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Abstract. We consider a networked system which consists of a finite number
of users and discuss a nonmonotone variational inequality with the gradient
of the sum of all users’ nonconvex objective functions over the intersection of

all users’ constraint sets. Centralized iterative methods, which require us to
use the explicit forms of all users’ objective functions and constraint sets, have
been proposed to solve the variational inequality. However, it would be difficult
to apply them to the variational inequality in this system because none of the

users in the system can know the explicit forms of all users’ objective functions
and constraint sets. In this paper, we translate the variational inequality into
a nonmonotone variational inequality over the intersection of the fixed point
sets of certain nonexpansive mappings and devise distributed iterative meth-

ods, which enable each user to solve the variational inequality without using
the explicit forms of other users’ objective functions and constraint sets, based
on fixed point theory for nonexpansive mappings. We also present convergence

analyses for them and provide numerical examples for the bandwidth alloca-
tion. The analyses and numerical examples suggest that distributed iterative
methods with slowly diminishing step-size sequences converge to a solution to
the variational inequality.

1. Introduction

1.1. Background. Nonmonotone variational inequality problems [7, Chapter I],
[24, Subchapter 6.D], related to important nonlinear problems such as nonconvex
optimization problems and Nash equilibrium problems, are the central topic of
optimization theory. Iterative methods [8] for solving nonmonotone variational
inequalities have been widely studied.

In this paper, we consider a networked system in which each user has its own pri-
vate nonconvex objective function and constraint set, and deal with a nonmonotone
variational inequality for the gradient of the sum of all users’ objective functions
over the intersection of all users’ constraint sets. Moreover, we assume that each
user’s constraint set does not always have a simple form (for examples of such a
constraint set, see Examples (II) and (III) in Subsection 1.2). This implies that
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2 H. IIDUKA

the metric projection onto each user’s constraint set cannot be easily computed.1

The nonmonotone variational inequality problem in this case includes, for instance,
power control problems in direct-sequence code-division multiple-access (CDMA)
data networks [12] and in wireless networks [25], and bandwidth allocation problems
[13].

References [12, 13] showed that practical problems, such as power control and
bandwidth allocation problems, can be translated into a nonmonotone variational
inequality problem over the fixed point set of a certain nonexpansive mapping [1],
[9, Chapter 3], [10, Chapter 1], and presented iterative methods for solving the
nonmonotone variational inequality. These iterative methods must use the explicit
forms of the nonexpansive mapping and the nonmonotone operator, and hence,
they are referred to as centralized iterative methods.

In the case of the power control for the uplink or downlink in CDMA data net-
work, the base station plays the role of the centralized operator, and hence, it can
get user information such as the explicit forms of the objective functions and con-
straint sets from the start. To control the power allocation in the network, the base
station executes a centralized iterative method and transmits the powers computed
by the method to all users in the network. However, there is no centralized operator
in peer-to-peer (P2P) networks for data storage allocation [20], wireless networks
for power allocation [25], and wired networks for bandwidth allocation [14, 19].
Therefore, in large-scale and complex networked systems, there is an inconvenient
possibility that none of the users can get the explicit forms of their own objective
functions and constraint sets, and hence, centralized iterative methods cannot be
applied to such systems. Moreover, since such networks can grow in size, distributed
mechanisms should be used for network resource allocation instead of centralized
ones that involve extra infrastructure. Distributed mechanisms enable each user to
adjust its own resource allocation without using the private information of other
users such as their objective functions and constraint sets.

Many distributed iterative methods, which can be applied to such systems, have
been proposed. The conventional distributed iterative methods enable each user
in the networked system to solve a monotone variational inequality without using
other users’ convex, nondifferentiable objective functions and simple constraint sets.
The well-known distributed iterative method is the incremental subgradient method
(see [3, Subchapter 8.2], [4, 17, 18, 21] and references therein). The incremental
subgradient methods can be implemented through cooperation, whereby each user
communicates with its neighbor user. Broadcast types of distributed iterative meth-
ods [5, 6, 25] were proposed for solving the monotone variational inequality. The
broadcast iterative methods can be implemented through cooperation, whereby all
users communicate with each other. Reference [14] proposed an incremental gra-
dient method and a broadcast iterative method for solving a monotone variational
inequality over the intersection of the fixed point sets of nonexpansive mappings.
These methods [14] with slowly diminishing step-size sequences converge to a unique
solution to the monotone variational inequality.

1The projection onto a simple set (e.g., a half-space) can be computed within a finite number
of arithmetic operations.
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From the above viewpoint, we can conclude that distributed iterative methods
should be devised to solve a nonmonotone variational inequality over the intersec-
tion of the fixed point sets of nonexpansive mappings, which is defined properly in
the next subsection.

1.2. Main problem. This paper considers a networked system, which consists of
K users, under the following assumptions:

Assumption 1.1. Suppose that user i (i ∈ I := {1, 2, . . . ,K}) has its own private
constraint set C(i) and objective function f (i) satisfying the following:

(A1) X(i) (i ∈ I) is a nonempty, bounded, closed, convex set of RN onto which
the projection, denoted by PX(i) , can be easily computed.

(A2) User i (i ∈ I) can use a firmly nonexpansive mapping2 T (i) : RN →
RN with (X(i) ⊃) Fix(T (i)) := {x ∈ RN : T (i)(x) = x} = C(i) and∩

i∈I Fix(T
(i)) ̸= ∅.

(A3) f (i) : RN → R (i ∈ I) is continuously differentiable.

User i in actual networked systems [14, 19, 20, 25] has a bounded constraint set
C(i). Then, user i can set a bounded X(i) (⊃ C(i)) (i ∈ I) in advance (e.g., X(i) is a
closed ball with a large enough radius). Section 4 discusses the network bandwidth
allocation problem when user i (source i) has a bounded set C(i) and a box constant
set X(i). See [14,19,20,25] for other examples of a bounded C(i).

Let us provide three examples (I)–(III) [14] of T (i) (i ∈ I) satisfying Assump-
tion (A2). (I) Suppose that user i has a simple, closed convex constraint set C(i)

(e.g., C(i) is a closed ball or a half-space). The typical example of T (i) is the met-
ric projection, denoted by PC(i) , onto C(i) because PC(i) can be easily computed
and satisfies the firm nonexpansivity condition and Fix(PC(i)) = C(i). (II) Let us

consider the case where C(i) is the intersection of simple, closed convex sets D
(i)
j s

(j ∈ J(i) := {1, 2, . . . ,m(i)}), i.e.,

C(i) :=
∩

j∈J(i)

D
(i)
j .(1)

Since P
D

(i)
j

can be easily computed, user i can use T (i) defined by

T (i) :=
1

2

Id +
∏

j∈J(i)

P
D

(i)
j

 ,(2)

where Id stands for the identity mapping on RN . T (i) satisfies the firm nonexpansiv-
ity condition [2, Definition 4.1, Proposition 4.2] and Fix(T (i)) = Fix(

∏
j∈J(i) PD

(i)
j
) =∩

j∈J(i) D
(i)
j = C(i). Section 4 describes that source i has T (i) defined by Equation

(2) with Fix(T (i)) = C(i) ⊂ X(i). (III) Let us consider the case where C(i) is the
set of all minimizers of a differentiable, convex functional g(i) with the Lipschitz
continuous gradient ∇g(i) over a simple, closed convex set D(i), i.e.,

C(i) :=

{
x ∈ D(i) : g(i)(x) = min

y∈D(i)
g(i)(y)

}
.(3)

2T : RN → RN is said to be firmly nonexpansive [1], [9, Chapter 12], [10, Subchapter 1.11] if

∥T (x) − T (y)∥2 ≤ ⟨x − y, T (x) − T (y)⟩ (x, y ∈ RN ), where ⟨·, ·⟩ stands for the inner product of
RN and ∥ · ∥ is the norm of RN .
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PD(i)(Id− λ∇g(i)) is nonexpansive with an adequate λ (> 0) [11, Proposition 2.3].
Accordingly, user i can use a firmly nonexpansive T (i) defined by

T (i) :=
1

2

(
Id + PD(i)

(
Id− λ∇g(i)

))
(4)

with Fix(T (i)) = Fix(PD(i)(Id− λ∇g(i))) = C(i) [27, Theorem 46.C (1) and (2)]. It
would be difficult to compute PC(i) onto C(i) in Equation (1) and PC(i) onto C(i) in
Equation (3). Meanwhile, we can see that T (i) in Equation (2) and T (i) in Equation
(4) are firmly nonexpansive with Fix(T (i)) = C(i) and can be easily computed.

The main problem in this paper is the following nonmonotone variational in-
equality problem with information on the whole system:

Problem 1.1. Under Assumption 1.1, find a point in

VI

(∩
i∈I

Fix
(
T (i)

)
,∇

(∑
i∈I

f (i)

))

:=

{
x⋆ ∈ X :=

∩
i∈I

Fix
(
T (i)

)
:

⟨
x− x⋆,∇

(∑
i∈I

f (i)

)
(x⋆)

⟩
≥ 0 (x ∈ X)

}
.

1.3. Main objective and contributions of the paper. The main objective of
the paper is to devise distributed iterative methods for solving Problem 1.1, which
the existing methods in Subsection 1.1 cannot solve, and to prove that the pro-
posed methods converge to a solution to Problem 1.1 under certain assumptions.
The contribution of this paper is that it is the first study to tackle nonmonotone
variational inequalities over the intersection of the fixed point sets of nonexpansive
mappings and it proposes two distributed iterative methods for them. Section 2
presents an incremental fixed point optimization algorithm, based on the conven-
tional incremental subgradient methods, for solving Problem 1.1 and its conver-
gence analysis. Section 3 presents a broadcast fixed point optimization algorithm,
based on the conventional broadcast iterative methods, for solving Problem 1.1
and its convergence analysis. Section 4 applies the algorithms to a network band-
width allocation problem and provides numerical examples for network bandwidth
allocation. The convergence analyses and numerical examples describe that the
algorithms with slowly diminishing step-size sequences converge to a solution to
Problem 1.1. Section 5 concludes the paper.

2. Incremental Gradient Method for Nonmonotone Variational
Inequality and Its Convergence Analysis

We first present the following algorithm for solving Problem 1.1:

Algorithm 2.1 (Incremental Fixed Point Optimization Algorithm).

Step 0. User i (i ∈ I) sets (αn)n∈N, (λn)n∈N, and (βn)n∈N, chooses x
(i)
−1 ∈ RN

arbitrarily, and computes d
(i)
−1 := −∇f (i)(x

(i)
−1). User K sets x0 ∈ RN and transmits

x
(0)
0 := x0 to user 1.
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Step 1. Given xn = x
(0)
n ∈ RN and d

(i)
n−1 ∈ RN (i ∈ I), user i computes x

(i)
n ∈ RN

cyclically by
d
(i)
n := −∇f (i)

(
x
(i−1)
n

)
+ βnd

(i)
n−1,

y
(i)
n := T (i)

(
x
(i−1)
n + λnd

(i)
n

)
,

x
(i)
n := PX(i)

(
αnx

(i−1)
n + (1− αn)y

(i)
n

)
(i = 1, 2, . . . ,K).

Step 2. User K defines xn+1 ∈ RN by

xn+1 := x(K)
n

and transmits x
(0)
n+1 := xn+1 to user 1. Put n := n+ 1, and go to Step 1.

The conventional incremental subgradient method (see [3, Subchapter 8.2], [4,
17,18,21] and references therein) is defined as follows:{

x
(i)
n := PC

(
x
(i−1)
n − λng

(i)
n

)
, g

(i)
n ∈ ∂f (i)

(
x
(i−1)
n

)
(i = 1, 2, . . . ,K),

xn+1 := x
(K)
n ,

(5)

where all users have a simple, closed convex set C and ∂f (i)(x) stands for the
subdifferential of a nonsmooth, convex functional f (i) at x ∈ H. References
[3, Proposition 8.2.6] and [21, Proposition 2.4] describe that, when (λn)n∈N sat-
isfies

∑∞
n=0 λn = ∞ and

∑∞
n=0 λ

2
n < ∞, (xn)n∈N in Algorithm (5) converges to a

minimizer of
∑

i∈I f
(i) over C.

The incremental fixed point optimization algorithm [14] was presented as a way
to solve Problem 1.1 when f (i) is differentiable and convex and T (i) is firmly nonex-
pansive. This algorithm cannot be applied to the case where f (i) is nonsmooth and
convex because the proof of its convergence analysis essentially uses the Lipschitz
continuity of the gradient of f (i) (see [14, Proposition 2.1]).3

Meanwhile, Algorithm 2.1 can use a firmly nonexpansive T (i) satisfying Fix(T (i)) =
C(i) and can be applied even when f (i) (i ∈ I) is not always convex. Algorithm
2.1 uses the conjugate gradient direction [22, Chapter 5], [15, 16] generated by

d
(i)
n := −∇f (i)(x

(i−1)
n ) + βnd

(i)
n−1 (i ∈ I, n ∈ N) to accelerate algorithms with the

steepest descent direction d
(i)
n := −∇f (i)(x

(i−1)
n ) (i ∈ I, n ∈ N).

We need the following assumptions to guarantee that Algorithm 2.1 converges
to a solution to Problem 1.1:

Assumption 2.1. User i (i ∈ I) has (αn)n∈N ⊂ [0, 1], (βn)n∈N ⊂ [0, 1], and
(λn)n∈N ⊂ (0, 1] satisfying4

(C1) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, (C2)
∞∑

n=0

λn < ∞, (C3) lim
n→∞

βn = 0.

Assumption 2.2. (∇f (i)(x
(i−1)
n ))n∈N (i ∈ I) is bounded.

3In the future, we should consider developing distributed iterative methods for solving mini-
mization problems over the fixed point sets of nonexpansive mappings in which all users’ objective
functions are nonsmooth and convex.

4Examples of (αn)n∈N, (λn)n∈N, and (βn)n∈N are αn := a (∈ (0, 1)), λn := 1/(n+1)b (b > 1),
and βn := 1/(n+ 1)c (c > 0).
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Let us provide a condition to satisfy Assumption 2.2. The boundedness of X(i)

guarantees that (x
(i)
n )n∈N (i ∈ I) is bounded. Now suppose that ∇f (i) (i ∈ I) is

Lipschitz continuous with L(i) > 0 (L(i)-Lipschitz continuous), i.e., ∥∇f (i)(x) −
∇f (i)(y)∥ ≤ L(i)∥x − y∥ (x, y ∈ RN ). Accordingly, ∥∇f (i)(x

(i−1)
n ) − ∇f (i)(y)∥ ≤

L(i)∥x(i−1)
n − y∥ (i ∈ I, y ∈ RN ). This inequality and the boundedness of (x

(i)
n )n∈N

(i ∈ I) ensure that Assumption 2.2 is satisfied under the Lipschitz continuity of
∇f (i) (i ∈ I).

Now let us do a convergence analysis on Algorithm 2.1.

Theorem 2.1. Suppose that Assumptions 1.1, 2.1, and 2.2 are satisfied. Then,

(x
(i)
n )n∈N (i ∈ I) in Algorithm 2.1 has the following properties:

(a) (x
(i)
n )n∈N (i ∈ I) is bounded and limn→∞ ∥xn − y∥ exists for all y ∈∩
i∈I Fix(T

(i)).

(b) limn→∞ ∥xn−x
(i−1)
n ∥ = 0 (i ∈ I), limn→∞ ∥xn+1−xn∥ = 0, limn→∞ ∥xn−

T (i)(xn)∥ = 0 (i ∈ I).

(c) (x
(i)
n )n∈N (i ∈ I) converges to a common fixed point of T (i)s.

(d) If ∥xn+1−xn∥ = o(λn), (x
(i)
n )n∈N (i ∈ I) converges to a solution to Problem

1.1.

Item (c) in Theorem 2.1 guarantees that all (x
(i)
n )n∈Ns converge to the same

point x⋆ in
∩

i∈I Fix(T
(i)). This means that all users which use Algorithm 2.1

under Assumptions 2.1 and 2.2 can find the feasible point in Problem 1.1.
From Item (b) in Theorem 2.1 and Condition (C2), we find that limn→∞ ∥xn+1−

xn∥ = 0 and limn→∞ λn = 0. Item (d) in Theorem 2.1 says that, if (∥xn+1−xn∥)n∈N
and (λn)n∈N satisfy the more restrictive condition, ∥xn+1 − xn∥ = o(λn), i.e.,

limn→∞ ∥xn+1−xn∥/λn = 0, all (x
(i)
n )n∈Ns converge to x

⋆ in VI(
∩

i∈I Fix(T
(i)),∇(

∑
i∈I f

(i)))

even when the f (i)s are nonconvex. User K can verify whether ∥x(K)
n − x

(K)
n−1∥ =

∥xn+1−xn∥ = o(λn) is satisfied or not.5 Hence, it would be reasonable that user K
determines a slowly diminishing (λn)n∈N (e.g., λn := 1/(n+1)1.01 or 1/(n+1)1.001)
to satisfy ∥xn+1−xn∥ = o(λn) as much as possible. From such a viewpoint, it would
be desirable to set user K as an operator who manages the networked system.

References [12, 13] present centralized fixed point optimization algorithms for
solving Problem 1.1 when f (i)s are nonconvex, and these algorithms can be ap-
plied to power control [12] and network bandwidth allocation [13] problems. For
convenience, we shall write the algorithm in [12] for Problem 1.1 as follows:yn :=

∏
i∈I

T (i)

(
xn − λn∇

(∑
i∈I

f (i)

)
(xn)

)
,

xn+1 := PC (αnxn + (1− αn)yn) (n ∈ N),
(6)

where C (⊂ RN ) is closed and convex, and (λn)n∈N and (αn)n∈N satisfy Conditions
(C1) and (C2). Theorem 6 and Remark 7 (c) in [12] guarantee that (xn)n∈N in Al-
gorithm (6) converges to a solution to Problem 1.1 if ∥xn−yn∥ = o(λn). Numerical
examples in [12, 13] indicated that the algorithms [12, 13] with λn := 1/(n+ 1)1.01

5User K can obtain, for each n > 1, x
(K)
n , x

(K)
n−1, and λn and then compute zn := ∥x(K)

n −
x
(K)
n−1∥/λn and wn := zn−1 − zn. If wn ≥ 0 and zn is small for each n, the condition will be

satisfied.
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satisfy ∥xn−yn∥ = o(λn), while the algorithms with λn := 1/(n+1)2 do not always
satisfy ∥xn− yn∥ = o(λn). Algorithm (6) requires us to use the explicit forms of all
T (i)s and f (i)s. However, it would be difficult to apply Algorithm (6) to Problem
1.1 in networked systems. This is because each user in such systems cannot get
the explicit forms of other users’ objective functions and nonexpansive mappings.
Meanwhile, Algorithm 2.1 can be implemented under the assumption that each user
knows its own private objective function and nonexpansive mapping.

2.1. Proof of Theorem 2.1. (a) The definition of (x
(i)
n )n∈N (i ∈ I) and the

boundedness of X(i) (i ∈ I) guarantee the boundedness of (x
(i)
n )n∈N (i ∈ I).

Condition (C3) ensures the existence of n1 ∈ N such that βn ≤ 1/2 for all n ≥
n1. We put M

(i)
1 := sup{∥∇f (i)(x

(i−1)
n )∥ : n ∈ N}, M̄

(i)
1 := max{M (i)

1 , ∥d(i)n1∥}
(i ∈ I), and M1 := maxi∈I M̄

(i)
1 (M1 < ∞ is guaranteed by the boundedness of

(∇f (i)(x
(i−1)
n ))n∈N (i ∈ I)). We then have that, for all n ≥ n1 and for all i ∈ I,

∥d(i)n+1∥ ≤ ∥∇f (i)(x
(i−1)
n+1 )∥+βn+1∥d(i)n ∥ ≤ M1+(1/2)∥d(i)n ∥. Let us fix i ∈ I and as-

sume that ∥d(i)n ∥ ≤ 2M1 for some n ≥ n1. We find that ∥d(i)n+1∥ ≤ M1+(1/2)∥d(i)n ∥ ≤
M1 + (1/2)2M1 = 2M1. Induction guarantees that ∥d(i)n ∥ ≤ 2M1 for all i ∈ I and

for all n ≥ n1, which implies that (d
(i)
n )n∈N (i ∈ I) is bounded.

Choose y ∈
∩

i∈I Fix(T
(i)) arbitrarily and put M2 := maxi∈I(sup{2|⟨x(i−1)

n −
y, d

(i)
n ⟩| + λn∥d(i)n ∥2 : n ∈ N}) (M2 < ∞ is guaranteed by the boundedness of

(x
(i)
n )n∈N and (d

(i)
n )n∈N (i ∈ I)). The nonexpansivity of T (i) means that, for all

n ∈ N and for all i ∈ I,∥∥∥y(i)n − y
∥∥∥2 =

∥∥∥T (i)
(
x(i−1)
n + λnd

(i)
n

)
− T (i)(y)

∥∥∥2 ≤
∥∥∥(x(i−1)

n + λnd
(i)
n

)
− y
∥∥∥2

=
∥∥∥x(i−1)

n − y
∥∥∥2 + 2λn

⟨
x(i−1)
n − y, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − y
∥∥∥2 +M2λn.

(7)

Inequality (7) and the boundedness of (x
(i)
n )n∈N (i ∈ I) ensure that (y

(i)
n )n∈N (i ∈ I)

is bounded. Moreover, the nonexpansivity of PX(i) (i ∈ I), Assumption (A2)
(Fix(T (i)) ⊂ X(i) = Fix(PX(i))), and the convexity of ∥ · ∥2 guarantee that, for all
n ∈ N and for all i ∈ I,∥∥∥x(i)

n − y
∥∥∥2 =

∥∥∥PX(i)

(
αnx

(i−1)
n + (1− αn)y

(i)
n

)
− PX(i)(y)

∥∥∥2
≤
∥∥∥(αnx

(i−1)
n + (1− αn)y

(i)
n

)
− y
∥∥∥2

=
∥∥∥αn

(
x(i−1)
n − y

)
+ (1− αn)

(
y(i)n − y

)∥∥∥2
≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2
≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)

{∥∥∥x(i−1)
n − y

∥∥∥2 +M2λn

}
≤
∥∥∥x(i−1)

n − y
∥∥∥2 +M2λn.

(8)
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Accordingly, we find that, for all n ∈ N,

∥xn+1 − y∥2 =
∥∥∥x(K)

n − y
∥∥∥2 ≤

∥∥∥x(K−1)
n − y

∥∥∥2 +M2λn

≤
∥∥∥x(0)

n − y
∥∥∥2 +KM2λn = ∥xn − y∥2 +KM2λn,

which means that, for all m,n ∈ N,

∥xn+m+1 − y∥2 ≤ ∥xn+m − y∥2 +KM2λn+m ≤ ∥xm − y∥2 +KM2

n+m∑
i=m

λi

≤ ∥xm − y∥2 +KM2

∞∑
i=m

λi.

Thus, for allm ∈ N, lim supn→∞ ∥xn − y∥2 = lim supn→∞ ∥xn+m+1 − y∥2 ≤ ∥xm − y∥2+
KM2

∑∞
i=m λi. Therefore, Condition (C2) leads us to

lim sup
n→∞

∥xn − y∥2 ≤ lim inf
m→∞

{
∥xm − y∥2 +KM2

∞∑
i=m

λi

}
= lim inf

m→∞
∥xm − y∥2 ,

which implies that limn→∞ ∥xn − y∥ exists for all y ∈
∩

i∈I Fix(T
(i)).

(b) We shall prove that limn→∞ ∥x(i−1)
n − y

(i)
n ∥ = 0 (i ∈ I). From the firm

nonexpansivity of T (i) and ⟨x, y⟩ = (1/2)(∥x∥2 + ∥y∥2 − ∥x− y∥2) (x, y ∈ RN ), we
have that, for all n ∈ N, for all i ∈ I, and for all y ∈

∩
i∈I Fix(T

(i)),

∥∥∥y(i)n − y
∥∥∥2 =

∥∥∥T (i)
(
x(i−1)
n + λnd

(i)
n

)
− T (i)(y)

∥∥∥2
≤
⟨(

x(i−1)
n + λnd

(i)
n

)
− y, y(i)n − y

⟩
=

1

2

{∥∥∥(x(i−1)
n − y

)
+ λnd

(i)
n

∥∥∥2 + ∥∥∥y(i)n − y
∥∥∥2 − ∥∥∥(x(i−1)

n − y(i)n

)
+ λnd

(i)
n

∥∥∥2} ,

which means that

∥∥∥y(i)n − y
∥∥∥2 ≤

∥∥∥(x(i−1)
n − y

)
+ λnd

(i)
n

∥∥∥2 − ∥∥∥(x(i−1)
n − y(i)n

)
+ λnd

(i)
n

∥∥∥2
=
∥∥∥x(i−1)

n − y
∥∥∥2 + 2λn

⟨
x(i−1)
n − y, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
−
∥∥∥x(i−1)

n − y(i)n

∥∥∥2 + 2λn

⟨
y(i)n − x(i−1)

n , d(i)n

⟩
− λ2

n

∥∥∥d(i)n

∥∥∥2
=
∥∥∥x(i−1)

n − y
∥∥∥2 + 2λn

⟨
y(i)n − y, d(i)n

⟩
−
∥∥∥x(i−1)

n − y(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − y
∥∥∥2 +M3λn −

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ,

(9)
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where M3 := maxi∈I(sup{2|⟨y(i)n − y, d
(i)
n ⟩| : n ∈ N}) < ∞. Hence, Inequality (8)

ensures that, for all n ∈ N, for all i ∈ I, and for all y ∈
∩

i∈I Fix(T
(i)),∥∥∥x(i)

n − y
∥∥∥2 ≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2
≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)

{∥∥∥x(i−1)
n − y

∥∥∥2 +M3λn −
∥∥∥x(i−1)

n − y(i)n

∥∥∥2}
≤
∥∥∥x(i−1)

n − y
∥∥∥2 +M3λn − (1− αn)

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 .
Therefore, for all n ∈ N and for all y ∈

∩
i∈I Fix(T

(i)),

∥xn+1 − y∥2 =
∥∥∥x(K)

n − y
∥∥∥2 ≤

∥∥∥x(K−1)
n − y

∥∥∥2 +M3λn − (1− αn)
∥∥∥x(K−1)

n − y(K)
n

∥∥∥2
≤
∥∥∥x(0)

n − y
∥∥∥2 +KM3λn − (1− αn)

∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2
= ∥xn − y∥2 +KM3λn − (1− αn)

∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ,
and hence,

(1− αn)
∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2 +KM3λn.

The existence of limn→∞ ∥xn − y∥ (y ∈
∩

i∈I Fix(T
(i))), limn→∞ λn = 0 (by Con-

dition (C2)), and Condition (C1) lead one to deduce that limn→∞
∑

i∈I ∥x
(i−1)
n −

y
(i)
n ∥ = 0; i.e.,

lim
n→∞

∥∥∥x(i−1)
n − y(i)n

∥∥∥ = 0 (i ∈ I).(10)

Next, we shall prove that limn→∞ ∥x(i)
n − y

(i)
n ∥ = 0 (i ∈ I). The firm nonex-

pansivity of PX(i) and ⟨x, y⟩ = (1/2)(∥x∥2 + ∥y∥2 − ∥x − y∥2) (x, y ∈ RN ) imply
that, for all n ∈ N, for all i ∈ I, and for all y ∈

∩
i∈I Fix(T

(i)) ⊂ X(j) = Fix(PX(j))
(j ∈ I), ∥∥∥x(i)

n − y
∥∥∥2 =

∥∥∥PX(i)

(
αnx

(i−1)
n + (1− αn)y

(i)
n

)
− PX(i)(y)

∥∥∥2
≤
⟨(

αnx
(i−1)
n + (1− αn)y

(i)
n

)
− y, x(i)

n − y
⟩

=
1

2

{∥∥∥αn

(
x(i−1)
n − y

)
+ (1− αn)

(
y(i)n − y

)∥∥∥2 + ∥∥∥x(i)
n − y

∥∥∥2
−
∥∥∥αn

(
x(i−1)
n − x(i)

n

)
+ (1− αn)

(
y(i)n − x(i)

n

)∥∥∥2},
which means that∥∥∥x(i)

n − y
∥∥∥2 ≤

∥∥∥αn

(
x(i−1)
n − y

)
+ (1− αn)

(
y(i)n − y

)∥∥∥2
−
∥∥∥αn

(
x(i−1)
n − x(i)

n

)
+ (1− αn)

(
y(i)n − x(i)

n

)∥∥∥2 .
Accordingly, the convexity of ∥ · ∥2 and the equality, ∥αx+ (1− α)y∥2 = α∥x∥2 +
(1 − α)∥y∥2 − α(1 − α)∥x − y∥2 (x, y ∈ RN , α ∈ [0, 1]), ensure that, for all n ∈ N,
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for all i ∈ I, and for all y ∈
∩

i∈I Fix(T
(i)),∥∥∥x(i)

n − y
∥∥∥2 ≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2 − αn

∥∥∥x(i−1)
n − x(i)

n

∥∥∥2
− (1− αn)

∥∥∥y(i)n − x(i)
n

∥∥∥2 + αn(1− αn)
∥∥∥x(i−1)

n − y(i)n

∥∥∥2 .
Since Inequality (9) implies that ∥y(i)n − y∥2 ≤ ∥x(i−1)

n − y∥2 + M3λn (n ∈ N, i ∈
I, y ∈

∩
i∈I Fix(T

(i))), we find that∥∥∥x(i)
n − y

∥∥∥2 ≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)

{∥∥∥x(i−1)
n − y

∥∥∥2 +M3λn

}
− αn

∥∥∥x(i−1)
n − x(i)

n

∥∥∥2 − (1− αn)
∥∥∥y(i)n − x(i)

n

∥∥∥2 + αn(1− αn)
∥∥∥x(i−1)

n − y(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − y
∥∥∥2 +M3λn − αn

∥∥∥x(i−1)
n − x(i)

n

∥∥∥2 − (1− αn)
∥∥∥y(i)n − x(i)

n

∥∥∥2
+
∥∥∥x(i−1)

n − y(i)n

∥∥∥2 .
Thus, for all n ∈ N and for all y ∈

∩
i∈I Fix(T

(i)),

∥xn+1 − y∥2 ≤ ∥xn − y∥2 +KM3λn − αn

∑
i∈I

∥∥∥x(i−1)
n − x(i)

n

∥∥∥2
− (1− αn)

∑
i∈I

∥∥∥y(i)n − x(i)
n

∥∥∥2 +∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ,
which means that

(1− αn)
∑
i∈I

∥∥∥y(i)n − x(i)
n

∥∥∥2 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2 +KM3λn

+
∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ,
αn

∑
i∈I

∥∥∥x(i−1)
n − x(i)

n

∥∥∥2 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2 +KM3λn

+
∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 .
The existence of limn→∞ ∥xn − y∥ (y ∈

∩
i∈I Fix(T

(i))), limn→∞ λn = 0, Condition

(C1), and Equation (10) lead one to deduce that limn→∞
∑

i∈I ∥y
(i)
n − x

(i)
n ∥ = 0

and limn→∞
∑

i∈I ∥x
(i−1)
n − x

(i)
n ∥ = 0; i.e.,

lim
n→∞

∥∥∥y(i)n − x(i)
n

∥∥∥ = 0 (i ∈ I),(11)

lim
n→∞

∥∥∥x(i−1)
n − x(i)

n

∥∥∥ = 0 (i ∈ I).(12)

Since the triangle inequality means that, for all n ∈ N,

∥xn − xn+1∥ =
∥∥∥x(0)

n − x(K)
n

∥∥∥ ≤
K∑
j=1

∥∥∥x(j−1)
n − x(j)

n

∥∥∥ ,
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Equation (12) guarantees that

lim
n→∞

∥xn+1 − xn∥ = 0.

Let us prove that limn→∞ ∥xn − x
(i−1)
n ∥ = 0 (i ∈ I). Fix i ∈ I arbitrarily. The

triangle inequality guarantees that, for all n ∈ N,∥∥∥xn − x(i−1)
n

∥∥∥ ≤
i−1∑
j=1

∥∥∥x(j−1)
n − x(j)

n

∥∥∥ ≤
i−1∑
j=1

(∥∥∥x(j−1)
n − y(j)n

∥∥∥+ ∥∥∥y(j)n − x(j)
n

∥∥∥) .
Hence, Equations (10) and (11) ensure that

lim
n→∞

∥∥∥xn − x(i−1)
n

∥∥∥ = 0 (i ∈ I).(13)

Moreover, we have from ∥xn−y
(i)
n ∥ ≤ ∥xn−x

(i−1)
n ∥+∥x(i−1)

n −y
(i)
n ∥ (i ∈ I, n ∈ N),

and Equations (10) and (13) that

lim
n→∞

∥∥∥xn − y(i)n

∥∥∥ = 0 (i ∈ I).(14)

The nonexpansivity of T (i) guarantees that, for all n ∈ N and for all i ∈ I, ∥y(i)n −
T (i)(xn)∥ = ∥T (i)(x

(i−1)
n +λnd

(i)
n )−T (i)(xn)∥ ≤ ∥(x(i−1)

n +λnd
(i)
n )−xn∥ ≤ ∥x(i−1)

n −
xn∥+ λn∥d(i)n ∥. Accordingly, Equation (13), limn→∞ λn = 0, and the boundedness

of (d
(i)
n )n∈N (i ∈ I) imply that

lim
n→∞

∥∥∥y(i)n − T (i)(xn)
∥∥∥ = 0 (i ∈ I).(15)

Since ∥xn − T (i)(xn)∥ ≤ ∥xn − y
(i)
n ∥ + ∥y(i)n − T (i)(xn)∥ (i ∈ I, n ∈ N), Equations

(14) and (15) lead us to deduce that

lim
n→∞

∥∥∥xn − T (i)(xn)
∥∥∥ = 0 (i ∈ I).(16)

(c) The boundedness of (xn)n∈N guarantees the existence of an accumulation
point of (xn)n∈N. Let x

∗ ∈ RN be an arbitrary accumulation point of (xn)n∈N; i.e.,
there exists a subsequence (xnk

)k∈N (⊂ (xn)n∈N) converging to x∗. We shall prove
that x∗ ∈

∩
∈I Fix(T

(i)). Fix i ∈ I arbitrarily. The continuity of T (i) and Equation
(16) ensure that

0 = lim
k→∞

∥∥∥xnk
− T (i)(xnk

)
∥∥∥ =

∥∥∥x∗ − T (i)(x∗)
∥∥∥ ,

which implies that x∗ ∈ Fix(T (i)). Therefore, we have x∗ ∈
∩

i∈I Fix(T
(i)).

Let x∗ ∈ RN be an accumulation point of (xn)n∈N. Then, (xnl
)l∈N (⊂ (xn)n∈N)

exists such that (xnl
)l∈N converges to x∗. A discussion similar to the one above

leads us to x∗ ∈
∩

i∈I Fix(T
(i)). Assume x∗ ̸= x∗. Accordingly, the existence of

limn→∞ ∥xn − y∥ (y ∈
∩

i∈I Fix(T
(i))) and Opial’s condition6 mean that

0 = lim
k→∞

∥xnk
− x∗∥ < lim

k→∞
∥xnk

− x∗∥ = lim
n→∞

∥xn − x∗∥

= lim
l→∞

∥xnl
− x∗∥ = 0.

This is a contradiction; i.e., x∗ = x∗. This guarantees that (xn)n∈N (= (x
(K)
n−1)n∈N)

converges to x∗ ∈
∩

i∈I Fix(T
(i)). Equation (13) and the convergence of (xn)n∈N to

6Suppose that (xn)n∈N (⊂ RN ) converges to x∗ ∈ RN and x∗ ̸= x∗. Then the following
condition, called Opial’s condition [23], is satisfied: limn→∞ ∥xn − x∗∥ < limn→∞ ∥xn − x∗∥.
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x∗ lead us to that (x
(i−1)
n ) (i ∈ I) also converges to x∗ ∈

∩
i∈I Fix(T

(i)). Therefore,

we can conclude that (x
(i)
n )n∈N (i ∈ I) converges to x∗ ∈

∩
i∈I Fix(T

(i)).
(d) Inequality (7) guarantees that, for all n ∈ N, for all i ∈ I, and for all

y ∈
∩

i∈I Fix(T
(i)),∥∥∥y(i)n − y
∥∥∥2 ≤

∥∥∥x(i−1)
n − y

∥∥∥2 + 2λn

⟨
x(i−1)
n − y, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − y
∥∥∥2 + 2λn

⟨
x(i−1)
n − y,−∇f (i)

(
x(i−1)
n

)
+ βnd

(i)
n−1

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − y
∥∥∥2 + 2λn

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+M4λnβn +M5λ

2
n,

whereM4 := maxi∈I(sup{2|⟨x(i−1)
n −y, d

(i)
n−1⟩| : n ∈ N}) < ∞ andM5 := maxi∈I(sup{∥d(i)n ∥2 : n ∈

N}) < ∞. So, Inequality (8) implies that, for all n ∈ N, for all i ∈ I, and for all
y ∈

∩
i∈I Fix(T

(i)),∥∥∥x(i)
n − y

∥∥∥2 ≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2
≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)

{∥∥∥x(i−1)
n − y

∥∥∥2 + 2λn

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+M4λnβn +M5λ

2
n

}
≤
∥∥∥x(i−1)

n − y
∥∥∥2 + 2(1− αn)λn

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+M4λnβn +M5λ

2
n,

which means that

∥xn+1 − y∥2 ≤ ∥xn − y∥2 + 2(1− αn)λn

∑
i∈I

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+KM4λnβn +KM5λ

2
n,

and hence,

0 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2

λn
+ 2(1− αn)

∑
i∈I

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+KM4βn +KM5λn

=
(∥xn − y∥+ ∥xn+1 − y∥)(∥xn − y∥ − ∥xn+1 − y∥)

λn

+ 2(1− αn)
∑
i∈I

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+KM4βn +KM5λn

≤ (∥xn − y∥+ ∥xn+1 − y∥) ∥xn − xn+1∥
λn

+ 2(1− αn)
∑
i∈I

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+KM4βn +KM5λn.

The convergence of (x
(i)
n )n∈N (i ∈ I) to x∗ ∈

∩
i∈I Fix(T

(i)), the continuity of ∇f (i)

(i ∈ I), Conditions (C1), (C2), and (C3), and ∥xn+1 − xn∥ = o(λn) ensure that,
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for all y ∈
∩

i∈I Fix(T
(i)),

0 ≤
∑
i∈I

⟨
y − x∗,∇f (i) (x∗)

⟩
=

⟨
y − x∗,

∑
i∈I

(
∇f (i) (x∗)

)⟩

=

⟨
y − x∗,∇

(∑
i∈I

f (i)

)
(x∗)

⟩
;

that is, x∗ is a solution to Problem 1.1. Therefore, Item (c) guarantees that

(x
(i)
n )n∈N (i ∈ I) converges to a solution x∗ to Problem 1.1. □

3. Broadcast Iterative Method for Nonmonotone Variational
Inequality and Its Convergence Analysis

This section presents the following algorithm:

Algorithm 3.1 (Broadcast Fixed Point Optimization Algorithm).
Step 0. User i (i ∈ I) sets (αn)n∈N, (λn)n∈N, and (βn)n∈N, transmits an arbi-

trary chosen x
(i)
0 ∈ RN to the all users, and computes x0 := (1/K)

∑
i∈I x

(i)
0 . User

i sets d
(i)
0 := −∇f (i)(x0).

Step 1. Given xn, d
(i)
n ∈ RN (i ∈ I), user i computes x

(i)
n+1 ∈ RN byy

(i)
n := T (i)

(
xn + λnd

(i)
n

)
,

x
(i)
n+1 := PX(i)

(
αnxn + (1− αn)y

(i)
n

)
and transmits x

(i)
n+1 to all users.

Step 2. User i computes xn+1 ∈ RN and d
(i)
n+1 ∈ RN by

xn+1 :=
1

K

∑
i∈I

x
(i)
n+1,

d
(i)
n+1 := −∇f (i) (xn+1) + βn+1d

(i)
n .

Put n := n+ 1, and go to Step 1.

In this section, we assume the following:

Assumption 3.1. (∇f (i)(xn))n∈N (i ∈ I) is bounded.

The boundedness of X(i) (Assumption (A1)) implies that (x
(i)
n )n∈N (i ∈ I) is

bounded. Hence, (xn)n∈N generated by xn := (1/K)
∑

i∈I x
(i)
n (n ∈ N) is also

bounded. Therefore, the same discussion as in Assumption 2.2 shows that, if ∇f (i)

(i ∈ I) is Lipschitz continuous, Assumption 3.1 is satisfied.
The following convergence analysis is presented for Algorithm 3.1:

Theorem 3.1. Suppose that Assumptions 1.1, 2.1, and 3.1 are satisfied. Then,
(xn)n∈N in Algorithm 3.1 satisfies the following properties:

(a) (xn)n∈N is bounded and limn→∞ ∥xn−y∥ exists for all y ∈
∩

i∈I Fix(T
(i)).

(b) limn→∞ ∥xn − T (i)(xn)∥ = 0 (i ∈ I).
(c) (xn)n∈N converges to a common fixed point of T (i)s.
(d) If ∥xn+1 − xn∥ = o(λn), (xn)n∈N converges to a solution to Problem 1.1.
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Item (c) in Theorem 3.1 ensures that Algorithm 3.1 under Assumptions 2.1
and 3.1 can find a feasible point in Problem 1.1. Moreover, the convergence of
(xn)n∈N to x⋆ ∈

∩
i∈I Fix(T

(i)) guarantees that limn→∞ ∥xn+1 − xn∥ = 0. Item
(d) in Theorem 3.1 guarantees that, if ∥xn+1 − xn∥ = o(λn), (xn)n∈N in Algorithm
3.1 converges in not only

∩
i∈I Fix(T

(i)) but also VI(
∩

i∈I Fix(T
(i)),∇(

∑
i∈I f

(i))).

When user i (i ∈ I) has x
(i)
n in Algorithm 3.1, each point is broadcast to all users.

Accordingly, all users have (xn)n∈N := ((1/K)
∑

i∈I x
(i)
n )n∈N, which implies that

all users can verify whether ∥xn+1 − xn∥ = o(λn) is satisfied or not. On the other
hand, in Algorithm 2.1, only user K can verify whether the convergence condition
is satisfied or not (see Section 2).

3.1. Proof of Theorem 3.1. (a) The same discussion as in the proof of Theorem

2.1 (a) and Assumption 3.1 guarantee that (xn)n∈N, (x
(i)
n )n∈N, (d

(i)
n )n∈N, (y

(i)
n )n∈N

(i ∈ I) are bounded.
We shall prove the existence of limn→∞ ∥xn − y∥ (y ∈

∩
i∈I Fix(T

(i))). By

replacing x
(i−1)
n in Inequality (7) with xn, we have that, for all n ∈ N and for all

i ∈ I, ∥∥∥y(i)n − y
∥∥∥2 ≤ ∥xn − y∥2 + 2λn

⟨
xn − y, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤ ∥xn − y∥2 +N1λn,

(17)

where N1 := maxi∈I(sup{2|⟨xn − y, d
(i)
n ⟩|+ λn∥d(i)n ∥2 : n ∈ N}) < ∞. Moreover, by

replacing x
(i−1)
n in Inequality (8) with xn and replacing x

(i)
n in Inequality (8) with

x
(i)
n+1, we find that∥∥∥x(i)

n+1 − y
∥∥∥2 ≤ αn ∥xn − y∥2 + (1− αn)

∥∥∥y(i)n − y
∥∥∥2

≤ αn ∥xn − y∥2 + (1− αn)
{
∥xn − y∥2 +N1λn

}
≤ ∥xn − y∥2 +N1λn.

(18)

On the other hand, the convexity of ∥ · ∥2 means that, for all n ∈ N,

∥xn+1 − y∥2 =

∥∥∥∥∥ 1

K

∑
i∈I

(
x
(i)
n+1 − y

)∥∥∥∥∥
2

≤ 1

K

∑
i∈I

∥∥∥x(i)
n+1 − y

∥∥∥2 .(19)

Therefore, summing Inequality (18) over all i ensures that, for all n ∈ N,

∥xn+1 − y∥2 ≤ ∥xn − y∥2 +N1λn.

So, the same discussion as in the proof of Theorem 2.1 (a) and Condition (C2)
guarantee that

lim sup
n→∞

∥xn − y∥2 ≤ lim inf
m→∞

{
∥xm − y∥2 +N1

∞∑
i=m

λi

}
= lim inf

n→∞
∥xm − y∥2;

that is, there exists limn→∞ ∥xn − y∥ (y ∈
∩

i∈I Fix(T
(i))).
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(b) We shall prove that limn→∞ ∥xn − y
(i)
n ∥ = 0. Replacing x

(i−1)
n in Inequality

(9) with xn implies that, for all n ∈ N, for all i ∈ I, and for all y ∈
∩

i∈I Fix(T
(i)),∥∥∥y(i)n − y

∥∥∥2 ≤ ∥xn − y∥2 + 2λn

⟨
y(i)n − y, d(i)n

⟩
−
∥∥∥xn − y(i)n

∥∥∥2
≤ ∥xn − y∥2 +N2λn −

∥∥∥xn − y(i)n

∥∥∥2 ,
where N2 := maxi∈I(sup{2|⟨y(i)n − y, d

(i)
n ⟩| : n ∈ N}) < ∞. Hence, Inequality (18)

implies that, for all n ∈ N, for all i ∈ I, and for all y ∈
∩

i∈I Fix(T
(i)),∥∥∥x(i)

n+1 − y
∥∥∥2 ≤ αn ∥xn − y∥2 + (1− αn)

∥∥∥y(i)n − y
∥∥∥2

≤ αn ∥xn − y∥2 + (1− αn)

{
∥xn − y∥2 +N2λn −

∥∥∥xn − y(i)n

∥∥∥2}
≤ ∥xn − y∥2 +N2λn − (1− αn)

∥∥∥xn − y(i)n

∥∥∥2 .
Summing this inequality over all i and Inequality (19) mean that, for all n ∈ N and
for all y ∈

∩
i∈I Fix(T

(i)),

∥xn+1 − y∥2 ≤ ∥xn − y∥2 +N2λn − 1− αn

K

∑
i∈I

∥∥∥xn − y(i)n

∥∥∥2 ,
which implies that

1− αn

K

∑
i∈I

∥∥∥xn − y(i)n

∥∥∥2 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2 +N2λn.

Therefore, Conditions (C1) and (C2), and the existence of limn→∞ ∥xn − y∥ (y ∈∩
i∈I Fix(T

(i))) lead one to deduce that limn→∞
∑

i∈I ∥xn − y
(i)
n ∥ = 0; i.e.,

lim
n→∞

∥∥∥xn − y(i)n

∥∥∥ = 0 (i ∈ I).(20)

Moreover, the nonexpansivity of T (i) guarantees that, for all n ∈ N and for all i ∈ I,

∥y(i)n −T (i)(xn)∥ = ∥T (i)(xn+λnd
(i)
n )−T (i)(xn)∥ ≤ ∥(xn+λnd

(i)
n )−xn∥ ≤ λn∥d(i)n ∥.

Accordingly, the boundedness of (d
(i)
n )n∈N (i ∈ I) and limn→∞ λn = 0 (by Condition

(C2)) imply that

lim
n→∞

∥∥∥y(i)n − T (i)(xn)
∥∥∥ = 0 (i ∈ I).(21)

Since ∥xn − T (i)(xn)∥ ≤ ∥xn − y
(i)
n ∥ + ∥y(i)n − T (i)(xn)∥ (n ∈ N, i ∈ I), Equations

(20) and (21) ensure that

lim
n→∞

∥∥∥xn − T (i)(xn)
∥∥∥ = 0 (i ∈ I).(22)

(c) The boundedness of (xn)n∈N guarantees the existence of an accumulation
point of (xn)n∈N. Let x∗ ∈ RN be an arbitrary accumulation point of (xn)n∈N.
Then, the same discussion as in the proof of Theorem 2.1 (c) and Equation (22)
imply that x∗ ∈ Fix(T (i)) (i ∈ I), i.e., x∗ ∈

∩
i∈I Fix(T

(i)).

Let x∗ ∈ RN be an accumulation point of (xn)n∈N. Then, a discussion similar
to the proof of Theorem 2.1 (c) leads us to x∗ ∈

∩
i∈I Fix(T

(i)) with x∗ = x∗. This

guarantees that (xn)n∈N converges to x∗ ∈
∩

i∈I Fix(T
(i)).
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(d) Inequality (17) and the definition of d
(i)
n (n ∈ N, i ∈ I) imply that, for all

n ∈ N, for all i ∈ I, and for all y ∈
∩

i∈I Fix(T
(i)),

∥∥∥y(i)n − y
∥∥∥2 ≤ ∥xn − y∥2 + 2λn

⟨
xn − y, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤ ∥xn − y∥2 + 2λn

⟨
xn − y,−∇f (i)(xn) + βnd

(i)
n−1

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤ ∥xn − y∥2 + 2λn

⟨
y − xn,∇f (i)(xn)

⟩
+N3λnβn +N4λ

2
n,

whereN3 := maxi∈I(sup{2|⟨xn−y, d
(i)
n−1⟩| : n ∈ N}) < ∞ andN4 := maxi∈I(sup{∥d(i)n ∥2 : n ∈

N}) < ∞. Hence, Inequality (18) means that∥∥∥x(i)
n+1 − y

∥∥∥2 ≤ αn∥xn − y∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2
≤ αn∥xn − y∥2 + (1− αn)

{
∥xn − y∥2 + 2λn

⟨
y − xn,∇f (i)(xn)

⟩
+N3λnβn +N4λ

2
n

}
≤ ∥xn − y∥2 + 2(1− αn)λn

⟨
y − xn,∇f (i)(xn)

⟩
+N3λnβn +N4λ

2
n,

Accordingly, summing this inequality over all i and Inequality (19) guarantee that,
for all n ∈ N and for all y ∈

∩
i∈I Fix(T

(i)),

∥xn+1 − y∥2 ≤ ∥xn − y∥2 + 2(1− αn)λn

K

∑
i∈I

⟨
y − xn,∇f (i)(xn)

⟩
+N3λnβn +N4λ

2
n.

Therefore, we find that, for all n ∈ N and for all y ∈
∩

i∈I Fix(T
(i)),

0 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2

λn
+

2(1− αn)

K

∑
i∈I

⟨
y − xn,∇f (i) (xn)

⟩
+N3βn +N4λn

=
(∥xn − y∥+ ∥xn+1 − y∥)(∥xn − y∥ − ∥xn+1 − y∥)

λn

+
2(1− αn)

K

∑
i∈I

⟨
y − xn,∇f (i) (xn)

⟩
+N3βn +N4λn

≤ (∥xn − y∥+ ∥xn+1 − y∥) ∥xn − xn+1∥
λn

+
2(1− αn)

K

∑
i∈I

⟨
y − xn,∇f (i) (xn)

⟩
+N3βn +N4λn.

The convergence of (xn)n∈N to x∗ ∈
∩

i∈I Fix(T
(i)), the continuity of ∇f (i) (i ∈ I),

Conditions (C1), (C2), and (C3), and ∥xn+1 − xn∥ = o(λn) ensure that, for all



17

y ∈
∩

i∈I Fix(T
(i)),

0 ≤
∑
i∈I

⟨
y − x∗,∇f (i) (x∗)

⟩
=

⟨
y − x∗,

∑
i∈I

(
∇f (i) (x∗)

)⟩

=

⟨
y − x∗,∇

(∑
i∈I

f (i)

)
(x∗)

⟩
.

This completes the proof. □

4. Numerical Examples

Let us apply Algorithms 2.1 and 3.1 to the network bandwidth allocation prob-
lem. The objective of utility-based bandwidth allocation is to share the available
bandwidth among traffic sources so as to maximize the overall utility subject to the
capacity constraints [26, Chapter 2]. In this section, we shall discuss a nonconcave
utility bandwidth allocation problem [13] which can be expressed as a nonmonotone
variational inequality with the gradient of a nonconcave, differentiable, step utility
function. We assume that source i has its own private nonconvex f (i) := −U (i) and
C(i) with the capacity constraints for links used by source i.

Consider the following problem on a network [26, Fig.2.2] (Figure 1 in the paper)
that consists of three links and four sources:

Find x⋆ ∈ VI

(∩
i∈I

C(i),−∇

(∑
i∈I

U (i)

))
,(23)

where I := {1, 2, 3, 4}, U (i)(x) := x+sinx (i ∈ I, x ∈ R+),D
(1) := {(x1, x2, x3, x4) ∈

R4 : x1 + x3 ≤ c1},7 D(2) := {(x1, x2, x3, x4) ∈ R4 : x2 + x3 ≤ c2}, D(3) :=
{(x1, x2, x3, x4) ∈ R4 : x2+x4 ≤ c3}, B := {(x1, x2, x3, x4) ∈ R4 : xi ∈ [0, c] (i ∈ I)}
(c > 0)8, C(1) := B ∩D(1), C(2) := B ∩D(2) ∩D(3), C(3) := B ∩D(1) ∩D(2), and
C(4) := B ∩D(3).

Since C(i) (i ∈ I) in problem (23) satisfies C(i) ⊂ B, B is bounded, and PB can
be easily computed, source i (i ∈ I) can set X(i) (i ∈ I) in Assumption 1.1 (A1)
and (A2) by B.

Let us define T (i) : R4 → R4 (i ∈ I) by

T (1) :=
1

2
(Id + PBPD(1)) , T (2) :=

1

2
(Id + PBPD(2)PD(3)) ,

T (3) :=
1

2
(Id + PBPD(1)PD(2)) , T (4) :=

1

2
(Id + PBPD(3)) .

7The projection onto D := {x ∈ RN : ⟨a, x⟩ ≤ b}, where a ( ̸= 0) ∈ RN and b ∈ R, is expressed
as follows [1, p.406], [2, Subchapter 28.3]: PD(x) := x+[(b−⟨a, x⟩)/∥a∥2]a (x /∈ D), or x (x ∈ D).

8Each source can use a box constraint set B with a constant c (e.g., c := max{c1, c2, c3} or

c is a large enough positive number) because the network in Figure 1 has a resource with finite
capacity and supports a finite number of sources.
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Source 1 Source 2 

Source 3 Source 4 

Link 1 Link 2 Link 3 

Figure 1. Network with three links and four sources [26, Fig.2.2]

Then, we find that∩
i∈I

Fix
(
T (i)

)
=B ∩ Fix (PD(1)) ∩ Fix (PD(2)PD(3)) ∩ Fix (PD(1)PD(2)) ∩ Fix (PD(3))

=B ∩D(1) ∩
(
D(2) ∩D(3)

)
∩
(
D(1) ∩D(2)

)
∩D(3)

=B ∩
3∩

i=1

D(i) =
∩
i∈I

C(i) ̸= ∅.

From
∩

i∈I Fix(T
(i)) = B ∩

∩3
i=1 D

(i), any point in
∩

i∈I Fix(T
(i)) satisfies the

capacity constraints for all links.
We use

λn :=
µ

(n+ 1)a
, αn :=

1

2
, βn :=

1

(n+ 1)0.01
(n ∈ N),

where µ = 10−2, 1, and a = 1.01, 2, 3, 10, satisfying Conditions (C1)–(C3). Theo-
rems 2.1 and 3.1 guarantee that Algorithm 2.1 (IFPOA) and Algorithm 3.1 (BF-
POA) with the λn, αn, and βn converge to a solution to Problem (23) if ∥xn+1 −
xn∥ = o(µ/(n+ 1)a). We set c1 := 5, c2 := 4, c3 := 5, c := 100, chose ten random
initial points, and executed Algorithms 2.1 and 3.1 for any point. The graphs in
this section plot the mean values of the tenth execution. The computer used in the
experiment had an Intel Boxed Core i7 i7-870 2.93 GHz 8 M CPU and 8 GB of
memory. The language was MATLAB 7.13.

To check whether Algorithms 2.1 and 3.1 converge in
∩

i∈I C
(i) =

∩
i∈I Fix(T

(i)),

we employed the evaluation function9

Dn :=
∑
i∈I

∥∥∥xn − T (i)(xn)
∥∥∥ (n ∈ N) .

9x ∈ R4 satisfies
∑

i∈I ∥x − T (i)(x)∥ = 0 if and only if x ∈ Fix(T (i)) (i ∈ I), i.e., x ∈∩
i∈I Fix(T

(i)) = B ∩
∩3

i=1 D
(i) =

∩
i∈I C

(i).
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(xn)n∈N converges in
∩

i∈I Fix(T
(i)) if and only if (Dn)n∈N converges to 0. We also

employed the following:

Xn :=
∥xn+1 − xn∥

λn
=

(n+ 1)a

µ
∥xn+1 − xn∥ (n ∈ N) ,

where µ = 10−2, 1 and a = 1.01, 2, 3, 10. Algorithms 2.1 and 3.1 satisfy the con-
vergence condition, ∥xn+1 −xn∥ = o(λn), if (Xn)n∈Ns generated by Algorithms 2.1
and 3.1 converge to 0.

Figure 2 plots the behaviors of Dn (n = 1, 2, . . . , 1000) for Algorithms 2.1 and
3.1 with µ = 10−2 and a = 1.01, 2. This figure shows that (Dn)n∈Ns gener-
ated by Algorithms 2.1 and 3.1 converge to 0; i.e., the algorithms converge in∩

i∈I C
(i) =

∩
i∈I Fix(T

(i)), as promised by Item (c) in Theorem 2.1 and Item (c)
in Theorem 3.1. Figure 2 shows that (Dn)n∈Ns in Algorithms 2.1 and 3.1 with
λn := 10−2/(n + 1)2 converge quickly and (Dn)n∈Ns in Algorithms 2.1 and 3.1
with λn := 10−2/(n+ 1)1.01 converge slowly. This implies that Algorithms 2.1 and
3.1 with fast diminishing step-size sequences converge in

∩
i∈I Fix(T

(i)) faster than
ones with slowly diminishing step-size sequences.

Figure 3 indicates the behaviors ofXn (n = 1, 2, . . . , 1000) for Algorithms 2.1 and
3.1 with µ = 10−2 and a = 1.01, 2. We can see from this figure that (Xn)n≥100s in
Algorithms 2.1 and 3.1 decrease monotonically and converge to 0, which means that
Algorithms 2.1 and 3.1 with λn = 10−2/(n+1)a (a = 1.01, 2) satisfy the convergence
condition ∥xn+1 − xn∥ = o(λn). Therefore, Item (d) in Theorem 2.1 and Item (d)
in Theorem 3.1 guarantee that Algorithms 2.1 and 3.1 with λn = 10−2/(n + 1)a

(a = 1.01, 2) converge to a solution to Problem (23).
The behaviors of U(xn) generated by Algorithms 2.1 and 3.1 with µ = 10−2

and a = 1.01, 2 are presented in Figure 4. This figure indicates that Algorithms
2.1 and 3.1 are stable in the early stages. Figures 2–4 and Theorems 2.1 and 3.1
ensure that Algorithms 2.1 and 3.1 find the optimal bandwidth for all sources;
i.e., each source can find its own optimal bandwidth (x⋆

1 ≈ 2.7786, x⋆
2 ≈ 2.0531,

x⋆
3 ≈ 1.9468, x⋆

4 ≈ 2.8851) by using the incremental and broadcast fixed point
optimization algorithms.

Figure 3 indicates that Algorithms 2.1 and 3.1 with µ = 10−2 and a = 1.01, 2
satisfy the convergence condition ∥xn+1−xn∥ = o(λn). To see whether Algorithms
2.1 and 3.1 with faster diminishing step-size sequences such as λn = 10−2/(n+1)a

(a = 3, 10) satisfy the convergence condition, we checked the behaviors of Xn when
a = 3, 10. Figure 5 shows that (Xn)n∈Ns in Algorithms 2.1 and 3.1 with µ = 10−2

and a = 3, 10 converge to 0; however, (Xn)n∈Ns in Algorithms 2.1 and 3.1 with
µ = 10−2 and a = 10 are unstable in the early stage. Since the algorithms ought
to be stable from the implementation viewpoint, it would be useful to use the
algorithms with λn = 10−2/(n+ 1)a (a = 1.01, 2). Figure 6 plots the behaviors of
Xn (n = 1, 2, . . . , 1000) for Algorithms 2.1 and 3.1 with µ = 1 and a = 1.01, 2. This
figure shows that (Xn)n∈Ns in Algorithms 2.1 and 3.1 with µ = 1 and a = 1.01
converge to 0, while (Xn)n∈Ns in Algorithms 2.1 and 3.1 with µ = 1 and a = 2
do not converge to 0; i.e., Algorithms 2.1 and 3.1 with µ = 1 and a = 2 do not
satisfy the convergence condition. This implies that the algorithms with µ = 1 and
a = 2 are not good ways for solving Problem (23). The above observations suggest
that Algorithms 2.1 and 3.1 with a slowly diminishing step-size sequence such as
λn = µ/(n+ 1)1.01 (µ = 10−2, 1) should be used for nonconcave utility bandwidth
allocation problems.
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Figure 2. Behavior
of Dn :=

∑
i∈I ∥xn −

T (i)(xn)∥ for Algo-
rithm 2.1 (IFPOA) and
Algorithm 3.1 (BF-
POA) with µ = 10−2

and a = 1.01, 2
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Figure 3. Behavior
of Xn := ((n +
1)a/10−2)∥xn+1 − xn∥
for Algorithm 2.1 (IF-
POA) and Algorithm
3.1 (BFPOA) with
µ = 10−2 and a =
1.01, 2

5. Conclusion

We discussed a nonmonotone variational inequality over the intersection of the
fixed point sets of nonexpansive mappings and presented two distributed fixed point
optimization algorithms for solving it. One algorithm is based on conventional in-
cremental subgradient methods, and the other is a broadcast type of distributed
iterative method. We gave the convergence analyses showing that the algorithms
converge to a solution to the nonmonotone variational inequality under certain
assumptions. We also provided numerical examples for the bandwidth allocation.
The analyses and numerical examples suggested that the algorithms with slowly di-
minishing step-size sequences converge to a solution to the nonmonotone variational
inequality.
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[21] A. Nedić and D. P. Bertsekas, Incremental sugradient methods for nondifferentiable opti-
mization, SIAM Journal on Optimization 12 (2001), 109–138.

[22] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed., Springer Series in Operations
Research and Financial Engineering, Springer, 2006.

[23] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive

mappings, Bulletin of the American Mathematical Society 73 (1967), 591–597.
[24] R. T. Rockafellar and R. J. B. Wets, Variational analysis, 3rd ed., Springer, 2010.



23

[25] S. Sharma and D. Teneketzis, An externalities-based decentralized optimal power allocation

algorithm for wireless networks, IEEE/ACM Transactions on Networking 17 (2009), 1819–
1831.

[26] R. Srikant, Mathematics of internet congestion control, Birkhauser, 2004.
[27] E. Zeidler, Nonlinear functional analysis ans its applications iii. variational methods and

optimization, Springer, 1985.

(H. Iiduka) Department of Computer Science, Meiji University, 1-1-1 Higashimita,
Tama-ku, Kawasaki-shi, Kanagawa, 214-8571 Japan

E-mail address: iiduka@cs.meiji.ac.jp


