10−1/

√
n,

βn = 0.9n, β̂ := 0.9, and β̄ := 0.999

The difference between CAM1 (resp. CAD1) and CAM2 (resp. CAD2) is the
setting of βn. The step-size βn = 0.9 in CAM1 (resp. CAD1) is based on
previously reported results (see, e.g., [5, Section 5]), while the step-size βn =
10−3 is based on Theorem 3 indicating that a small step-size approximates
a solution to Problem 1. The algorithms with diminishing step-sizes all used
αn := 10−1/

√
n, which is based on previously reported results (see, e.g., [5,

Theorems 1 and 2]).
Ten samplings, each starting from a different randomly chosen initial point

x0(s) ∈ M (s = 1, 2, . . . , 10), were performed, and the results were averaged.
The following two performance measures were used: for each n ∈ N,

Dn :=
1

10

10∑
s=1

√∑
i∈I

d (xin(s), T
i(xin(s)))

2
and Fn :=

I

10

10∑
s=1

f(xn(s)),

where (xin(s))n∈N denotes the sequence generated by Algorithm 1 with an
initial point x0(s). If (Dn)n∈N converges to 0, then Algorithm 1 converges to
a fixed point of T i.

The experiments were conducted on a MacBook Air (2017) with a 1.8 GHz
Intel Core i5 CPU, 8 GB 1600 MHz DDR3 memory, and the macOS Mojave
version 10.14.5 operating system. The algorithms were written in Python 3.7.6
with the NumPy 1.19.2 package and the Matplotlib 3.1.2 package.

6.2 Consistent case

We first consider the consistent case such that
⋂

j∈J i Bi
j ̸= ∅ (m = 2, 10, 100; I =

5; Ji = 5), where cij ∈M and rij > 0 in Bi
j defined by (30) were randomly cho-

sen. A nonexpansive mapping T i : Dm → Dm (i ∈ I) defined by (31) satisfies
Fix(T i) =

⋂
j∈J i Bi

j (see also Proposition 2.3(ii) and Example 1).
Tables 1 and 2 show the average elapsed time (s) for the algorithms used

in the experiment for n = 500 when m = 2, n = 1000 when m = 10, and
n = 1500 when m = 100. The results in these tables indicate that the elapsed
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times of the algorithms with constant step-sizes varied little from the elapsed
times of the algorithms with diminishing step-sizes and that, for a fixed m, all
of the algorithms ran at about the same speed.

Table 1 Average time for the algorithms with constant step-sizes applied to consistent case

CSD CAG CAM1 CAM2 CAD1 CAD2
m = 2 7.728 7.782 8.128 8.115 7.892 7.878
m = 10 16.219 16.381 16.974 16.534 16.546 17.077
m = 100 23.683 23.788 23.907 24.347 24.536 24.187

Table 2 Average time for the algorithms with diminishing step-sizes applied to consistent
case

DSD DAG DAM1 DAM2 DAD1 DAD2
m = 2 7.862 7.906 8.382 8.155 7.989 8.364
m = 10 16.216 16.635 16.706 16.440 16.373 16.962
m = 100 23.085 23.799 23.545 23.781 23.761 23.435

Figures 1 and 2 show the behaviors of Dn and Fn for the algorithms with
constant step-sizes, and Figures 3 and 4 show the behaviors of Dn and Fn for
the algorithms with diminishing step-sizes. The results in these figures indicate
that all algorithms except for CSD, DSD, CAG, and DAG performed well.
Although CAG and DAG converged to fixed points of T i faster than the other
algorithms, CAG and DAG did not minimize f . This is because CAG and DAG
used βn = 0 (i.e., mn = G(xn, ξn)), which means that CAG and DAG attached
more weight to converging to a point in X = Fix(T 1)×Fix(T 2)×· · ·×Fix(T I)
than minimizing f . To verify why CSD and DSD did not converge to a fixed
point of T i, we checked the behaviors of CSD and DSD for ten samplings.
CSD and DSD were sometimes good and sometimes not within ten samplings.
As a result, the mean value Dn of

√∑
i∈I d(xin(s), T

i(xin(s)))
2 for CSD and

DSD was not minimized.
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Fig. 1 Dn vs. iteration for Algorithm 1 with constant step-sizes (consistent case)
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Fig. 2 Fn vs. iteration for Algorithm 1 with constant step-sizes (consistent case)
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Fig. 3 Dn vs. iteration for Algorithm 1 with diminishing step-sizes (consistent case)
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Fig. 4 Fn vs. iteration for Algorithm 1 with diminishing step-sizes (consistent case)

6.3 Inconsistent case

We next consider the inconsistent case such that
⋂

j∈J i Bi
j = ∅, where cij ∈M

and rij > 0 in Bi
j (m = 2, 10, 100; I = 5;J i = {1, 2}) defined by (30) were

randomly chosen so that
⋂

j∈J i Bi
j = ∅ was satisfied. Here, we define a gener-

alized convex feasible set (see [9, Section I, Framework 2] and [37, Definition
4.1] for the definition under the Hilbert space setting) as follows:

Ci
d :=

{
x ∈ Bi

1 : d
(
x,Bi

2

)2
= inf

y∈Bi
1

d
(
y,Bi

2

)2}
. (32)

The generalized convex feasible set plays an important role when the constraint
set composed of the absolute set and the subsidiary set is not feasible. Let Bi

1

be the absolute constrained set and Bi
2 be the subsidiary constrained set. Then,
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Ci
d is feasible (i.e., Ci

d ̸= ∅) even when Bi
1 ∩ Bi

2 = ∅. Moreover, Ci
d is a subset

of the absolute constrained set Bi
1 with the elements closest to the subsidiary

constrained set Bi
2 in terms of the distance function. Accordingly, it would be

reasonable to replace an inconsistent set with the generalized convex feasible
set. The set Ci

d defined by (32) can be expressed as follows:

Ci
d = Fix

(
P i
1

(
exp

[
−grad

1

2
d
(
·,Bi

2

)2]))
= Fix

(
P i
1P

i
2

)
= Fix

(
T i
)
,

where the first equation comes from [23, Proposition 3.1, Corollaries 3.1 and
3.2, Theorem 3.3] (see also Proposition 3.1), the second equation comes from
grad(1/2)d(x, y)2 = − exp−1

x (y) [11, Proposition 3.3], and the third equation
comes from (31).

Tables 3 and 4 show that the elapsed times of the algorithms with constant
step-sizes differed little from the elapsed times of the algorithms with dimin-
ishing step-sizes and that, for a fixed m, all of the algorithms ran at about the
same speed.

Table 3 Average time for the algorithms with constant step-sizes applied to inconsistent
case

CSD CAG CAM1 CAM2 CAD1 CAD2
m = 2 3.906 3.878 4.010 4.014 3.940 3.933
m = 10 8.649 8.675 8.822 9.066 8.727 8.691
m = 100 13.727 13.831 14.303 14.021 14.003 14.061

Table 4 Average time for the algorithms with diminishing step-sizes applied to inconsistent
case

DSD DAG DAM1 DAM2 DAD1 DAD2
m = 2 3.883 3.880 4.013 4.075 4.010 3.946
m = 10 8.783 8.739 9.043 9.105 8.912 8.910
m = 100 13.571 13.908 13.971 13.983 13.956 13.970

Figures 5 and 6 show the behaviors of Dn and Fn for the algorithms with
constant step-sizes, and Figures 7 and 8 show the behaviors of Dn and Fn for
the algorithms with diminishing step-sizes. The results shown in these figures
indicate that all algorithms except for CSD, DSD, CAG, and DAG performed
well, the same as in the consistent case (previous subsection).We checked the
behaviors of CSD, DSD, CAG, and DAG and found that the reason they did
not perform well was the same as in that case.

7 Conclusion

This paper proposed the Riemannian stochastic fixed point optimization algo-
rithm for stochastic optimization with fixed point constraints of quasinonex-
pansive mappings defined on Riemannian manifolds. It also gave convergence
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Fig. 5 Dn vs. iteration for Algorithm 1 with constant step-sizes (inconsistent case)
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Fig. 6 Fn vs. iteration for Algorithm 1 with constant step-sizes (inconsistent case)
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Fig. 7 Dn vs. iteration for Algorithm 1 with diminishing step-sizes (inconsistent case)
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analyses of the algorithm for both constant and diminishing step-sizes and
both nonsmooth convex and smooth nonconvex optimization. For small con-
stant step-sizes, the analyses showed that the algorithm can approximate a
solution to the problem. For diminishing step-sizes, the analyses suggested
the general rate of convergence of the algorithm. Finally, the optimality and
convergence of the algorithm with each of the formulas based on the adaptive
learning rate optimization algorithms were demonstrated through numerical
comparisons. In the process, the algorithms with formulas based on Adam and
AMSGrad were found to be superior for performing stochastic Riemannian op-
timization with fixed point constraints.
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Supplementary Material

Proofs of Propositions 2.2 and 2.3

Proof (Proof of Proposition 2.2)
(i) This follows from the definitions of firmly nonexpansive, nonexpansive,

and quasinonexpansive mappings.
(ii) We prove that (1) implies (5). The comparison theorem for triangles

(see, e.g., [21, Proposition 2.2]), together with [22, Proposition 5], ensures that,
for all x ∈ C and all y ∈ Fix(T ),

d(x, T (x))2 + d(T (x), y)2 − 2
〈
exp−1

T (x)(x), exp
−1
T (x)(y)

〉
T (x)

≤ d(x, y)2,〈
exp−1

T (x)(x), exp
−1
T (x)(y)

〉
T (x)

≤ 0,

which implies (5). From (3), (4), and (5), we have that (5) implies (4), and (4)
implies (3). ⊓⊔

Proof (Proof of Proposition 2.3)
(i) This follows from [22, Corollary 1].
(ii) Proposition 2.2(i) and Proposition 2.3(i) imply that Pj is nonexpansive.

Accordingly, T := P1P2 · · ·PJ is nonexpansive. Proposition 2.2(ii) also ensures
that Pj is strictly quasinonexpansive. Hence, the proofs of [4, Proposition 4.9,
Corollary 4.50] lead to Proposition 2.3(ii).

(iii) This follows from [22, Theorem 4(i)].
(iv) The resolvent of ∂g coincides with the Moreau-Yosida regularization

of g. Accordingly, Proposition 2.3(iii) implies Proposition 2.3(iv).
(v) From the definition of Pg,λ, we have that lev≤0(g) ⊂ Fix(Pg,λ). To show

that lev≤0(g) ⊃ Fix(Pg,λ), we assume that x ∈ Fix(Pg,λ) and x /∈ lev≤0(g).
Then, the definition of ux ∈ ∂g(x) and the condition x /∈ lev≤0(g) guarantee
that, for all y ∈ lev≤0(g),〈

ux, exp
−1
x (y)

〉
x
≤ g(y)− g(x) ≤ −g(x) < 0,

which implies that ux is not equal to the zero element 0x of TxM . Accordingly,
the definition of Pg,λ and the condition x ∈ Fix(Pg,λ) mean that

expx

(
−λ g(x)

∥ux∥x
ux

)
= Pg,λ(x) = x,

which implies that

0 = d

(
expx

(
−λ g(x)

∥ux∥x
ux

)
, x

)
= λ

g(x)

∥ux∥x
.

From λ > 0 and ux ̸= 0x, we have that g(x) = 0, which is a contradiction from
x /∈ lev≤0(g). Hence, lev≤0(g) ⊃ Fix(Pg,λ).
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(vi) Lemma 5 in [38] and the definition of Phj ,λ ensure that there exists

ζ = ζ(κ,D) =
√

|κ|D/ tanh(
√

|κ|D) ∈ R+ such that, for all x ∈ C\lev≤0(hj)
and all y ∈ lev≤0(hj) = Fix(Phj ,λ) (by Proposition 2.3(v)),

d(Phj ,λ(x), y)
2 ≤ ζd(Phj ,λ(x), x)

2 + d(x, y)2 + 2
〈
exp−1

x

(
Phj ,λ(x)

)
, exp−1

x (y)
〉
x

= ζd(Phj ,λ(x), x)
2 + d(x, y)2 + 2λ

hj(x)

∥uj,x∥2x

〈
uj,x, exp

−1
x (y)

〉
x
,

where (0x ̸=) uj,x ∈ ∂hj(x), which, together with the definitions of Phj ,λ and
uj,x ∈ ∂hj(x), implies that, for λ ∈ (0, 2/ζ),

d(Phj ,λ(x), y)
2 ≤ d(x, y)2 + ζλ2

hj(x)
2

∥uj,x∥2x
− 2λ

hj(x)
2

∥uj,x∥2x

= d(x, y)2 + λ(ζλ− 2)
hj(x)

2

∥uj,x∥2x
.

From hj(x) > 0, d(Phj ,λ(x), y) < d(x, y), i.e., Phj ,λ is strictly quasinonexpan-
sive.

(vii) Proposition 2.3(vi) and the proofs of [4, Proposition 4.9, Corollary
4.50] lead to Proposition 2.3(vii). ⊓⊔

Proofs of Theorems 1, 2, 3, and 4

The history of the process ξ0, ξ1, . . . up to time n is denoted by ξ[n] = (ξ0, ξ1, . . . , ξn).
Let E[X|ξ[n]] denote the conditional expectation ofX given ξ[n] = (ξ0, ξ1, . . . , ξn).
Unless stated otherwise, all relations between random variables are supported
to hold almost surely.

We prove the following lemma.

Lemma 1 Suppose that Assumptions (A1)–(A3) and Conditions (C1)–(C2)
hold and consider the sequences (xn)n∈N, (mn)n∈N, and (dn)n∈N defined by
Algorithm 1. Define yin for all i ∈ I and all n ∈ N by

yin := expixi
n

(
αnd

i
n

)
= expixi

n

(
−αn

m̂i
n

hin

)
.

Then, for all i ∈ I, there exists a positive number ζi such that, for all xi ∈ Xi

and all n ∈ N, almost surely

di(xin+1, x
i)2 ≤ di(xin, x

i)2 +
2αn

(1− β̂n+1)hin

〈
mi

n,
(
expixi

n

)−1

(xi)

〉
xi
n

+
ζiα2

n

(1− β̂n+1)2

∥∥mi
n

∥∥2
xi
n

(hin)
2

− αi(1− αi)di
(
T i(yin), y

i
n

)2
.

(33)

Moreover, under (C3), for all i ∈ I, there exists a positive number B̃i
2
:=

max{∥τ−1∥2xi
0
, Bi2} such that, for all n ∈ N, E[∥mi

n∥2xi
n
] ≤ B̃i

2
.
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Proof Lemma 5 in [38], together with Assumption (A3) (see also (11)), guar-
antees that, for all i ∈ I, there exists ζi = ζ(κi, Di) ∈ R+ such that, for all
xi ∈ Xi and all n ∈ N,

di(yin, x
i)2 ≤ ζidi

(
yin, x

i
n

)2
+ di(xin, x

i)2 + 2αn

〈
m̂i

n

hin
,
(
expixi

n

)−1

(xi)

〉
xi
n

,

where κi denotes the lower bound of curvature ofM i and ζ(κi, c) :=
√
|κi|c/ tanh(

√
|κi|c)

for c ∈ R+. From the definitions of yin and m̂i
n, we have that

di
(
yin, x

i
n

)2
=

∥∥∥∥(expixi
n

)−1

(yin)

∥∥∥∥2
xi
n

= α2
n

∥∥m̂i
n

∥∥2
xi
n

(hin)
2

=
α2
n

(1− β̂n+1)2

∥∥mi
n

∥∥2
xi
n

(hin)
2
.

(34)

Accordingly, for all i ∈ I and all xi ∈ Xi,

di(yin, x
i)2

≤ di(xin, x
i)2 +

ζiα2
n

(1− β̂n+1)2

∥∥mi
n

∥∥2
xi
n

(hin)
2

+
2αn

(1− β̂n+1)hin

〈
mi

n,
(
expixi

n

)−1

(xi)

〉
xi
n

.

Meanwhile, from Qi
αi := P iSi

αi (see (9)) and xin+1 = Qi
αi(yin), Proposition

2.3(i) ensures that

di(xin+1, x
i)2 ≤ di(Si

αi(yin), x
i)2,

which, together with (6) and (8), implies that

di(xin+1, x
i)2 ≤ di(yin, x

i)2 − αi(1− αi)di
(
T i(yin), y

i
n

)2
.

Therefore, (33) holds.
The definitions of mn and τn, together with the convexity of ∥ · ∥2xi

n
, guar-

antee that, for all i ∈ I and all n ∈ N,

E
[∥∥mi

n

∥∥2
xi
n

]
≤ βnE

[∥∥∥φi
xi
n−1→xi

n
(mi

n−1)
∥∥∥2
xi
n

]
+ (1− βn)E

[∥∥Gi(xn, ξn)
∥∥2
xi
n

]
≤ βnE

[∥∥mi
n−1

∥∥2
xi
n−1

]
+ (1− βn)B

i2.

Induction thus ensures that, for all i ∈ I and all n ∈ N,

E
[∥∥mi

n

∥∥2
xi
n

]
≤ B̃i

2
:= max

{
∥τ−1∥2xi

0
, Bi2

}
< +∞. (35)

This completes the proof. ⊓⊔

Lemma 1 also leads to the following lemma, which is used to show the main
theorems.
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Lemma 2 Suppose that Assumptions (A1)–(A5) and Conditions (C1)–(C3)
hold and Xn(x) is defined for all x ∈ X and all n ∈ N by

Xn(x) := E

[∑
i∈I

hind
i(xin, x

i)

]
.

Then, for all x ∈ X and all n ∈ N,

Xn+1(x) ≤ Xn(x) +
2αn(1− βn)

1− β̂n+1
E
[〈
exp−1

xn
(x), g(xn)

〉
xn

]
+ E

[∑
i∈I

Di
(
hin+1 − hin

)]
+

2αnβn

1− β̂

∑
i∈I

B̃iDi +
α2
n

(1− β̂)2

∑
i∈I

ζiB̃i
2

hi0
,

where ζi and B̃i are defined as in Lemma 1.

Proof Condition (C1) and xn = xn(ξ[n−1]) mean that, for all i ∈ I, all xi ∈ Xi,
and all n ∈ N,

E

[〈
Gi(xn, ξn),

(
expixi

n

)−1

(xi)

〉
xi
n

]

= E

[
E

[〈
Gi(xn, ξn),

(
expixi

n

)−1

(xi)

〉
xi
n

∣∣∣ξ[n−1]

]]

= E

[〈
E
[
Gi(xn, ξn)

∣∣∣ξ[n−1]

]
,
(
expixi

n

)−1

(xi)

〉
xi
n

]

= E

[〈
gi(xn),

(
expixi

n

)−1

(xi)

〉
xi
n

]
.

Since Condition (C2) implies that, for all x ∈ X and all n ∈ N,

〈
g(xn), exp

−1
xn

(x)
〉
xn

=
∑
i∈I

〈
gi(xn),

(
expixi

n

)−1

(xi)

〉
xi
n

,

we have that, for all x ∈ X and all n ∈ N,

E
[〈
g(xn), exp

−1
xn

(x)
〉
xn

]
= E

[∑
i∈I

〈
Gi(xn, ξn),

(
expixi

n

)−1

(xi)

〉
xi
n

]
. (36)

The Cauchy-Schwarz inequality ensures that, for all x ∈ X and all n ∈ N,

E

[∑
i∈I

〈
τ in−1, (exp

i
xi
n
)−1(xi)

〉
xi
n

]
≤ E

[∑
i∈I

∥∥τ in−1

∥∥
xi
n

∥∥∥∥(expixi
n

)−1

(xi)

∥∥∥∥
xi
n

]
,
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which, together with (11) and Lemma 1, implies that

E

[∑
i∈I

〈
τ in−1, (exp

i
xi
n
)−1(xi)

〉
xi
n

]
≤
∑
i∈I

B̃iDi. (37)

Moreover, from Lemma 1, β̂ ∈ [0, 1), and 1/hin ≤ 1/hi0 (by Assumption (A4)),

E

∑
i∈I

ζiα2
n

(1− β̂n+1)2

∥∥mi
n

∥∥2
xi
n

hin

 ≤ α2
n

(1− β̂)2

∑
i∈I

ζiB̃i
2

hi0
. (38)

Accordingly, Lemma 1, together with (36), (37), and (38), leads to the assertion
in Lemma 2. ⊓⊔

The following is a convergence analysis of Algorithm 1.

Theorem 5 Suppose that Assumptions (A1)–(A5) and Conditions (C1)–(C3)
hold. Then, Algorithm 1 satisfies that, for all i ∈ I and all n ≥ 1,

E

[
1

n

n∑
k=1

di
(
T i(yik), y

i
k

)2] ≤ 1

α̂i

{
Di

n
+

2B̃iDi

ĥi0

1

n

n∑
k=1

αk +
ζiB̃i

2

(ĥi0)
2

1

n

n∑
k=1

α2
k

}
,

E

[
1

n

n∑
k=1

di
(
yik, x

i
k

)2] ≤ B̃i
2

(1− β̂)2(ĥi0)
2

1

n

n∑
k=1

α2
k,

(39)

where α̂i := αi(1−αi) and ĥi0 := (1− β̂)hi0. Moreover, if (αn(1− βn))n∈N and
(βn)n∈N are monotone decreasing, then, for all n ≥ 1,

E

[
1

n

n∑
k=1

〈
exp−1

xk
(x), g(xk)

〉
xk

]

≤
∑

i∈I B̂
iDi2

2(1− β1)

1

nαn
+

∑
i∈I ζ

iB̃i
2
(hi0)

−1

2(1− β̂)(1− β1)

1

n

n∑
k=1

αk +

∑
i∈I B̃

iDi

1− β1

1

n

n∑
k=1

βk.

(40)

If (A1)’ T i : M i →M i (i ∈ I) is nonexpansive with Fix(T i) ̸= ∅, then, for all
n ≥ 1,

E

[
1

n

n∑
k=1

di
(
T i(xik), x

i
k

)2]

≤ 2

α̂i

Di

n
+

4B̃iDi

α̂iĥi0

1

n

n∑
k=1

αk +
2B̃i

2

(ĥi0)
2

{
ζi

α̂i
+

4

(1− β̂)2

}
1

n

n∑
k=1

α2
k.

(41)
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Proof The Cauchy-Schwarz inequality, together with Lemma 1 and Assump-
tion (A3) (see (11)), ensures that, for all i ∈ I, all xi ∈ Xi, and all n ∈ N,

E
[〈
mi

n, (exp
i
xi
n
)−1(xi)

〉
xi
n

]
≤ E

[∥∥mi
n

∥∥
xi
n

∥∥∥(expixi
n
)−1(xi)

∥∥∥
xi
n

]
≤ B̃iDi.

Lemma 1, together with β̂ ∈ [0, 1) and Assumption (A4), guarantees that, for
all i ∈ I, all xi ∈ Xi, and all k ≥ 1,

αi(1− αi)E
[
di
(
T i(yik), y

i
k

)2]
≤ E

[
di(xik, x

i)2
]
− E

[
di(xik+1, x

i)2
]
+

ζiB̃i
2

(1− β̂)2(hi0)
2
α2
k +

2B̃iDi

(1− β̂)hi0
αk.

(42)

Accordingly, we have that, for all i ∈ I and all n ≥ 1,

α̂iE

[
n∑

k=1

di
(
T i(yik), y

i
k

)2] ≤ Di +
ζiB̃i

2

(1− β̂)2(hi0)
2

n∑
k=1

α2
k +

2B̃iDi

(1− β̂)hi0

n∑
k=1

αk,

where α̂i := αi(1− αi) and (11) implies that E
[
di(xi1, x

i)2
]
≤ Di. From (34),

for all i ∈ I and all n ≥ 1,

E

[
n∑

k=1

di
(
yik, x

i
k

)2] ≤ B̃i
2

(1− β̂)2(hi0)
2

n∑
k=1

α2
k,

which implies that (39) holds. Lemma 1, together with the definition of mi
n,

implies that, for all i ∈ I, all xi ∈ Xi, and all n ∈ N,〈
−Gi(xn, ξn),

(
expixi

n

)−1

(xi)

〉
xi
n

≤ (1− β̂n+1)hin
2αn(1− βn)

{
di(xin, x

i)2 − di(xin+1, x
i)2
}

︸ ︷︷ ︸
Hi

n(x
i)

+
βn

1− βn

〈
τ in−1,

(
expixi

n

)−1

(xi)

〉
xi
n︸ ︷︷ ︸

Bi
n(x

i)

+
ζiαn

2(1− β̂n+1)(1− βn)

∥∥mi
n

∥∥2
xi
n

hin︸ ︷︷ ︸
Ai

n(x
i)

,

which, together with (36), implies that, for all x⋆ ∈ X⋆ and all n ≥ 1,

E

[
1

n

n∑
k=1

〈
exp−1

xk
(x), g(xk)

〉
xk

]

≤ 1

n
E

[
n∑

k=1

∑
i∈I

Hi
k(x

i
⋆)

]
+

1

n
E

[
n∑

k=1

∑
i∈I

Bi
k(x

i
⋆)

]
+

1

n
E

[
n∑

k=1

∑
i∈I

Ai
k(x

i
⋆)

]
.

(43)
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The definition of Hi
n(x

i) (i ∈ I, n ∈ N) and (11) guarantee that, for all i ∈ I,
all x⋆ ∈ X⋆, and all n ≥ 1,

n∑
k=1

Hi
k(x

i
⋆)

≤ (1− β̂2)hi1
2α1(1− β1)

Di2 +

n∑
k=2

{
(1− β̂k+1)hik
2αk(1− βk)

−
(1− β̂k)hik−1

2αk−1(1− βk−1)

}
di(xik, x

i
⋆)

2.

Since β̂ ∈ [0, 1) and Assumption (A4) hold and (αn(1− βn))n∈N is monotone
decreasing, we have that, for all k ≥ 2,

(1− β̂k+1)hik
2αk(1− βk)

−
(1− β̂k)hik−1

2αk−1(1− βk−1)
≥ 0.

Accordingly, for all i ∈ I and all x⋆ ∈ X⋆,

E

[
n∑

k=1

Hi
k(x

i
⋆)

]

≤ E

[
(1− β̂2)hi1
2α1(1− β1)

Di2 +

n∑
k=2

{
(1− β̂k+1)hik
2αk(1− βk)

−
(1− β̂k)hik−1

2αk−1(1− βk−1)

}
Di2

]

= E

[
(1− β̂n+1)hin
2αn(1− βn)

Di2

]

≤ B̂iDi2

2(1− β1)αn
,

(44)

where the second inequality comes from β̂ ∈ [0, 1), Assumption (A5), and
βn ≤ β1 (n ≥ 1). The Cauchy-Schwarz inequality ensures that, for all x⋆ ∈ X⋆

and all n ≥ 1,

E

[
n∑

k=1

∑
i∈I

Bi
k(x

i
⋆)

]
≤ E

[∑
i∈I

n∑
k=1

βk
1− βk

∥∥τ ik−1

∥∥
xi
k

∥∥∥(expixi
k
)−1(xi⋆)

∥∥∥
xi
k

]
,

which, together with (11), Lemma 1, and βn ≤ β1 (n ≥ 1), implies that

E

[
n∑

k=1

∑
i∈I

Bi
k(x

i
⋆)

]
≤
∑

i∈I B̃
iDi

1− β1

n∑
k=1

βk. (45)

Moreover, from Lemma 1, β̂ ∈ [0, 1), Assumption (A4), and βn ≤ β1 (n ≥ 1),

E

[
n∑

k=1

∑
i∈I

Ai
k(x

i
⋆)

]
= E

 n∑
k=1

∑
i∈I

ζiαk

2(1− β̂k+1)(1− βk)

∥∥mi
k

∥∥2
xi
k

hik


≤ 1

2(1− β̂)(1− β1)

∑
i∈I

ζiB̃i
2

hi0

n∑
k=1

αk.

(46)
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Hence, (43), (44), (45), and (46) lead to (40).
Suppose that Assumption (A1)’ holds. Since the triangle inequality implies

that, for all i ∈ I and all n ∈ N,

di
(
T i(xin), x

i
n

)
≤ di

(
T i(xin), T

i(yin)
)
+ di

(
T i(yin), y

i
n

)
+ di

(
yin, x

i
n

)
,

Assumption (A1)’ ensures that

di
(
T i(xin), x

i
n

)
≤ di

(
T i(yin), y

i
n

)
+ 2di

(
yin, x

i
n

)
,

which implies that, for all i ∈ I and all n ∈ N,

di
(
T i(xin), x

i
n

)2 ≤ 2di
(
T i(yin), y

i
n

)2
+ 8di

(
yin, x

i
n

)2
. (47)

(39) and (47) thus lead to (41), which completes the proof. ⊓⊔

Proof (Proof of Theorem 1) Let i ∈ I be fixed arbitrarily. From (34) and
Lemma 1, together with Assumption (A4) and αn := α (n ∈ N), (14) holds.
If (15) does not hold, then there exists δ > 0 such that

αi(1− αi) lim inf
n→+∞

E
[
di
(
T i(yin), y

i
n

)2]
>

2B̃iDi

(1− β̂)hi0
α+

ζiB̃i
2

(1− β̂)2(hi0)
2
α2 + δ.

The definition of the limit inferior of (E[di(T i(yin), y
i
n)

2])n∈N ensures that there
exists n0 ∈ N such that, for all n ≥ n0,

αi(1− αi) lim inf
n→+∞

E
[
di
(
T i(yin), y

i
n

)2]− 1

2
δ ≤ αi(1− αi)E

[
di
(
T i(yin), y

i
n

)2]
,

which implies that, for all n ≥ n0,

αi(1− αi)E
[
di
(
T i(yin), y

i
n

)2]
>

2B̃iDi

(1− β̂)hi0
α+

ζiB̃i
2

(1− β̂)2(hi0)
2
α2 +

1

2
δ.

From (42) with αn := α and βn := β (n ∈ N),

E
[
di(xin+1, x

i)2
]
≤ E

[
di(xin, x

i)2
]
− αi(1− αi)E

[
di
(
T i(yin), y

i
n

)2]
+

2B̃iDi

(1− β̂)hi0
α+

ζiB̃i
2

(1− β̂)2(hi0)
2
α2,

which implies that, for all n ≥ n0,

E
[
di(xin+1, x

i)2
]
< E

[
di(xin, x

i)2
]
−

{
2B̃iDi

(1− β̂)hi0
α+

ζiB̃i
2

(1− β̂)2(hi0)
2
α2 +

1

2
δ

}

+
2B̃iDi

(1− β̂)hi0
α+

ζiB̃i
2

(1− β̂)2(hi0)
2
α2

= E
[
di(xin, x

i)2
]
− 1

2
δ

< E
[
di(xin0

, xi)2
]
− 1

2
δ(n+ 1− n0).
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Since the right-hand side of the above inequality approaches minus infinity
when n diverges, we have a contradiction. Hence, (15) holds.

Assumptions (A4) and (A5) and the conditions, limn→+∞ β̂n+1 = 0 and
X⋆

n := Xn(x⋆) ≤
∑

i∈I B̂
iDi < +∞ (x⋆ ∈ X⋆) (by Assumptions (A3) and

(A5)), guarantee that, for all ϵ > 0, there exists n1 ∈ N such that, for all
n ∈ N, n ≥ n1 implies that

E

[∑
i∈I

Di
(
hin+1 − hin

)]
+ β̂n+1

(
X⋆

n+1 −X⋆
n

)
≤ α(1− β)ϵ. (48)

Let us show that, for all ϵ > 0,

lim inf
n→+∞

E [f(xn)− f⋆] ≤
∑

i∈I ζ
iB̃i

2
(hi0)

−1

2(1− β)(1− β̂)
α+

∑
i∈I B̃

iDi

(1− β)(1− β̂)
β +

3

2
ϵ. (49)

If (49) does not hold, then there exists ϵ0 > 0 such that

lim inf
n→+∞

E [f(xn)− f⋆] >

∑
i∈I ζ

iB̃i
2
(hi0)

−1

2(1− β)(1− β̂)
α+

∑
i∈I B̃

iDi

(1− β)(1− β̂)
β +

3

2
ϵ0.

From the definition of the limit inferior of (E[f(xn) − f⋆])n∈N, there exists
n2 ∈ N such that, for all n ≥ n2,

lim inf
n→+∞

E [f(xn)− f⋆]−
1

2
ϵ0 ≤ E [f(xn)− f⋆] .

Hence, we have that, for all n ≥ n2,

E [f(xn)− f⋆] >

∑
i∈I ζ

iB̃i
2
(hi0)

−1

2(1− β)(1− β̂)
α+

∑
i∈I B̃

iDi

(1− β)(1− β̂)
β + ϵ0.

The convexity of f implies that, for all n ∈ N,

E
[〈
exp−1

xn
(x⋆), g(xn)

〉
xn

]
≤ f⋆ − f(xn). (50)

Since Lemma 2, together with αn := α, βn := β (n ∈ N), (48), and (50),
ensures that, for all n ≥ n1,

X⋆
n+1 ≤ X⋆

n + α(1− β)ϵ− 2α(1− β)E [f(xn)− f⋆] +
2αβ

1− β̂

∑
i∈I

B̃iDi

+
α2

1− β̂

∑
i∈I

ζiB̃i
2

hi0
,



Riemannian Stochastic Fixed Point Optimization Algorithm 35

we find that, for all n ≥ n3 := max{n1, n2},

X⋆
n+1 < X⋆

n + α(1− β)ϵ0 +
2αβ

1− β̂

∑
i∈I

B̃iDi +
α2

1− β̂

∑
i∈I

ζiB̃i
2

hi0

− 2α(1− β)


∑

i∈I ζ
iB̃i

2
(hi0)

−1

2(1− β)(1− β̂)
α+

∑
i∈I B̃

iDi

(1− β)(1− β̂)
β + ϵ0


= X⋆

n − α(1− β)ϵ0

< X⋆
n3

− α(1− β)ϵ0 (n+ 1− n3) ,

which is a contradiction. Hence, (49) holds for all ϵ > 0. This implies that (16)
holds. Obviously, (17) holds from (39) with αn := α and βn := β (n ∈ N).

The conditions αn := α and βn := β (n ∈ N) satisfy that (αn(1− βn))n∈N
and (βn)n∈N are monotone decreasing. Since f is convex, induction shows that

f(x̄n) ≤
1

n

n∑
k=1

f(xk). (51)

Therefore, (40) in Theorem 5 leads to (19). If Assumption (A1)’ holds, then
Theorem 5 leads to (20). ⊓⊔

Proof (Proof of Theorem 2) From (34) and Lemma 1, together with As-
sumption (A4) and limn→+∞ αn = 0 (by

∑+∞
n=0 α

2
n < +∞), we have that

limn→+∞ E[di(yin, xin)2] = 0. Define Y i
n for all x ∈ X, all i ∈ I, and all n ∈ N

by

Y i
n(x) := αnE

[
di(xin, x

i)2
]
.

Inequality (42) then ensures that, for all x ∈ X, all i ∈ I, and all k ∈ N,

αi(1− αi)αkE
[
di
(
T i(yik), y

i
k

)2]
≤ Y i

k (x)− αkE
[
di(xik+1, x

i)2
]
+

ζiB̃i
2

(1− β̂)2(hi0)
2
α3
k +

2B̃iDi

(1− β̂)hi0
α2
k,

which, together with αn+1 ≤ αn (n ∈ N), implies that

αi(1− αi)αkE
[
di
(
T i(yik), y

i
k

)2]
≤ Y i

k (x)− Y i
k+1(x) +

ζiB̃i
2

(1− β̂)2(hi0)
2
α3
k +

2B̃iDi

(1− β̂)hi0
α2
k.

Summing the above inequality from k = 0 to k = n means that, for all x ∈ X,
all i ∈ I, and all n ∈ N,

α̂i
n∑

k=0

αkE
[
di
(
T i(yik), y

i
k

)2] ≤ Y i
0 (x) +

ζiB̃i
2

(1− β̂)2(hi0)
2

n∑
k=0

α3
k +

2B̃iDi

(1− β̂)hi0

n∑
k=0

α2
k,
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where α̂i := αi(1 − αi). Since (αn)n∈N ⊂ (0, 1) satisfies
∑+∞

n=0 α
2
n < +∞, we

have that, for all x ∈ X and all i ∈ I,

+∞∑
n=0

αnE
[
di
(
T i(yin), y

i
n

)2]
< +∞. (52)

We prove that, for all i ∈ I,

lim inf
n→+∞

E
[
di
(
T i(yin), y

i
n

)2] ≤ 0. (53)

Assume that (53) does not hold. Then, there exist i ∈ I, γ > 0, and m0 ∈ N
such that, for all n ≥ m0,

E
[
di
(
T i(yin), y

i
n

)2] ≥ γ,

which, together with
∑+∞

n=0 αn = +∞ and (52), implies that

+∞ = γ

+∞∑
n=m0

αn ≤
+∞∑

n=m0

αnE
[
di
(
T i(yin), y

i
n

)2]
< +∞.

This is a contradiction. Hence, we have (53), which implies that, for all i ∈ I,
lim infn→+∞ E[di(T i(yin), y

i
n)

2] = 0. Lemma 2 with (50) guarantees that, for
all k ∈ N,

2αk

1− β̂k+1
E [f(xk)− f⋆] ≤ X⋆

k −X⋆
k+1 + E

[∑
i∈I

Di
(
hik+1 − hik

)]

+
2αkβk

1− β̂

(∑
i∈I

B̃iDi + F

)
+

α2
k

(1− β̂)2

∑
i∈I

ζiB̃i
2

hi0
,

where X⋆
n := Xn(x

⋆) and F := sup{|E[f(xn) − f⋆]| : n ∈ N} is finite from
Assumptions (A2) and (A3). Summing the above inequality from k = 0 to
k = n implies that

2

n∑
k=0

αk

1− β̂k+1
E [f(xk)− f⋆] ≤ X⋆

0 +
∑
i∈I

DiBi +
1

(1− β̂)2

∑
i∈I

ζiB̃i
2

hi0

n∑
k=0

α2
k

+
2

1− β̂

(∑
i∈I

B̃iDi + F

)
n∑

k=0

αkβk,

where sup{E[hin] : n ∈ N} ≤ B̂i holds from Assumption (A5). From
∑+∞

n=0 αnβn <

+∞ and
∑+∞

n=0 α
2
n < +∞, we have that

+∞∑
k=0

αk

1− β̂k+1
E [f(xk)− f⋆] < +∞.
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We also have that
∑+∞

n=0 αk/(1 − β̂n+1) ≥
∑+∞

n=0 αk = +∞. Accordingly, a
discussion similar to the one for proving (53) leads to the finding that

lim inf
n→+∞

E [f(xk)− f⋆] ≤ 0.

Theorem 5, together with (51) and (23), leads to (24) and (25) with rate
of convergence (39), (40), and (41). This completes the proof. ⊓⊔

Proof (Proofs of Theorems 3 and 4) A discussion similar to the one for showing
Theorem 1 (resp. Theorem 2) with g := gradf leads to Theorem 3 (resp.
Theorem 4). ⊓⊔

Proof of Corollary 1

Proof The step-sizes αn := 1/nη (η ∈ (1/2, 1], n ≥ 1) and (βn)n∈N such that∑+∞
n=1 αnβn < +∞ satisfy (21). Hence, Theorem 2 leads to (26).

Let αn := 1/nη (η ∈ [1/2, 1), n ≥ 1) and (βn)n∈N such that
∑+∞

n=1 βn <
+∞. We have that

lim
n→+∞

1

nαn
= lim

n→+∞

1

n1−η
= 0. (54)

Moreover,

1

n

n∑
k=1

α2
k ≤ 1

n

n∑
k=1

αk ≤ 1

n

{
1 +

∫ n

1

dt

tη

}
=

1

n

{
n1−η

1− η
− η

1− η

}
≤ 1

1− η

1

nη
.

(55)

Hence, limn→+∞(1/n)
∑n

k=1 αk = limn→+∞(1/n)
∑n

k=1 α
2
k = 0. From

∑+∞
n=1 βn <

+∞, limn→+∞(1/n)
∑n

k=1 βk = 0. Hence, αn := 1/nη and (βn)n∈N such that∑+∞
n=1 βn < +∞ satisfy (23). Accordingly, from Theorem 2 with (51), (54),

and (55), we have the assertions in Corollary 1. ⊓⊔


