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Let αn := 1/nη, βn := βn, and γn := γn or 1/nκ, where η ∈ [1/2, 1), κ >
1− η, and β, γ ∈ (0, 1). The rate of convergence of Algorithm 1 in Theorem
2,
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The correction implies that Algorithm 1 achieves a better convergence rate
(2) than (1). In particular, Algorithm 1 with η = 1/2 achieves an O(1/
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convergence rate.

Proof of (2). We have that
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We also have that

1

n

n∑
k=1

βk ≤
1

n

+∞∑
k=1

βk =
β

(1− β)n
.

1



First, let us consider the case where γn := γn. Then,
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Therefore, Theorem A1 implies (2).
Next, consider the case where γn := 1/nκ, where κ > 1−η. An argument

similar to the one for obtaining (3) implies that
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Therefore, Theorem A1 implies (2). This completes the proof.

Under the convex setting (Proposition 2), we can replace
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