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Abstract. This paper considers a networked system consisting of an operator, who manages the
system, and a finite number of subnetworks with all users, and studies the problem of minimizing
the sum of the operator’s and all users’ objective functions over the intersection of the operator’s and
all users’ constraint sets. When users in each subnetwork can communicate with each other, they
can implement an incremental subgradient method that uses the transmitted information from their
neighbor users. Since the operator can communicate with users in the subnetworks, it can implement
a broadcast distributed algorithm that uses all available information in the subnetworks. We present
an iterative method combining broadcast and incremental distributed optimization algorithms. Our
method has faster convergence and a wider range of application compared with conventional dis-
tributed algorithms. We also prove that under certain assumptions our method converges to the
solution to the problem in the sense of the strong topology of a Hilbert space. Moreover, we numeri-
cally compare our method with the conventional distributed algorithms in the case of a data storage
system. The numerical results demonstrate the effectiveness and fast convergence of our method.
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1. Introduction. In this paper, we consider a networked system consisting of
an operator, who manages the system, and a finite number of participating users. The
main objective of this paper is to develop a novel distributed computing approach for
resolving the following minimization problem (see [6, 8, 9, 11, 12, 13, 14, 16, 18, 19,
23, 24] and references therein for applications of problem (1.1)) on a Hilbert space H.

Minimize
∑

i∈{0}∪I

f (i)(x) subject to x ∈
∩

i∈{0}∪I

Fix
(
T (i)

)
, (1.1)

where the operator has a convex function, f (0) : H → R, and a nonexpansive mapping,
T (0) : H → H, user i (i ∈ I := {1, 2, . . . , I}) has a convex function, f (i) : H → R, and
a nonexpansive mapping, T (i) : H → H, and Fix(T (i)) stands for the fixed point set
of T (i); i.e., Fix(T (i)) := {x ∈ H : T (i)(x) = x} (i ∈ {0} ∪ I).

Problem (1.1) enables us to discuss constrained optimization problems in which
the explicit form of the metric projection onto the constraint set is not always known;
i.e., the projection cannot be calculated explicitly. To describe this advantage more
explicitly, let us consider the problem of minimizing a convex function f over the
set of all minimizers of a convex function g with the Lipschitz gradient ∇g. We
define T := Id − α∇g, where Id is the identity mapping on H, α ∈ (0, 2/L], and L
(> 0) stands for the Lipschitz constant of ∇g. Accordingly, T is nonexpansive and
Fix(T ) = {x ∈ H : g(x) = miny∈H g(y)} [10, Proposition 2.3]. Hence, problem (1.1)
includes the minimization problem over {x ∈ H : g(x) = miny∈H g(y)} onto which the
projection cannot be calculated explicitly.
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Next, let us consider the problem of minimizing a convex function f over the set
of zeros of a set-valued, maximal monotone operator A. Since the resolvent of A,
denoted by JA, is firmly nonexpansive [2, Corollary 23.10] and Fix(JA) coincides with
the set of zeros of A, problem (1.1) includes the minimization problem over this set
onto which the projection cannot be calculated explicitly. Section 4 will show that one
application of problem (1.1) is storage allocation [19] in a peer-to-peer data system.

Distributed optimization methods can be implemented if all participants coop-
erate in the system even if each participant has its own private objective function
and constraint set, and they enable each participant to solve problem (1.1) without
using the private information of the other participants. Here, we describe the two
distributed optimization algorithms that are useful for solving problem (1.1).

(I) Problem (1.1) can be solved under the assumption that the operator can com-
municate with all users because the operator manages the whole system. Accordingly,
the operator can implement broadcast optimization algorithms (see [7, 9, 12, 22, 23]
and references therein) which are given as follows: Suppose that the operator (user

0) has xn ∈ H. Then it computes x
(0)
n ∈ H by using xn and its own private in-

formation T (0) and f (0); i.e., x
(0)
n = x

(0)
n (xn, T

(0), f (0)). Moreover, user i (i ∈ I)
computes x

(i)
n ∈ H by using the information xn transmitted from the operator and

user i’s private information T (i) and f (i); i.e., x
(i)
n = x

(i)
n (xn, T

(i), f (i)) (i ∈ I), and
it transmits x

(i)
n to the operator. The operator computes xn+1 ∈ H by using all x

(i)
n

(i ∈ {0} ∪ I); i.e., xn+1 = xn+1(x
(0)
n , x

(1)
n , . . . , x

(I)
n ). Figure 1.1 illustrates the concept

of broadcast distributed optimization algorithms when I = 9. It would be natural

that user i (i ∈ {0} ∪ I) tries to choose x
(i)
n so as to minimize f (i) over Fix(T (i)) as

much as possible. When the operator uses fairly the transmitted information from all

users, x
(i)
n (i ∈ {0} ∪ I) and xn+1 are defined as follows.

x(i)
n := T (i)

(
Id− λn∇f (i)

)
(xn) (i ∈ {0} ∪ I), xn+1 :=

1

I + 1

∑
i∈{0}∪I

x(i)
n , (1.2)

where (λn)n∈N is a step-size sequence.

operator

user 1

user 2

user 3 user 4 user 5 user 6 user 7

user 8

user 9

Fig. 1.1. Broadcast optimization algorithm

operator

user 1

user 2

user 3 user 4 user 5 user 6 user 7

user 8

user 9

Fig. 1.2. Incremental optimization algorithm

(II) When a user communicates with a neighbor user via the network, it uses only
its own private information and the information transmitted from the neighbor user.
This enables each user to implement incremental optimization algorithms (see [4, Sub-
chapter 8.2], [5, 12, 15, 17, 20] and references therein): Suppose that the operator has
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yn ∈ H with y
(0)
n = yn and user i (i ∈ I) has the information y

(i−1)
n transmitted from

user (i− 1) who is one of his/her neighbors. Then, user i computes y
(i)
n ∈ H by using

y
(i−1)
n and user i’s private information T (i) and f (i); i.e., y

(i)
n = y

(i)
n (y

(i−1)
n , T (i), f (i))

(i ∈ I). The operator computes yn+1 ∈ H as yn+1 = yn+1(y
(I)
n , T (0), f (0)). Figure

1.2 illustrates the concept of incremental distributed optimization algorithms when
I = 9. The same discussion as in (1.2) leads us to

y(i)n := T (i)
(
y(i−1)
n − λn∇f (i)

(
y(i−1)
n

))
(i ∈ I),

yn+1 := T (0)
(
y(I)n − λn∇f (0)

(
y(I)n

))
,

(1.3)

where one assumes that f (i) (i ∈ {0} ∪ I) is convex and Fréchet differentiable.1

Algorithms (1.2) and (1.3) suffer from two problems.
(i) The broadcast optimization algorithm (1.2) updates the next iteration xn+1

only after the operator has all the transmitted information x
(i)
n (i ∈ {0}∪I).

Hence, there is a possibility that algorithm (1.2) will be time-consuming when
it is applied to large-scale networked systems with many users.

(ii) The incremental optimization algorithm (1.3) needs to go through all users
to update the next iteration yn+1. However, it would be physically difficult
to go through all users in a large-scale complex network.

operator

user 1

user 2

user 3 user 4 user 5 user 6 user 7

user 8

user 9subnetwork 1

subnetwork 2

subnetwork 3

Fig. 1.3. Proposed algorithm

This paragraph describes a way of
resolving issues (i) and (ii). Since user
i (i ∈ I) can communicate with user
i’s neighboring users, we can construct
a subnetwork that consists of user i and
its neighbors. This implies the network
is divided into S subnetworks (Figure 1.3
illustrates the network when I = 9 and
S = 3). In this setting, each user in sub-
network s (s ∈ S := {1, 2, . . . , S}) can
implement the incremental optimization

algorithm. For each s ∈ S, let x(s)
n be the

point generated by xn = y
(0)
n and the in-

cremental optimization algorithm. Then

the operator can get all x
(s)
n s and com-

pute xn+1 = xn+1(x
(0)
n , x

(1)
n , . . . , x

(S)
n ) =

1/(S + 1)(x
(0)
n +

∑
s∈S x

(s)
n ). This means the broadcast optimization algorithm can

be implemented by the operator and subnetworks. Therefore, we can devise an algo-
rithm combining the ideas of broadcast and incremental optimization algorithms. To
update xn to xn+1, this algorithm needs to use S (≤ I) transmitted points from the
subnetworks, while the broadcast optimization algorithm needs to use I transmitted
points from all users. Hence, one can expect that it would resolve issue (i) (see section
4 for the fast convergence of the proposed algorithm). Moreover, it can resolve issue
(ii) because it does not need to go through all users. Since the proposed algorithm
when S = I coincides with the broadcast optimization algorithm, it can be consid-
ered to be a generalization of that algorithm. The proposed algorithm when S = 1 is

1The well-known incremental subgradient method [4, (8.9), (8.10), and (8.11)], [20] can be used
when f (i) (i ∈ {0} ∪ I) is convex and nondifferentiable.
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similar to the incremental optimization algorithm implemented by all users.

The organization of the paper is as follows. Section 2 gives the necessary math-
ematical preliminaries. Section 3 presents an algorithm combining broadcast and
incremental distributed optimization algorithms for solving problem (1.1) and its con-
vergence analysis. Applications of this algorithm to storage allocation are described
in section 4. Section 5 concludes by summarizing the key points of the paper.

2. Mathematical Preliminaries.

2.1. Notation. Let H be a real Hilbert space with inner product ⟨·, ·⟩ and its
induced norm ∥ · ∥. Moreover, let Id be the identity mapping on H, and let N denote
the set of all positive integers including zero. We define R+ := {x ∈ R : x ≥ 0}.

We denote the fixed point set of a mapping T : H → H by Fix(T ); i.e., Fix(T ) :=
{x ∈ H : T (x) = x}. The metric projection [2, subchapter 4.2, chapter 28] onto a
nonempty, closed convex set C (⊂ H) is denoted by PC .

Let I := {1, 2, . . . , I} be the set of users participating in the system and let S :=
{1, 2, . . . , S} be the set of subnetworks in the system. Let Is denote the set of users
in subnetwork s (s ∈ S) and put Is := |Is| (s ∈ S), where |Is| stands for the number
of elements in Is. Accordingly, we have that I =

∪
s∈S Is and I =

∑
s∈S Is. User

i (i ∈ {0} ∪ I) has its own private Fréchet differentiable, convex objective function,
denoted by f (i) : H → R, and closed convex constraint set, denoted by C(i) (⊂ H),
where user 0 stands for the operator.

2.2. Definitions and Propositions. Let f : H → R be Fréchet differentiable.
Moreover, let ∇f : H → H denote the gradient of f , and let α,L > 0. ∇f is said to
be α-strongly monotone [2, Definition 22.1(iv)] if ⟨x− y,∇f(x)−∇f(y)⟩ ≥ α∥x− y∥2
(x, y ∈ H). Suppose that f is α-strongly convex [2, Definition 10.5]; i.e., f(λx+ (1−
λ)y) + (1/2)αλ(1 − λ)∥x − y∥2 ≤ λf(x) + (1 − λ)f(y) (x, y ∈ H,λ ∈ [0, 1]). Then,
∇f satisfies the strong monotonicity condition [2, Example 22.3]. ∇f is said to be
L-Lipschitz continuous [2, Definition 1.46] if ∥∇f(x)−∇f(y)∥ ≤ L∥x−y∥ (x, y ∈ H).

Proposition 2.1. [24, Lemma 3.1] Suppose that f : H → R is Fréchet dif-
ferentiable, ∇f : H → H is α-strongly monotone and L-Lipschitz continuous, and
µ ∈ (0, 2α/L2). Define T := Id − µλ∇f , where λ ∈ [0, 1]. Then ∥T (x) − T (y)∥ ≤
(1− τλ)∥x− y∥ (x, y ∈ H), where τ := 1−

√
1− µ(2α− µL2) ∈ (0, 1].

Proposition 2.2. [24, Proposition 2.7] Assume that C (⊂ H) is nonempty,
closed, and convex, f : H → R is Fréchet differentiable, and ∇f : H → H is α-
strongly monotone and L-Lipschitz continuous. Then there exists a unique minimizer
of f over C.

Proposition 2.3. [2, Proposition 17.10] Suppose that f : H → R is Gâteaux
differentiable and convex, and x ∈ H. Then f(y) ≥ f(x) + ⟨y − x,∇f(x)⟩ (y ∈ H).

A mapping, T : H → H, is said to be nonexpansive [2, Definition 4.1(ii)] if ∥T (x)−
T (y)∥ ≤ ∥x − y∥ (x, y ∈ H). T is referred to as a firmly nonexpansive mapping [2,
Definition 4.1(i)] if ∥T (x)−T (y)∥2+∥(Id−T )(x)−(Id−T )(y)∥2 ≤ ∥x−y∥2 (x, y ∈ H).
It is obvious that firm nonexpansivity means nonexpansivity.

Proposition 2.4. [2, Corollary 4.15, Remark 4.24(iii), Proposition 4.8] The
following (i)–(iii) hold.

(i) Let T : H → H be nonexpansive. Then Fix(T ) is closed and convex.
(ii) (1/2)(Id + T ) is firmly nonexpansive when T : H → H is nonexpansive.
(iii) Let C (⊂ H) be nonempty, closed, and convex. Then PC is firmly nonexpan-

sive.
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The resolvent [2, Definition 23.1] of A : H → 2H is defined by JA := (Id + A)−1.
A monotone operator, A : H → 2H , is referred to as a maximal monotone operator
[2, Definition 20.20] if there exists no monotone operator B : H → 2H such that
graB := {(x, u) ∈ H ×H : u ∈ B(x)} properly contains graA.

Proposition 2.5. [2, Proposition 23.38, Corollary 23.8] The following (i)–(ii)
hold.

(i) Let A : H → 2H be monotone. Then Fix(JA) = zerA := {x ∈ H : 0 ∈ A(x)}.
(ii) T : H → H is firmly nonexpansive if and only if it is the resolvent of a

maximal monotone operator A : H → 2H .
The following propositions will be also used to prove the main theorem.
Proposition 2.6. [3, Lemma 1.2] Assume that (an)n∈N ⊂ R+ satisfies an+1 ≤

(1−αn)an+αnβn (n ∈ N), where (αn)n∈N ⊂ (0, 1] and (βn)n∈N ⊂ R with
∑∞

n=1 αn =
∞ and lim supn→∞ βn ≤ 0. Then limn→∞ an = 0.

Proposition 2.7. [21] Suppose that (xn)n∈N (⊂ H) weakly converges to x ∈ H
and y ∈ H with y ̸= x. Then lim infn→∞ ∥xn − x∥ < lim infn→∞ ∥xn − y∥.

2.3. Main problem. This paper deals with the following problem.
Problem 2.1. Assume that

(A1) T (i) : H → H (i ∈ {0} ∪ I) is firmly nonexpansive with Fix(T (i)) = C(i) and
(A2) ∇f (i) : H → H (i ∈ {0} ∪ I) is α(i)-strongly monotone and L(i)-Lipschitz

continuous.
The main objective of this paper is to

minimize
∑

i∈{0}∪I

f (i)(x) subject to x ∈
∩

i∈{0}∪I

Fix
(
T (i)

)
,

where one assumes that
∩

i∈{0}∪I Fix(T (i)) ̸= ∅.
Assumption (A2) implies that ∇(

∑
i∈{0}∪I f (i)) (=

∑
i∈{0}∪I ∇f (i)) is strongly

monotone and Lipschitz continuous. Moreover, Proposition 2.4(i) and (A1) mean that∩
i∈{0}∪I Fix(T (i)) is closed and convex. Hence, we can see from Proposition 2.2 that

Problem 2.1 has a unique solution. Section 4 will show an application of Problem 2.1.
Proposition 2.5 implies that T (i) (i ∈ {0}∪I) in (A1) is the resolvent, denoted by

JA(i) , of a maximal monotone operator A(i) : H → 2H (i ∈ {0} ∪ I) and Fix(T (i)) =
Fix(JA(i)) = zerA(i) (i ∈ {0} ∪ I). Accordingly, Problem 2.1 is equivalent to the
following problem: given a maximal monotone operator A(i) : H → 2H (i ∈ {0} ∪ I)
with zerA(i) = C(i) and a convex functional f (i) satisfying (A2),

minimize
∑

i∈{0}∪I

f (i)(x) subject to x ∈
∩

i∈{0}∪I

zerA(i) =
∩

i∈{0}∪I

Fix (JA(i)) . (2.1)

3. Proposed Algorithm and Its Convergence Analysis. To begin with,
let us define the sets that are needed to describe our algorithm. Choose s ∈ S
arbitrarily and define I(j)

s (j = 1, 2, . . . , Is) as follows: First choose i
(1)
s ∈ I(1)

s :=

Is randomly and set I(2)
s := I(1)

s \{i(1)s }. Next, choose i
(2)
s ∈ I(2)

s randomly. For

j = 3, 4, . . . , Is, define I(j)
s := I(j−1)

s \{i(j−1)
s } and choose i

(j)
s ∈ I(j)

s randomly. The
following algorithm combines the incremental and broadcast optimization algorithms
(Figure 1.3 illustrates the concept of Algorithm 3.1 when I = 9, S = 3, Is = 3

(s = 1, 2, 3), and i
(j)
1 = j, i

(j)
2 = j + 3, i

(j)
3 = j + 6 (j = 1, 2, 3)).
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Algorithm 3.1.
Step 0. The operator and all users set (λn)n∈N. The operator chooses x0 ∈ H

arbitrarily and transmits it to user i
(1)
s (s ∈ S). User i

(1)
s (s ∈ S) sets x

(i(0)s )
0 := x0.

Step 1. Given xn, the operator (user 0) computes x
(0)
n ∈ H:

x(0)
n := T (0)

(
xn − λn∇f (0)(xn)

)
.

Given x
(i(0)s )
n = xn, user i

(j)
s (s ∈ S, j = 1, 2, . . . , Is) computes x

(i(j)s )
n ∈ H cycli-

cally:

x
(i(j)s )
n := T (i

(j)
s )
(
x
(i(j−1)

s )
n − λn∇f(i

(j)
s )
(
x
(i(j−1)

s )
n

))
(j = 1, 2, . . . , Is) .

User i
(Is)
s (s ∈ S) transmits x

(i(Is)
s )

n to user i
(1)
s , and user i

(1)
s (s ∈ S) defines

x(s)
n := x

(i(Is)
s )

n

and transmits x
(s)
n to the operator.

Step 2. The operator computes xn+1 ∈ H:

xn+1 :=
1

S + 1

(
x(0)
n +

∑
s∈S

x(s)
n

)

and transmits x
(i(0)s )
n+1 := xn+1 to user i

(1)
s (s ∈ S). Put n := n+ 1, and go to Step 1.

The convergence of Algorithm 3.1 depends on the following assumption.
Assumption 3.1. The operator and all users have the common knowledge (λn)n∈N

(⊂ (0, 1)) satisfying

(C1) lim
n→∞

λn = 0, (C2)
∞∑

n=0

λn = ∞, (C3) lim
n→∞

1

λn+1

∣∣∣∣ 1

λn+1
− 1

λn

∣∣∣∣ = 0

before they perform Algorithm 3.1.
An example of (λn)n∈N satisfying (C1)–(C3) is λn := 1/(n+ 1)a (n ∈ N), where

a ∈ (0, 1/2). When the operator sets (λn)n∈N satisfying (C1)–(C3), the operator can

transmit the (λn)n∈N to user i
(1)
s (s ∈ S) because the operator manages the whole

system. Moreover, user i
(1)
s can transmit the (λn)n∈N to user i

(j)
s (j = 2, 3, . . . , Is)

because user i
(j)
s (j = 1, 2, . . . , Is) can communicate with users in subnetwork s.

Accordingly, Assumption 3.1 holds when the operator can set (λn)n∈N satisfying (C1)–
(C3).

Let us provide the property of Id−λn∇f (i) (i ∈ {0}∪I, n ∈ N) by using Proposi-

tion 2.1. Let µ⋆ := mini∈{0}∪I 2α(i)/L(i)2 and (λn)n∈N(⊂ (0, 1)) satisfying (C1)–(C3),
and choose i ∈ {0} ∪ I and x, y ∈ H arbitrarily. Proposition 2.1 indicates that, if
(λn)n∈N ⊂ (0, µ⋆),∥∥∥(Id− λn∇f (i)

)
(x)−

(
Id− λn∇f (i)

)
(y)
∥∥∥ ≤

(
1− τ (i)λn

)
∥x− y∥

≤ (1− τλn) ∥x− y∥ (3.1)
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for all n ∈ N, where τ (i) := 1 −
√
1− µ⋆(2α(i) − µ⋆L(i)2) (i ∈ {0} ∪ I) and τ :=

mini∈{0}∪I τ (i). Since (C1) ensures that n0 ∈ N exists such that (λn)n≥n0 ⊂ (0, µ⋆),
(3.1) is always true for all n ≥ n0. Therefore, we may assume without loss of generality
that (3.1) holds for all n ∈ N.

Let us perform a convergence analysis on Algorithm 3.1.

Theorem 3.1. Under Assumptions (A1), (A2), and 3.1, the sequences, (xn)n∈N

and (x
(i(j)s )
n )n∈N (s ∈ S, j = 1, 2, . . . , Is), generated by Algorithm 3.1 converge strongly

to the solution to Problem 2.1.

The discussion in subsection 2.3 and Theorem 3.1 describe that, under the as-

sumptions in Theorem 3.1, (xn)n∈N and (x
(i(j)s )
n )n∈N (s ∈ S, j = 1, 2, . . . , Is) generated

by Algorithm 3.1 when T (i) = JA(i) (i ∈ {0} ∪ I) converge strongly to the solution to
problem (2.1).

3.1. Proof of Theorem 3.1. We first prove the following lemma.

Lemma 3.1. The sequences, (xn)n∈N and (x
(i(j)s )
n )n∈N (s ∈ S, j = 1, 2, . . . , Is),

generated by Algorithm 3.1 are bounded.

Proof. Choose x ∈
∩

i∈{0}∪I Fix(T (i)) and n ∈ N arbitrarily. Put M1 :=

max{∥∇f (0)(x)∥,maxs∈S,j=1,2,...,Is ∥∇f (i(j)s )(x)∥}. We have from the nonexpansivity
of T (0), the triangle inequality, and (3.1) that

∥∥∥x(0)
n − x

∥∥∥ =
∥∥∥T (0)

(
xn − λn∇f (0)(xn)

)
− T (0)(x)

∥∥∥
≤
∥∥∥(xn − λn∇f (0)(xn)

)
− x
∥∥∥

≤
∥∥∥(xn − λn∇f (0)(xn)

)
−
(
x− λn∇f (0)(x)

)∥∥∥+M1λn

≤ (1− τλn) ∥xn − x∥+M1λn.

(3.2)

A similar discussion to the one for obtaining (3.2) guarantees that, for all s ∈ S and
for all j = 1, 2, . . . , Is,

∥∥∥∥x(i(j)s )
n − x

∥∥∥∥ ≤ (1− τλn)

∥∥∥∥x(i(j−1)
s )

n − x

∥∥∥∥+M1λn. (3.3)

Induction ensures that, for all s ∈ S,

∥∥∥x(s)
n − x

∥∥∥ ≤ (1− τλn)

∥∥∥∥x(i(Is−1)
s )

n − x

∥∥∥∥+M1λn

≤ (1− τλn)
Is

∥∥∥∥x(i(0)s )
n − x

∥∥∥∥+ IsM1λn

≤ (1− τλn) ∥xn − x∥+ IsM1λn.

(3.4)
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The definition of xn+1, the triangle inequality, (3.2), and (3.4) guarantee that

∥xn+1 − x∥

≤ 1

S + 1

{∥∥∥x(0)
n − x

∥∥∥+∑
s∈S

∥∥∥x(s)
n − x

∥∥∥}

≤ 1

S + 1

{
(1− τλn) ∥xn − x∥+M1λn + S (1− τλn) ∥xn − x∥+

∑
s∈S

IsM1λn

}

=(1− τλn) ∥xn − x∥+ M1λn

S + 1

(
1 +

∑
s∈S

Is

)
.

Therefore, we find

∥xn+1 − x∥ ≤ (1− τλn) ∥xn − x∥+ M1

τ(S + 1)

(
1 +

∑
s∈S

Is

)
τλn,

and hence, for all n ∈ N and for all x ∈
∩

i∈{0}∪I Fix(T (i)),

∥xn+1 − x∥ ≤ max

{
∥x0 − x∥ , M1

τ(S + 1)

(
1 +

∑
s∈S

Is

)}
.

This means (xn)n∈N is bounded. Since (3.3) ensures that ∥x(i(1)s )
n −x∥ ≤ (1−τλn)∥xn−

x∥+M1λn (n ∈ N, s ∈ S, x ∈
∩

i∈{0}∪I Fix(T (i))), (x
(i(1)s )
n )n∈N (s ∈ S) is also bounded.

Hence, (3.3) and the boundedness of (xn)n∈N guarantee that (x
(i(j)s )
n )n∈N (s ∈ S, j =

1, 2, . . . , Is) is bounded. This proves Lemma 3.1.
Lemma 3.2. Algorithm 3.1 has the following properties:

(i) lim
n→∞

∥xn+1 − xn∥
λn

= 0;

(ii) lim
n→∞

∥∥∥xn − x(0)
n

∥∥∥ = 0 and lim
n→∞

∥∥∥∥xn − x
(i(j)s )
n

∥∥∥∥ = 0 (s ∈ S, j = 1, 2, . . . , Is);

(iii) lim
n→∞

∥∥∥xn − T (0)(xn)
∥∥∥ = 0 and lim

n→∞

∥∥∥xn − T (i
(j)
s )(xn)

∥∥∥ = 0 (s ∈ S, j = 1, 2, . . . , Is).

Proof. (i) Put M2 := supn∈N ∥∇f (0)(xn)∥ < ∞ (M2 is bounded by the Lips-
chitz continuity of ∇f (0) and Lemma 3.1). The nonexpansivity of T (0), the triangle
inequality, and (3.1) ensure that, for all n ∈ N,∥∥∥x(0)

n+1 − x(0)
n

∥∥∥ ≤
∥∥∥(xn+1 − λn+1∇f (0)(xn+1)

)
−
(
xn − λn∇f (0)(xn)

)∥∥∥
≤
∥∥∥(xn+1 − λn+1∇f (0)(xn+1)

)
−
(
xn − λn+1∇f (0)(xn)

)∥∥∥
+M2 |λn − λn+1|

≤ (1− τλn+1) ∥xn+1 − xn∥+M2 |λn − λn+1| .

(3.5)

Lemma 3.1 and the Lipschitz continuity of ∇f (i(j)s ) (s ∈ S, j = 1, 2, . . . , Is) guarantee

that (∇f (i(j)s )(x
(i(j−1)

s )
n ))n∈N (s ∈ S, j = 1, 2, . . . , Is) is bounded, and hence, M3 :=

maxs∈S,j=1,2,...,Is(supn∈N ∥∇f (i(j)s )(x
(i(j−1)

s )
n )∥) < ∞. A similar discussion to the one
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for obtaining (3.5) guarantees that, for all n ∈ N, for all s ∈ S, and for all j =
1, 2, . . . , Is,∥∥∥∥x(i(j)s )

n+1 − x
(i(j)s )
n

∥∥∥∥ ≤ (1− τλn+1)

∥∥∥∥x(i(j−1)
s )

n+1 − x
(i(j−1)

s )
n

∥∥∥∥+M3 |λn − λn+1| . (3.6)

Hence, induction guarantees that, for all n ∈ N and for all s ∈ S,∥∥∥x(s)
n+1 − x(s)

n

∥∥∥ ≤ (1− τλn+1)

∥∥∥∥x(i(Is−1)
s )

n+1 − x
(i(Is−1)

s )
n

∥∥∥∥+M3 |λn − λn+1|

≤ (1− τλn+1) ∥xn+1 − xn∥+ IsM3 |λn − λn+1| .
(3.7)

Therefore, we find from the triangle inequality, (3.5), and (3.7) that, for all n ∈ N,

∥xn+1 − xn∥ ≤ 1

S + 1

{
(1− τλn) ∥xn − xn−1∥+M2 |λn − λn−1|

+ S (1− τλn) ∥xn − xn−1∥+
∑
s∈S

IsM3 |λn − λn−1|

}
= (1− τλn) ∥xn − xn−1∥+M4 |λn − λn−1| ,

where M4 := (M2 + M3

∑
s∈S Is)/(S + 1) < ∞. Accordingly, we have that, for all

n ∈ N,

∥xn+1 − xn∥
λn

≤ (1− τλn)
∥xn − xn−1∥

λn
+M4

|λn − λn−1|
λn

= (1− τλn)
∥xn − xn−1∥

λn−1
+ (1− τλn)

{
∥xn − xn−1∥

λn
− ∥xn − xn−1∥

λn−1

}
+M4

|λn − λn−1|
λn

≤ (1− τλn)
∥xn − xn−1∥

λn−1
+M5

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣+M4
|λn − λn−1|

λn
, (3.8)

where M5 := supn∈N(1− τλn)∥xn−xn−1∥ (M5 < ∞ holds from (C1) and the bound-
edness of (xn)n∈N). We also have from 1 ≤ 1/λn (n ∈ N) that, for all n ∈ N,

M5

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣+M4
|λn − λn−1|

λn
≤ M5

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣+M4
|λn − λn−1|
λnλn−1

=
M4 +M5

τ
τλn

1

λn

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣ . (3.9)

Inequalities (3.8) and (3.9) lead one to deduce that, for all n ∈ N,

∥xn+1 − xn∥
λn

≤ (1− τλn)
∥xn − xn−1∥

λn−1
+

M4 +M5

τ
τλn

1

λn

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣ .
Since (C2) and (C3) imply that

∑∞
n=0 τλn = ∞ and limn→∞((M4+M5)/τ)(1/λn)|1/λn−

1/λn−1| = 0, Proposition 2.6 leads us to

lim
n→∞

∥xn+1 − xn∥
λn

= 0.
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Moreover, from (C1), we have

lim
n→∞

∥xn+1 − xn∥ = 0. (3.10)

(ii) Choose x ∈
∩

i∈{0}∪I Fix(T (i)) arbitrarily. From the firm nonexpansivity of

T (0), we have that, for all n ∈ N,∥∥∥x(0)
n − x

∥∥∥2 ≤
∥∥∥(xn − λn∇f (0)(xn)

)
− x
∥∥∥2 − ∥∥∥(xn − λn∇f (0)(xn)

)
− x(0)

n

∥∥∥2 ,
which, together with ∥x− y∥2 = ∥x∥2 − 2⟨x, y⟩+ ∥y∥2 (x, y ∈ H), implies that∥∥∥x(0)

n − x
∥∥∥2 ≤ ∥xn − x∥2 − 2λn

⟨
xn − x,∇f (0)(xn)

⟩
−
∥∥∥xn − x(0)

n

∥∥∥2 + 2λn

⟨
xn − x(0)

n ,∇f (0)(xn)
⟩

= ∥xn − x∥2 −
∥∥∥xn − x(0)

n

∥∥∥2 + 2λn

⟨
x− x(0)

n ,∇f (0)(xn)
⟩

≤ ∥xn − x∥2 −
∥∥∥xn − x(0)

n

∥∥∥2 +M6λn,

(3.11)

where M6 := 2 supn∈N |⟨x − x
(0)
n ,∇f (0)(xn)⟩| < ∞. A calculation similar to (3.11)

guarantees that, for all n ∈ N, for all s ∈ S, and for all j = 1, 2, . . . , Is,∥∥∥∥x(i(j)s )
n − x

∥∥∥∥2 ≤
∥∥∥∥x(i(j−1)

s )
n − x

∥∥∥∥2 − ∥∥∥∥x(i(j−1)
s )

n − x
(i(j)s )
n

∥∥∥∥2 +M7λn,

where M7 := 2maxs∈S,j=1,2,...,Is(supn∈N |⟨x − x
(i(j)s )
n ,∇f (i(j)s )(x

(i(j−1)
s )

n )⟩|) < ∞. In-
duction shows that, for all n ∈ N and for all s ∈ S,

∥∥∥x(s)
n − x

∥∥∥2 ≤
∥∥∥∥x(i(Is−1)

s )
n − x

∥∥∥∥2 − ∥∥∥∥x(i(Is−1)
s )

n − x
(i(Is)

s )
n

∥∥∥∥2 +M7λn

≤ ∥xn − x∥2 −
Is∑
j=1

∥∥∥∥x(i(j−1)
s )

n − x
(i(j)s )
n

∥∥∥∥2 + IsM7λn.

(3.12)

Summing up (3.12) over all s means that, for all n ∈ N,

∑
s∈S

∥∥∥x(s)
n − x

∥∥∥2 ≤ S ∥xn − x∥2 −
∑
s∈S

Is∑
j=1

∥∥∥∥x(i(j−1)
s )

n − x
(i(j)s )
n

∥∥∥∥2 +∑
s∈S

IsM7λn. (3.13)

Since the convexity of ∥ · ∥2 ensures that, for all n ∈ N,

∥xn+1 − x∥2 =

∥∥∥∥∥ 1

S + 1

{(
x(0)
n − x

)
+
∑
s∈S

(
x(s)
n − x

)}∥∥∥∥∥
2

≤ 1

S + 1

{∥∥∥x(0)
n − x

∥∥∥2 +∑
s∈S

∥∥∥x(s)
n − x

∥∥∥2} ,

(3.14)
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Inequalities (3.11), (3.13), and (3.14) lead us to

∥xn+1 − x∥2 ≤ 1

S + 1

{
∥xn − x∥2 −

∥∥∥xn − x(0)
n

∥∥∥2 +M6λn

+ S ∥xn − x∥2 −
∑
s∈S

Is∑
j=1

∥∥∥∥x(i(j−1)
s )

n − x
(i(j)s )
n

∥∥∥∥2 +∑
s∈S

IsM7λn

}

= ∥xn − x∥2 − 1

S + 1

∥∥∥xn − x(0)
n

∥∥∥2 +∑
s∈S

Is∑
j=1

∥∥∥∥x(i(j−1)
s )

n − x
(i(j)s )
n

∥∥∥∥2


+
M6 +

∑
s∈S IsM7

S + 1
λn.

Accordingly, we find that, for all n ∈ N,

0 ≤ 1

S + 1

∥∥∥xn − x(0)
n

∥∥∥2 +∑
s∈S

Is∑
j=1

∥∥∥∥x(i(j−1)
s )

n − x
(i(j)s )
n

∥∥∥∥2


≤ ∥xn − x∥2 − ∥xn+1 − x∥2 +
M6 +

∑
s∈S IsM7

S + 1
λn

= (∥xn − x∥+ ∥xn+1 − x∥) (∥xn − x∥ − ∥xn+1 − x∥) +
M6 +

∑
s∈S IsM7

S + 1
λn

≤ (∥xn − x∥+ ∥xn+1 − x∥) ∥xn − xn+1∥+
M6 +

∑
s∈S IsM7

S + 1
λn.

The boundedness of (xn)n∈N, (3.10), and (C1) mean that the right-hand side of the
above inequality converges to 0. Therefore, we have

lim
n→∞

∥∥∥xn − x(0)
n

∥∥∥ = 0 (3.15)

and

lim
n→∞

∥∥∥∥x(i(j−1)
s )

n − x
(i(j)s )
n

∥∥∥∥ = 0 (s ∈ S, j = 1, 2, . . . , Is). (3.16)

Moreover, from∥∥∥∥xn − x
(i(j)s )
n

∥∥∥∥ =

∥∥∥∥(x(i(0)s )
n − x

(i(1)s )
n

)
+ · · ·+

(
x
(i(j−1)

s )
n − x

(i(j)s )
n

)∥∥∥∥
≤

j∑
k=1

∥∥∥∥x(i(k−1)
s )

n − x
(i(k)

s )
n

∥∥∥∥ (n ∈ N, s ∈ S, j = 1, 2, . . . , Is),

and (3.16), we have

lim
n→∞

∥∥∥∥xn − x
(i(j)s )
n

∥∥∥∥ = 0 (s ∈ S, j = 1, 2, . . . , Is). (3.17)

(iii) The nonexpansivity of T (0) guarantees that, for all n ∈ N,∥∥∥x(0)
n − T (0)(xn)

∥∥∥ ≤
∥∥∥(xn − λn∇f (0)(xn)

)
− xn

∥∥∥ ≤ λn

∥∥∥∇f (0)(xn)
∥∥∥ .
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Hence, (C1) and the boundedness of (∇f (0)(xn))n∈N imply that

lim
n→∞

∥∥∥x(0)
n − T (0)(xn)

∥∥∥ = 0. (3.18)

Accordingly, from ∥xn − T (0)(xn)∥ ≤ ∥xn − x
(0)
n ∥+ ∥x(0)

n − T (0)(xn)∥ (n ∈ N), (3.15),
and (3.18), we have that

lim
n→∞

∥∥∥xn − T (0)(xn)
∥∥∥ = 0.

The nonexpansivity of T (i(j)s ) implies that, for all n ∈ N, for all s ∈ S, and for all
j = 1, 2, . . . , Is,∥∥∥∥x(i(j)s )

n − T (i
(j)
s )(xn)

∥∥∥∥ ≤
∥∥∥∥(x(i(j−1)

s )
n − λn∇f(i

(j)
s )
(
x
(i(j−1)

s )
n

))
− xn

∥∥∥∥
≤
∥∥∥∥x(i(j−1)

s )
n − xn

∥∥∥∥+M3λn.

Hence, (3.17) and (C1) guarantee that

lim
n→∞

∥∥∥∥x(i(j)s )
n − T (i

(j)
s )(xn)

∥∥∥∥ = 0 (s ∈ S, j = 1, 2, . . . , Is). (3.19)

Since the triangle inequality ensures that ∥xn−T (i(j)s )(xn)∥ ≤ ∥xn−x
(i(j)s )
n ∥+∥x(i(j)s )

n −
T (i(j)s )(xn)∥ (n ∈ N, s ∈ S, j = 1, 2, . . . , Is), we find from (3.17) and (3.19) that

lim
n→∞

∥∥∥xn − T (i
(j)
s )(xn)

∥∥∥ = 0 (s ∈ S, j = 1, 2, . . . , Is).

This proves Lemma 3.2.
Regarding the processing order within each subnetwork and the proof of Lemma

3.2, we can make the following remark.
Remark 3.1. Let s ∈ S be fixed arbitrarily. When one user is randomly chosen

from I(j)
s,n := I(j−1)

s,n \{i(j−1)
s,n } which depends on n, in general, I(j)

s,n ∋ i
(j)
s,n ̸= i

(j)
s,n+1 ∈

I(j)
s,n+1 holds, which implies T (i(j)s,n) ̸= T (i

(j)
s,n+1). We cannot show in this case that

Algorithm 3.1 strongly converges to the solution to Problem 2.1 because the proof

of Lemma 3.2(i) uses essentially nonexpansive mappings, T (i(j)s ) = T (i(j)s,n) (n ∈ N),
more specifically, (3.6) is given by using T (i(j)s ) = T (i(j)s,n) = T (i

(j)
s,n+1) (n ∈ N) and

the nonexpasivity of T (i(j)s ). Hence, in the future, we should try to devise distributed

optimization methods that can be applied when user i
(j)
s,n does not always coincide

with user i
(j)
s,n+1.

We can prove the following lemma by using Lemmas 3.1 and 3.2. This lemma
leads one to deduce the weak convergence of (xn)n∈N in Algorithm 3.1 to the solution
to Problem 2.1.

Lemma 3.3. Algorithm 3.1 has the following properties:
(i) There exists (xnk

)k∈N (⊂ (xn)n∈N) which converges weakly to a point x∗ ∈∩
i∈{0}∪I Fix(T (i));

(ii) x∗ ∈
∩

i∈{0}∪I Fix(T (i)) coincides with the unique solution to Problem 2.1;

(iii) (xn)n∈N weakly converges to x∗.



ACCELERATION DISTRIBUTED METHOD 13

Proof. (i) Lemma 3.1 guarantees the existence of a subsequence (xnk
)k∈N of

(xn)n∈N such that (xnk
)k∈N weakly converges to a point x∗ ∈ H. Assume that

x∗ /∈ Fix(T (0)). Proposition 2.7, the nonexpansivity of T (0), and Lemma 3.2(iii) mean
that

lim inf
k→∞

∥xnk
− x∗∥ < lim inf

k→∞

∥∥∥xnk
− T (0)(x∗)

∥∥∥
= lim inf

k→∞

∥∥∥(xnk
− T (0) (xnk

)
)
+
(
T (0) (xnk

)− T (0)(x∗)
)∥∥∥

= lim inf
k→∞

∥∥∥T (0) (xnk
)− T (0)(x∗)

∥∥∥
≤ lim inf

k→∞
∥xnk

− x∗∥ .

This is a contradiction. Therefore, x∗ ∈ Fix(T (0)). We shall prove that x∗ ∈∩
i∈I Fix(T (i)). Let s ∈ S be fixed arbitrarily, let j ∈ {1, 2, . . . , Is} be chosen ar-

bitrarily, and assume that x∗ /∈ Fix(T (i(j)s )). A discussion similar to the above one
produces a contradiction:

lim inf
k→∞

∥xnk
− x∗∥ < lim inf

k→∞

∥∥∥xnk
− T (i

(j)
s )(x∗)

∥∥∥ ≤ lim inf
k→∞

∥xnk
− x∗∥ .

Hence, x∗ ∈ Fix(T (i(j)s )); i.e., x∗ ∈
∩

s∈S
∩Is

j=1 Fix(T
(i(j)s )) =

∩
i∈I Fix(T (i)). There-

fore, we find that x∗ ∈
∩

i∈{0}∪I Fix(T (i)).

(ii) Let x ∈
∩

i∈{0}∪I Fix(T (i)) be chosen arbitrarily. The nonexpansivity of T (0)

and the equation, ∥x − y∥2 = ∥x∥2 − 2⟨x, y⟩ + ∥y∥2 (x, y ∈ H), mean that, for all
n ∈ N, ∥∥∥x(0)

n − x
∥∥∥2 ≤

∥∥∥(xn − x)− λn∇f (0)(xn)
∥∥∥2

≤ ∥xn − x∥2 − 2λn

⟨
xn − x,∇f (0)(xn)

⟩
+M2

2λ
2
n,

where M2 := supn∈N ∥∇f (0)(xn)∥ < ∞. Since Proposition 2.3 ensures that ⟨xn −
x,∇f (0)(xn)⟩ ≥ f (0)(xn)− f (0)(x) (n ∈ N), we have that, for all n ∈ N,∥∥∥x(0)

n − x
∥∥∥2 ≤ ∥xn − x∥2 + 2λn

(
f (0)(x)− f (0)(xn)

)
+M2

2λ
2
n. (3.20)

A similar discussion to the one for obtaining (3.20) guarantees that, for all n ∈ N, for
all s ∈ S, and for all j = 1, 2, . . . , Is,∥∥∥∥x(i(j)s )

n − x

∥∥∥∥2 ≤
∥∥∥∥x(i(j−1)

s )
n − x

∥∥∥∥2 + 2λn

(
f(i

(j)
s )(x)− f(i

(j)
s )
(
x
(i(j−1)

s )
n

))
+M2

3λ
2
n,

where M3 := maxs∈S,j=1,2,...,Is(supn∈N ∥∇f (i(j)s )(x
(i(j−1)

s )
n )∥) < ∞. Accordingly, for

all n ∈ N and for all s ∈ S, we have

∥∥∥x(s)
n − x

∥∥∥2 ≤ ∥xn − x∥2 + 2λn

Is∑
j=1

(
f(i

(j)
s )(x)− f(i

(j)
s )
(
x
(i(j−1)

s )
n

))
+ IsM

2
3λ

2
n.
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Summing up the above inequality over all s means that, for all n ∈ N,∑
s∈S

∥∥∥x(s)
n − x

∥∥∥2 ≤ S ∥xn − x∥2 +
∑
s∈S

IsM
2
3λ

2
n

+ 2λn

∑
s∈S

Is∑
j=1

(
f(i

(j)
s )(x)− f(i

(j)
s )
(
x
(i(j−1)

s )
n

))
.

(3.21)

Inequalities (3.14), (3.20), and (3.21) lead one to deduce that, for all n ∈ N,

∥xn+1 − x∥2

≤ 1

S + 1

{∥∥∥x(0)
n − x

∥∥∥2 +∑
s∈S

∥∥∥x(s)
n − x

∥∥∥2}

≤ 1

S + 1

{
∥xn − x∥2 + 2λn

(
f (0)(x)− f (0)(xn)

)
+M2

2λ
2
n + S ∥xn − x∥2

+
∑
s∈S

IsM
2
3λ

2
n + 2λn

∑
s∈S

Is∑
j=1

(
f(i

(j)
s )(x)− f(i

(j)
s )
(
x
(i(j−1)

s )
n

))}

= ∥xn − x∥2 +
M2

2 +
∑

s∈S IsM
2
3

S + 1
λ2
n

+
2λn

S + 1

(f (0)(x)− f (0)(xn)
)
+
∑
s∈S

Is∑
j=1

(
f(i

(j)
s )(x)− f(i

(j)
s )
(
x
(i(j−1)

s )
n

)) ,

which, together with f (0)+
∑

s∈S
∑Is

j=1 f
(i(j)s ) = f (0)+

∑
i∈I f (i) =

∑
i∈{0}∪I f (i) =: f ,

implies that

∥xn+1 − x∥2

≤∥xn − x∥2 +
M2

2 +
∑

s∈S IsM
2
3

S + 1
λ2
n

+
2λn

S + 1

 ∑
i∈{0}∪I

f (i)(x)− f (0)(xn)−
∑
s∈S

Is∑
j=1

f(i
(j)
s )
(
x
(i(j−1)

s )
n

)
= ∥xn − x∥2 +

M2
2 +

∑
s∈S IsM

2
3

S + 1
λ2
n

+
2λn

S + 1

f(x)− f(xn) +
∑
s∈S

Is∑
j=1

[
f(i

(j)
s )(xn)− f(i

(j)
s )
(
x
(i(j−1)

s )
n

)] .

Therefore, for all n ∈ N,

2

S + 1
(f(xn)− f(x)) ≤ ∥xn − x∥2 − ∥xn+1 − x∥2

λn
+

M2
2 +

∑
s∈S IsM

2
3

S + 1
λn

+
2

S + 1

∑
s∈S

Is∑
j=1

[
f(i

(j)
s )(xn)− f(i

(j)
s )
(
x
(i(j−1)

s )
n

)]
.

(3.22)
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On the other hand, Proposition 2.3 and the Cauchy-Schwarz inequality guarantee
that, for all n ∈ N, for all s ∈ S, and for all j = 1, 2, . . . , Is,

f(i
(j)
s )(xn)− f(i

(j)
s )
(
x
(i(j−1)

s )
n

)
≤
⟨
xn − x

(i(j−1)
s )

n ,∇f(i
(j)
s )(xn)

⟩
≤
∥∥∥∥xn − x

(i(j−1)
s )

n

∥∥∥∥ ∥∥∥∇f(i
(j)
s )(xn)

∥∥∥ .
Accordingly, Lemma 3.2(ii), Lemma 3.1, and (A2) (the Lipschitz continuity of f (i) (i ∈
I)) ensure that lim supn→∞(f (i(j)s )(xn)−f (i(j)s )(x

(i(j−1)
s )

n )) ≤ 0 (s ∈ S, j = 1, 2, . . . , Is);
i.e.,

lim sup
n→∞

∑
s∈S

Is∑
j=1

[
f(i

(j)
s )(xn)− f(i

(j)
s )
(
x
(i(j−1)

s )
n

)]

≤
∑
s∈S

Is∑
j=1

(
lim sup
n→∞

[
f(i

(j)
s )(xn)− f(i

(j)
s )
(
x
(i(j−1)

s )
n

)])
≤ 0.

(3.23)

Moreover, since (∥xn −x∥2 −∥xn+1 −x∥2)/λn = (∥xn −x∥+ ∥xn+1 −x∥)(∥xn −x∥−
∥xn+1 − x∥)/λn ≤ (∥xn − x∥ + ∥xn+1 − x∥)(∥xn − xn+1∥)/λn (n ∈ N), Lemmas 3.1
and 3.2(i) imply that

lim sup
n→∞

∥xn − x∥2 − ∥xn+1 − x∥2

λn
≤ 0. (3.24)

Therefore, (3.22), (3.23), (3.24), and (C1) guarantee that, for all x ∈
∩

i∈{0}∪I Fix(T (i)),

lim sup
n→∞

(f(xn)− f(x)) = lim sup
n→∞

 ∑
i∈{0}∪I

f (i)(xn)−
∑

i∈{0}∪I

f (i)(x)

 ≤ 0.

Since (A2) implies that f :=
∑

i∈{0}∪I f (i) is convex and continuous, f is weakly

lower continuous [2, Theorem 9.1]; i.e.,

f(x∗) ≤ lim inf
k→∞

f (xnk
) ,

where (xnk
)k∈N is a subsequence in Lemma 3.3(i) that converges weakly to x∗ ∈∩

i∈{0}∪I Fix(T (i)). Accordingly, we find that, for all x ∈
∩

i∈{0}∪I Fix(T (i)),∑
i∈{0}∪I

f (i) (x∗) = f(x∗) ≤ lim inf
k→∞

f (xnk
) ≤ lim sup

k→∞
f (xnk

) ≤ f(x) =
∑

i∈{0}∪I

f (i)(x).

Since Problem 2.1 has a unique solution, denoted by x⋆, this inequality implies that
x∗ ∈

∩
i∈{0}∪I Fix(T (i)) coincides with x⋆.

(iii) Lemmas 3.3(i) and (ii) ensure that (xnk
)k∈N (⊂ (xn)n∈N) exists such that

(xnk
)k∈N weakly converges to x⋆. Let us take another weakly converging subsequence,

(xnl
)l∈N, of (xn)n∈N. Then, from Lemmas 3.2(i) and (ii), we can prove that (xnl

)l∈N
also weakly converges to x⋆; i.e., any subsequence of (xn)n∈N weakly converges to the
unique solution x⋆. Hence, we can conclude that (xn)n∈N weakly converges to x⋆.
This proves Lemma 3.3.
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Now, we are in the position to prove Theorem 3.1.
Proof. Let x⋆ ∈

∩
i∈{0}∪I Fix(T (i)) be the solution to Problem 2.1. The nonex-

pansivity of T (0) and the inequality, ∥x − y∥2 ≤ ∥x∥2 + 2⟨y − x, y⟩ (x, y ∈ H), mean
that, for all n ∈ N,∥∥∥x(0)

n − x⋆
∥∥∥2 ≤

∥∥∥(xn − λn∇f (0)(xn)
)
−
(
x⋆ − λn∇f (0) (x⋆)

)
− λn∇f (0) (x⋆)

∥∥∥2
≤
∥∥∥(xn − λn∇f (0)(xn)

)
−
(
x⋆ − λn∇f (0) (x⋆)

)∥∥∥2
+ 2λn

⟨
x⋆ −

(
xn − λn∇f (0)(xn)

)
,∇f (0) (x⋆)

⟩
,

which, together with (3.1) and the Cauchy-Schwarz inequality, implies that∥∥∥x(0)
n − x⋆

∥∥∥2 ≤ (1− τλn) ∥xn − x⋆∥2 + 2λn

⟨
x⋆ − xn,∇f (0) (x⋆)

⟩
+ 2λ2

n

⟨
∇f (0)(xn),∇f (0) (x⋆)

⟩
≤ (1− τλn) ∥xn − x⋆∥2 + 2λn

⟨
x⋆ − xn,∇f (0) (x⋆)

⟩
+ 2M2λ

2
n

∥∥∥∇f (0) (x⋆)
∥∥∥

= (1− τλn) ∥xn − x⋆∥2

+ τλn
2

τ

{⟨
x⋆ − xn,∇f (0) (x⋆)

⟩
+M2

∥∥∥∇f (0) (x⋆)
∥∥∥λn

}
.

(3.25)

A calculation similar to (3.25) means that, for all n ∈ N, for all s ∈ S, and for all
j = 1, 2, . . . , Is,∥∥∥∥x(i(j)s )

n − x⋆

∥∥∥∥2 ≤ (1− τλn)

∥∥∥∥x(i(j−1)
s )

n − x⋆

∥∥∥∥2
+ τλn

2

τ

{⟨
x⋆ − x

(i(j−1)
s )

n ,∇f(i
(j)
s ) (x⋆)

⟩
+M3

∥∥∥∇f(i
(j)
s ) (x⋆)

∥∥∥λn

}
.

Accordingly, for all n ∈ N and for all s ∈ S,∥∥∥x(s)
n − x⋆

∥∥∥2 ≤ (1− τλn) ∥xn − x⋆∥2 + τλn
2

τ

{
M3

Is∑
j=1

∥∥∥∇f(i
(j)
s ) (x⋆)

∥∥∥λn

+

Is∑
j=1

⟨
x⋆ − x

(i(j−1)
s )

n ,∇f(i
(j)
s ) (x⋆)

⟩}
.

Summing up the above inequality over all s leads us to, for all n ∈ N,

∑
s∈S

∥∥∥x(s)
n − x⋆

∥∥∥2 ≤ S (1− τλn) ∥xn − x⋆∥2 + τλn
2

τ

{
M3

∑
s∈S

Is∑
j=1

∥∥∥∇f(i
(j)
s ) (x⋆)

∥∥∥λn

+
∑
s∈S

Is∑
j=1

⟨
x⋆ − x

(i(j−1)
s )

n ,∇f(i
(j)
s ) (x⋆)

⟩}
. (3.26)

Therefore, from (3.14), (3.25), and (3.26), we have, for all n ∈ N,

∥xn+1 − x⋆∥2 ≤ (1− τλn) ∥xn − x⋆∥2 + τλnXn,
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where

Xn :=
1

S + 1

[
2

τ

{⟨
x⋆ − xn,∇f (0) (x⋆)

⟩
+
∑
s∈S

Is∑
j=1

⟨
x⋆ − x

(i(j−1)
s )

n ,∇f(i
(j)
s ) (x⋆)

⟩

+

M2

∥∥∥∇f (0) (x⋆)
∥∥∥+M3

∑
s∈S

Is∑
j=1

∥∥∥∇f(i
(j)
s ) (x⋆)

∥∥∥
λn

}]
(n ∈ N).

Since Lemmas 3.3(iii) and 3.2(ii) guarantee that (xn)n∈N and (x
(i(j)s )
n )n∈N (s ∈ S, j =

1, 2, . . . , Is) converge weakly to x⋆, we have

lim
n→∞

⟨x⋆ − xn,∇f (0) (x⋆)
⟩
+
∑
s∈S

Is∑
j=1

⟨
x⋆ − x

(i(j−1)
s )

n ,∇f(i
(j)
s ) (x⋆)

⟩ = 0.

Therefore, (C1) ensures that limn→∞ Xn = 0. Hence, Proposition 2.6 and (C2) lead
one to deduce that

lim
n→∞

∥xn − x⋆∥ = 0. (3.27)

This implies that (xn)n∈N converges strongly to x⋆. Moreover, since ∥x(i(j)s )
n − x⋆∥ ≤

∥x(i(j)s )
n − xn∥ + ∥xn − x⋆∥ (n ∈ N, s ∈ S, j = 1, 2, . . . , Is), Lemma 3.2(ii) and (3.27)

lead us to

lim
n→∞

∥∥∥∥x(i(j)s )
n − x⋆

∥∥∥∥ = 0 (s ∈ S, j = 1, 2, . . . , Is);

i.e., (x
(i(j)s )
n )n∈N (s ∈ S, j = 1, 2, . . . , Is) also converge strongly to x⋆. This proves

Theorem 3.1.

4. Application of Algorithm 3.1 to Storage Allocation.

4.1. Storage allocation problem. One application of Problem 2.1 is storage
allocation [19] in a peer-to-peer (P2P) data system. Here, we consider a P2P data

storage system network in which peer i (i ∈ I) offers a storage capacity c
(i)
o that is to

be shared with other peers and demands a storage capacity c
(i)
s that is to be used for

storing its own data.
The supply and demand functions of peer i are defined as follows [19, Definition 2

and Assumption A]: s(i)(p) := a(i)[p−p
(i)
min]

+, d(i)(p) := b(i)[p
(i)
max−p]+ (p ≥ 0), where

x+ := max{0, x} (x ∈ R), a(i), b(i), p(i)max (> 0), and p
(i)
min (≥ 0). Peer i is entirely

described by four parameters, a(i), b(i), p
(i)
max, and p

(i)
min. The two price parameters,

p
(i)
min and p

(i)
max, respectively represent the minimum value of the unit price po that

peer i will sell some of its own disk space and the maximum value of the unit price
ps that it will pay for storage space, and a(i) and b(i) respectively correspond to the

increase in sold capacity with the unit price po (≥ p
(i)
min) and the decrease in bought

storage space with the unit price ps (≤ p
(i)
max). For a given p (≥ 0), s(i)(p) (resp.

d(i)(p)) is the amount of storage capacity that peer i would choose to sell (resp. buy)
if peer i were paid (resp. charged) a unit price p for it.
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The utility function U (i) of peer i is of the following form [19, Section II],

U (i)
(
c(i)s , c(i)o , ε(i)

)
:= V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)
− ε(i), (4.1)

where x ∧ y := min{x, y} (x, y ∈ R),

V (i)
(
c(i)s

)
:=

1

b(i)

−
(
c
(i)
s ∧ b(i)p

(i)
max

)2
2

+ b(i)p(i)max

(
c(i)s ∧ b(i)p(i)max

)
is peer i’s valuation obtained when it uses c

(i)
s , O(i)(c

(i)
o ) := (1/a(i))(c

(i)
o )2/2 is the

opportunity cost of offering c
(i)
o for other peers without using c

(i)
o for itself, p

(i)
minc

(i)
o is

the data transfer cost,

P (i)
(
c(i)o

)
:= O(i)

(
c(i)o

)
+ p

(i)
minc

(i)
o

stands for the overall non-monetary cost of peer i offering c
(i)
o in the system, and

ε(i) := psc
(i)
s − poc

(i)
o

is the monetary price paid by peer i.
On the other hand, the operator (denoted by peer 0), which manages the P2P data

storage system, tries to maximize its revenue, which is the total amount that the peers

are charged. Since the monetary price paid by peer i is ε(i) = psc
(i)
s − poc

(i)
o , c

(i)
s =

d(i)(ps), and c
(i)
o = s(i)(po), the utility function of the operator can be represented by

U (0)(ps, po) :=
∑
i∈I

ε(i) =
∑
i∈I

[
psd

(i) (ps)− pos
(i) (po)

]
. (4.2)

We define a performance measure, called social welfare [19, Definition 3], in
the whole system as the sum of the utility functions of all peers and the opera-
tor. From (4.1) and (4.2), social welfare can be expressed as follows: for all cs :=

(c
(1)
s , c

(2)
s , . . . , c

(I)
s )T , co := (c

(1)
o , c

(2)
o , . . . , c

(I)
o )T ∈ RI ,

W (cs, co) :=
∑
i∈I

U (i)
(
c(i)s , c(i)o , ε(i)

)
+ U (0)(ps, po)

=
∑
i∈I

[
V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)]
,

(4.3)

where xT denotes the transpose of the vector x. It is desirable to maximize W
defined by (4.3) because it makes the whole system stable and reliable. We call

W (i) : R× R → R defined for all (c
(i)
s , c

(i)
o ) ∈ R× R by

W (i)
(
c(i)s , c(i)o

)
:= V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)
the welfare of peer i.

A payment-based management scheme is based on monetary exchanges where
peers can buy storage space in the system for a unit price ps and sell some of their
disk capacity for a unit price po. In the profit-oriented pricing scheme, the operator
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strives to extract the maximum profit out of the business by buying and selling storage
spaces. Assuming that the operator knows that peer i (i ∈ I) will sell s(i)(po) and
buy d(i)(ps), it tries to choose ps and po so as to maximize its profit U (0)(ps, po).
Accordingly, the constrained set and objective function of the operator (peer 0) are
defined as follows [19, Section III.C].

C(0) := R+ × R+ ∩

{
(ps, po) ∈ R× R :

∑
i∈I

s(i) (po) ≥
∑
i∈I

d(i) (ps)

}
, (4.4)

f (0) (ps, po) := −U (0) (ps, po) = −

[
ps
∑
i∈I

d(i) (ps)− po
∑
i∈I

s(i) (po)

]
(4.5)

for all (ps, po) ∈ R × R. The operator must have C(0) defined in (4.4) because∑
i∈I c

(i)
s =

∑
i∈I d(i)(ps), which is used for storing data, must not exceed

∑
i∈I c

(i)
o =∑

i∈I s(i)(po) offered by the peers. Here, let us define a mapping T (0) : R×R → R×R
for all (ps, po) ∈ R× R by

T (0) (ps, po) :=
1

2

[
(ps, po) + PR+×R+

{
PĈ(0) (ps, po)

}]
, (4.6)

where Ĉ(0) := {(ps, po) ∈ R × R :
∑

i∈I s(i)(po) ≥
∑

i∈I d(i)(ps)}. Since s(i) and d(i)

are affine, Ĉ(0) is a half-space, which means that PĈ(0) can be easily computed within

a finite number of arithmetic operations [1, p.406], [2, Subchapter 28.3]. T (0) defined
in (4.6) satisfies the firm nonexpansivity condition (Proposition 2.4(ii), (iii)), and

Fix
(
T (0)

)
:=
{
(ps, po) ∈ R× R : T (0)(ps, po) = (ps, po)

}
= C(0)

because Fix(T (0)) = Fix(PR+×R+PĈ(0)) = R+ × R+ ∩ Ĉ(0) =: C(0). Moreover, since

s(i) and d(i) are affine, f (0) in (4.5) satisfies the strong convexity condition. Hence,
we can see that ∇f (0) is strongly monotone and Lipschitz continuous.

Meanwhile, peer i (i ∈ I) selfishly chooses strategies that maximize its welfare
W (i). Accordingly, the constrained set and objective function of peer i (i ∈ I) can be
expressed as

C(i) :=
[
p
(i)
min, p

(i)
max

]
×
[
p
(i)
min, p

(i)
max

]
= Fix (PC(i)) =: Fix

(
T (i)

)
, (4.7)

f (i) (ps, po) := −
[
V (i)

(
d(i) (ps)

)
− P (i)

(
s(i) (po)

)]
(4.8)

for all (ps, po) ∈ R×R. Since s(i) and d(i) are affine and V (i) and P (i) have quadratic
forms, f (i) (i ∈ I) in (4.8) satisfies the strong convexity condition. Hence, we have
that ∇f (i) (i ∈ I) is strongly monotone and Lipschitz continuous. T (i) := PC(i)

(i ∈ I) in (4.7) is easily computable and firmly nonexpansive (Proposition 2.4(iii)) [1,
p.406], [2, Subchapter 28.3].

The main objective of the profit-oriented pricing scheme is to determine optimal
prices ps and po so as to maximize the operator’s profit U (0). Meanwhile, it is desirable
to maximize the social welfare W to make the whole system stable and reliable.
Therefore, we can formulate the storage allocation problem for the profit-oriented
pricing scheme as one of maximizing the weighted mean of the operator’s profit and
social welfare, λU (0) + (1− λ)W , for some weight parameter λ (∈ (0, 1)).
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Problem 4.1 (storage allocation problem for profit-oriented pricing scheme).

Maximize λU (0) (ps, po) + (1− λ)W (ps, po) = −

[
λf (0) + (1− λ)

∑
i∈I

f (i)

]
(ps, po)

subject to (ps, po) ∈

{
(ps, po) ∈ R+ × R+ :

∑
i∈I

s(i) (po) ≥
∑
i∈I

d(i) (ps)

}
∩
∩
i∈I

[
p
(i)
min, p

(i)
max

]
×
[
p
(i)
min, p

(i)
max

]
=

∩
i∈{0}∪I

Fix
(
T (i)

)
,

where λ ∈ (0, 1) is a parameter chosen in advance, and f (i) : R×R → R and T (i) : R×
R → R× R (i ∈ {0} ∪ I) are defined as in (4.5), (4.6), (4.7), and (4.8).

Therefore, we can conclude that Problem 4.1 can be formulated as Problem 2.1.

4.2. Experimental results. Let us apply Algorithm 3.1 to Problem 4.1 with
λ = 1/2. We used a MacBook Air 11-inch, Mid 2013. The computer had a 1.30GHz
Intel(R) Core(TM) i5-4250U processor and 4GB 1600MHz DDR3 memory. Algorithm
3.1 was written in C++. The experiment used random numbers in the range of (0, 5]

for a(i)s and b(i)s, random numbers in the range of [0, 10] for p
(i)
mins, and random

numbers in the range of [90, 100] for p
(i)
maxs. The random numbers were generated

using the function random-real in the srfi-27 library of Gauche.2 In the experiment,
we set λn := 10−3/(n + 1)a (a = 0.10, 0.25, 0.45), I := 100, S := 2, 5, 10, 20, 50, 100,
and Is = I/S, and performed 100 samplings, each starting from different random
initial points.3 We averaged the results of the 100 samplings.4 Note that Algorithm
3.1 when S = I (i.e., Is = 1) coincides with the broadcast optimization algorithm and
Algorithm 3.1 when S = 1 (i.e., I = I1) is similar to the incremental optimization
algorithm implemented by all peers.

Figure 4.1 shows the behavior of ps and po when λn := 10−3/(n + 1)0.10. The
plots show that although Algorithm 3.1 behaves differently depending on the choice
of S, it converges to the same point for S = 2, 5, 10, 20, 50, 100. In particular, we can
see from these graphs that the required numbers of iterations for S = 2, 5, 10, 20, 50
(Figure 4.1(a)–(e)) are less than that for S = I = 100 (Figure 4.1(f)). This means
that Algorithm 3.1 with S < 100 has fewer iterations compared with the conventional
broadcast optimization algorithm (Algorithm 3.1 with S = I = 100).

Figure 4.2 describes the behaviors of ps and po when λn := 10−3/(n + 1)a (a =
0.10, 0.25, 0.45) and S = 20. The graphs show that Algorithm 3.1 converges to the
same point with λn := 10−3/(n+1)a (a = 0.10, 0.25, 0.45) and that it converges faster
with a = 0.10 than with a = 0.25, 0.45. A similar trend was observed in the numerical
results for S = 2, 5, 10, 50, 100.5 Figures 4.1 and 4.2 indicate that the optimal ps
(denoted by p⋆s) is larger than the optimal po (denoted by p⋆o). Since Algorithm 3.1
converges in C(0) defined by (4.4), C⋆ :=

∑
i∈I s(i)(p⋆o) ≈

∑
i∈I d(i)(p⋆s) holds. Hence,

the operator’s revenue U (0)(p⋆s, p
⋆
o) is approximately (p⋆s−p⋆o)C

⋆ > 0; i.e., the operator
makes a profit in the situation depicted in the experiment.

2Gauche scheme shell, version 0.9.3.3 [utf-8,pthreads], x86 64-apple-darwin12
3Random values were generated by the rand function in the C Standard Library.
4We used gnuplot Version 4.6 patchlevel 3 to make the graphs in this paper from experiment

results.
5We omitted the details of the results for a = 0.10, 0.25, 0.45 and S = 2, 5, 10, 50, 100 because of

lack of space.
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Figure 4.3 is the relation between the number of subnetworks and running time
until n = 104 in the case of λn := 10−3/(n + 1)0.10. Here, Algorithm 3.1 with
S = 2, 5, 10 dramatically reduces the running time compared with the conventional
broadcast optimization algorithm (Algorithm 3.1 with S = I = 100) (see also issue
(i)). Therefore, we can conclude from Figures 4.1 and 4.3 that Algorithm 3.1 with
S < I converges to the solution to Problem 4.1 faster than the broadcast optimization
algorithm can. Moreover, Figures 4.1 and 4.3 indicate that the smaller S is, the fewer
the required iterations become and the shorter the running time becomes. This implies
that, if there are subnetworks in which as many peers as possible participate and if
the incremental optimization algorithm can be implemented by them, the operator
can quickly find the solution to Problem 4.1, thanks to full cooperation from many
peers. However, it would be physically difficult for many peers to implement the
incremental optimization algorithm because real networked systems are complex and
composed of a number of subnetworks (see issue (ii)). Meanwhile, Algorithm 3.1 can
be applied when each peer communicates with its neighbor peers, and the applications
of Algorithm 3.1 do not depend on the network topology. Therefore, we can conclude
that Algorithm 3.1 is a good way of solving convex optimization problems in large-
scale and complex networked systems.

5. Conclusion and Future Work. We discussed the problem of minimizing
the sum of convex objective functions over the intersection of fixed point sets of non-
expansive mappings in a Hilbert space and presented a novel distributed optimization
algorithm for solving the problem and its convergence analysis. The algorithm com-
bines the conventional broadcast and incremental optimization algorithms. The con-
vergence analysis guarantees that the algorithm, with a slowly diminishing step-size
sequence, converges strongly to the solution to the problem. Finally, we described
a numerical experiment that used the algorithm for storage allocation. The numer-
ical results and discussions showed that our algorithm converges to the solution to
the storage allocation problem faster than the conventional broadcast optimization
algorithm can, and has a wider range of application compared with the conventional
incremental optimization algorithm.

The convergence analysis ensures that our algorithm works when the processing
order within each subnetwork is deterministic at all times. It would be desirable to
devise distributed optimization algorithms which work when the processing order is
randomized at each iteration because they have a wider range of application compared
with our algorithm. Therefore, in the future, we need to devise such distributed
optimization algorithms.
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