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1. Introduction

Convex optimization theory is a powerful tool for solving many practical
problems in operational research (see, e.g., [2, 31] and references therein).
In particular, it has been widely used to solve practical convex minimization
problems over complicated constraints, e.g., convex optimization problems
with a fixed point constraint [4, 12, 16, 20, 36, 38] and with a variational
inequality constraint [8, 19].

Consider the following convex optimization problem: given a convex ob-
jective function f : H → R and a nonexpansive mapping T : H → H,

minimize f(x) subject to x ∈ Fix(T ), (1)

where H is a real Hilbert space and Fix(T ) stands for the fixed point set of T .
Problem (1) enables consideration of optimization problems with complicated
constraint sets [5, section I], [10, subsection 3.2], [36, section 4] onto which
metric projections cannot be easily calculated. Several algorithms (e.g., [4,
12, 16, 36]) have been proposed for solving problem (1) when f is smooth
and convex, which includes practical problems such as signal recovery [4],
beamforming [33], and network resource allocation [12, 16].

Here, problem (1) is considered for when f is convex but not always
smooth. One objective is to devise optimization algorithms for nonsmooth
convex optimization problem (1), which cannot be solved using conventional
algorithms for smooth convex optimization [4, 12, 16, 36].There are significant
problems with problem (1) when f is a general nonsmooth convex function
(e.g., the L1-norm). They include the problem of minimizing the total varia-
tion of a signal over a convex set, Tykhonov-like problems with L1-norms [6,
I. Introduction], the classifier ensemble problem with sparsity and diversity
learning [39, subsection 2.2.3], [40, subsection 3.2.4], which is expressed as
L1-norm minimization, and the minimal antenna-subset selection problem
[37, subsection 17.4]. Another objective is to solve problem (1) including the
above real-world problems by using incremental optimization techniques. If
the explicit forms of f and T in problem (1) are unknowable, algorithms
making the best use of their mapping information cannot be applied to the
problem. To enable us to consider such a case, a networked system with
a finite number of users is assumed, and each user i is assumed to have
its own private convex, nonsmooth objective function f (i) and nonexpansive
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mapping T (i). The main objective is to devise optimization algorithms that
enable each user to find an optimal solution to problem (1) with

f :=
I∑

i=1

f (i) and Fix(T ) :=
I∩

i=1

Fix
(
T (i)
)
, (2)

where I ∈ N is the number of users, without using the private information
of other users.

There have been many reports on incremental and parallel optimization
algorithms. Parallel proximal algorithms [1, Proposition 27.8], which use the
proximity operators of nonsmooth, convex functions, are useful for minimiz-
ing the sum of nonsmooth, convex functions over the whole space. Incremen-
tal subgradient methods [10, 25, 34] and projected multi-agent algorithms
[26, 27, 28] can minimize the sum of nonsmooth, convex functions for certain
constraint sets by using the subgradients of the nonsmooth, convex functions
instead of the proximity operators. The incremental subgradient algorithm
[10] and the asynchronous proximal algorithm [30] can work on nonsmooth
convex optimization over sublevel sets of convex functions onto which the
projections cannot be easily calculated. The incremental and parallel gradi-
ent algorithms [12, 16] can work on smooth convex optimization over fixed
point sets of nonexpansive mappings. The incremental and parallel algo-
rithms [13, 14, 15] use the subgradients of nonsmooth convex functions and
can optimize the sum of the nonsmooth convex functions over fixed point sets
of nonexpansive mappings. To the best of our knowledge, there have been
no reports on incremental proximal point algorithms for nonsmooth convex
optimization with fixed point constraints.

Ideas from three useful types of algorithms, (I) proximal point algorithms,
(II) incremental subgradient algorithms, and (III) fixed point algorithms, are
used to achieve the main objective.

(I) The well-known proximal point algorithms (see, e.g., [1, Chapter 27],
[18, 22, 32] and references therein) for nonsmooth convex optimization use
the proximity operators [1, Definition 12.23], [24] of convex functions. Here,
it is assumed that user i can use the proximity operator of f (i), which is
defined for all x ∈ H by

Proxf (i)(x) ∈ argmin
y∈H

[
f (i)(y) +

1

2
∥x− y∥2

]
.

3



(II) Incremental subgradient algorithms [10, 25, 34] are useful algorithms
for nonsmooth convex optimization. An iteration n of the algorithm is defined
as follows: given x

(0)
n ∈ H,

x(i)
n := x(i)

n

(
x(i−1)
n , f (i), T (i)

)
(i = 1, 2, . . . , I),

xn+1 := x(I)
n =: x

(0)
n+1.

(3)

Under the assumption that user i can communicate with neighbor user (i−1),
user i can implement algorithm (3) by using only its own private mappings

f (i), T (i) and information x
(i−1)
n transmitted from the neighbor user.

(III) There are many fixed point algorithms [3] for solving fixed point
problems. Here, the focus is on using the Halpern fixed point algorithm
[9, 35] and the Krasnosel’skĭı-Mann fixed point algorithm [17, 21] to search
for a fixed point of a nonexpansive mapping T . The former is defined as
follows: for each n ∈ N, xn+1 := αnx0 + (1− αn)T (xn). The latter is defined
as xn+1 := αnxn + (1− αn)T (xn), where x0 ∈ H and (αn)n∈N ⊂ [0, 1]. When

user i has x(i) ∈ H, f (i), and T (i) and information x
(i−1)
n transmitted from

user (i− 1), user i can compute

x(i)
n := αnx

(i) + (1− αn)T
(i)
(
y(i)n

(
x(i−1)
n , f (i)

))
, (4)

which is based on the Halpern fixed point algorithm, or

x(i)
n := αnx

(i−1)
n + (1− αn)T

(i)
(
y(i)n

(
x(i−1)
n , f (i)

))
, (5)

which is based on the Krasnosel’skĭı-Mann fixed point algorithm, where y
(i)
n

is a point depending on only x
(i−1)
n and f (i). From (I), y

(i)
n can be defined

using the value of the proximity operator of f (i) at x
(i−1)
n ; i.e.,

y(i)n := Proxf (i)

(
x(i−1)
n

)
. (6)

Two incremental proximal point algorithms are proposed for solving prob-
lem (1) with f and T defined by (2). One is based on the proximal point
algorithm (6), the incremental subgradient method (3), and the Halpern fixed
point algorithm (4). The other uses the ideas of the proximal point algorithm
(6), the incremental subgradient method (3), and the Krasnosel’skĭı-Mann
fixed point algorithm (5).

Here, let us explicitly compare the two proposed algorithms with the ex-
isting algorithms [13, 14, 15]. The proposed and existing algorithms can be
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applied to problem (1) with (2). The convergence analyses in [13, 14, 15]
showed that there exists a weak sequential cluster point of the sequence gen-
erated by one of the existing algorithms that belongs to the solution set of
problem (1) with (2). However, these results are not strong enough. This is
because knowing the existence of one optimal cluster point cannot help users
to identify an optimal solution when multiple cluster points are observed. In
contrast to the results in [13, 14, 15], one of the proposed algorithms (Al-
gorithm 3.1) satisfies a gratifying convergence property such that any weak
sequential cluster point of the sequence generated by the proposed algorithm
belongs to the solution set of problem (1) with (2) under certain assumptions
(Theorem 3.1). This result is attributed to the framework of the algorithm
being based on the Halpern fixed point algorithm (4) as compared with the
existing algorithms, which are based on the Krasnosel’skĭı-Mann fixed point
algorithm (5). Since the other proposed algorithm (Algorithm 4.1) is based
on the Krasnosel’skĭı-Mann fixed point algorithm (5), it is not guaranteed
that any weak sequential cluster point of the sequence in Algorithm 4.1 be-
longs to the solution set (Theorem 4.1). However, Algorithm 4.1 can work
when the step sizes are constant, which are the most tractable choice of step
size sequences, in contrast to Algorithm 3.1, which uses diminishing step size
sequences.

One contribution of this paper is analysis of the proposed algorithms’
convergence. It is shown that, under certain assumptions, any weak sequen-
tial cluster point of the sequence generated by the Halpern-type algorithm
belongs to the solution set of the problem and that there exists a weak sequen-
tial cluster point of the sequence generated by the Krasnosel’skĭı-Mann-type
algorithm, which also belongs to the solution set. Another contribution of
this paper is provision of examples showing that the proposed algorithms
perform better than subgradient-type algorithms. In this paper, concrete
nonsmooth convex optimization problems are discussed, and the two pro-
posed algorithms are numerically compared with the existing subgradient
methods to evaluate their effectiveness.

This paper is organized as follows. Section 2 gives the mathematical
preliminaries. Section 3 presents the incremental proximal point algorithm
based on the Halpern fixed point algorithm and analyzes its convergence. Sec-
tion 4 presents the incremental proximal point algorithm based on the Kras-
nosel’skĭı-Mann fixed point algorithm and analyzes its convergence. Section
5 describes concrete nonsmooth convex optimization problems and numeri-
cally compares the behaviors of the two proposed algorithms with those of
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the existing algorithms. Section 6 concludes the paper with a brief summary
and mentions future directions for improving the proposed algorithms.

2. Mathematical Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and its induced
norm ∥ · ∥, let R be the set of all real numbers, and let N be the set of all
positive integers including zero. Let Fix(T ) := {x ∈ H : T (x) = x} be the
fixed point set of a mapping T : H → H. Let dom(f) := {x ∈ H : f(x) < ∞}
be the domain of a function f : H → (−∞,∞]. The identity mapping on H
is denoted by Id. Let (xn)n∈N be a sequence in H. A point x ∈ H is said to
be a weak sequential cluster point of (xn)n∈N [1, subchapters 1.7 and 2.5] if
(xn)n∈N possesses a subsequence that weakly converges to x ∈ H.

2.1. Nonexpansive mappings and proximity operators
A mapping T : H → H is said to be nonexpansive [1, Definition 4.1(ii)] if

∥T (x)− T (y)∥ ≤ ∥x− y∥ (x, y ∈ H). T is said to be firmly nonexpansive [1,
Definition 4.1(i)] if ∥T (x)−T (y)∥2+∥(Id−T )(x)− (Id−T )(y)∥2 ≤ ∥x−y∥2
(x, y ∈ H). The metric projection PC onto a nonempty, closed convex subset
C of H is firmly nonexpansive with Fix(PC) = C [1, Proposition 4.8, (4.8)].

Let f : H → (−∞,∞] be proper, lower semicontinuous, and convex.
Then, the proximity operator of f [1, Definition 12.23], [24], denoted by
Proxf , maps every x ∈ H to the unique minimizer of f + (1/2)∥x− ·∥2; i.e.,

Proxf (x) = argmin
y∈H

[
f(y) +

1

2
∥x− y∥2

]
(x ∈ H) .

The uniqueness and existence of Proxf (x) are guaranteed for all x ∈ H [1,
Definition 12.23], [23]. The subdifferential of f is the set-valued operator

∂f : H → 2H : x 7→ {u ∈ H : f(y) ≥ f(x) + ⟨y − x, u⟩ (y ∈ H)} .
Proposition 2.1. [1, Propositions 12.26, 12.27, 12.28, and 16.14] Let f : H →
(−∞,∞] be proper, lower semicontinuous, and convex. Then, the following
hold:

(i) Let x, p ∈ H. p = Proxf (x) if and only if x − p ∈ ∂f(p) (i.e., ⟨y −
p, x− p⟩+ f(p) ≤ f(y) for all y ∈ H).

(ii) Proxf is firmly nonexpansive with Fix(Proxf ) = argminx∈H f(x).
(iii) If f is continuous at x ∈ dom(f), ∂f(x) is nonempty. Moreover, δ >

0 exists such that ∂f(B(x; δ)) is bounded, where B(x; δ) stands for a
closed ball with center x and radius δ.
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2.2. Nonsmooth convex optimization problem with fixed point constraints

Consider a networked system consisting of I users, where user i (i ∈ I :=
{1, 2, . . . , I}) is assumed to have its own private mappings2 T (i) and f (i). The
following problem is discussed.

Problem 2.1. Assume that

(A1) T (i) : H → H (i ∈ I) is firmly nonexpansive with
∩

i∈I Fix(T
(i)) ̸= ∅;

(A2) f (i) : H → R (i ∈ I) is continuous and convex with dom(f (i)) = H and
Proxf (i) can be efficiently computed.3

Then,

minimize f(x) :=
∑
i∈I

f (i)(x) subject to x ∈ X :=
∩
i∈I

Fix
(
T (i)
)
.

The existence of a solution to Problem 2.1 is guaranteed when at least one of
Fix(T (i)) is bounded [41, Theorem 25.C]. Under the assumptions in the main
theorems (Theorems 3.1 and 4.1), the existence of a solution to Problem
2.1 is guaranteed (see Lemmas 3.3, 4.2(iv), and 4.3(iv)). If at least one of
f (i) is strictly convex, the uniqueness of the solution to Problem 2.1 is also
guaranteed [41, Corollary 25.15].

The following propositions will be used to prove the main theorems in
this paper.

Proposition 2.2. [3, Lemma 1.2] Assume that (an)n∈N ⊂ [0,∞) satisfies
an+1 ≤ (1− αn)an + αnβn (n ∈ N), where (αn)n∈N ⊂ (0, 1] and (βn)n∈N ⊂ R
with

∑∞
n=1 αn = ∞ and lim supn→∞ βn ≤ 0. Then, limn→∞ an = 0.

Proposition 2.3. [29, Lemma 3.1] Suppose that (xn)n∈N ⊂ H weakly con-
verges to x̂ ∈ H and x̄ ̸= x̂. Then, lim infn→∞ ∥xn−x̂∥ < lim infn→∞ ∥xn−x̄∥.

Proposition 2.4. [1, Theorem 9.1] When f : H → R is convex, f is weakly
lower semicontinuous if and only if f is lower semicontinuous.

2The explicit forms of T (i) and f (i) are user i’s private information; i.e., other users
cannot get the explicit forms of T (i) and f (i).

3Tables 10.1 and 10.2 in [7] present important examples of convex functions for which
proximity operators can be easily computed within a finite number of arithmetic opera-
tions.
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3. Halpern-type Incremental Proximal Point Algorithm

This section presents the following algorithm for solving Problem 2.1 using
the Halpern algorithm [9, 35] for finding a fixed point of a nonexpansive
mapping.

Algorithm 3.1.

Step 0. User i (i ∈ I) chooses x(i) ∈ H arbitrarily and sets (αn)n∈N ⊂ (0, 1]
and (γn)n∈N ⊂ (0,∞). User I sets x0 ∈ H arbitrarily and transmits

x
(0)
0 := x0 ∈ H to user 1.

Step 1. User i (i ∈ I) computes x
(i)
n ∈ H cyclically using

x(i)
n := αnx

(i) + (1− αn)T
(i)
(
Proxγnf (i)

(
x(i−1)
n

))
(i = 1, 2, . . . , I).

Step 2. User I defines xn+1 ∈ H using xn+1 := x
(I)
n and transmits x

(0)
n+1 := xn+1

to user 1. The value of n is then set to n+1, and the processing returns
to Step 1.

The stopping criterions of Algorithm 3.1 are given by, for example,
∑

i∈I ∥xn−
T (i)(xn)∥ < ϵ1 and |f(xn−1) − f(xn)| < ϵ2, where ϵi > 0 (i = 1, 2) is small
enough. However, in general, such stopping criterions cannot be included
in Algorithm 3.1 because none of the users can use all xn, all T

(i), and all
f (i). If there exists an operator who manages the networked system and
communicates with all users, the operator can verify whether the stopping
criterions of Algorithm 3.1 are satisfied. The numerical section provides
the number of iterations and elapsed time such that Algorithm 3.1 satisfies
|f(xn−1)− f(xn)| < 10−3 (see section 5 for details).

All users participating in the network are assumed to have the following
information before the algorithm is executed.

Assumption 3.1. User i (i ∈ I) uses (αn)n∈N ⊂ (0, 1] and (γn)n∈N ⊂
(0,∞), which converge to 0 and satisfy the following conditions:4

(C1)
∞∑
n=0

αn = ∞, (C2) lim
n→∞

1

αn+1

∣∣∣∣ 1

γn+1

− 1

γn

∣∣∣∣ = 0, (C3) lim
n→∞

1

γn+1

∣∣∣∣1− αn

αn+1

∣∣∣∣ = 0,

(C4) lim
n→∞

1

αn+1

|γn+1 − γn|
γ2
n+1

= 0, (C5) lim
n→∞

αn

γn
= 0.

4Examples of (γn)n∈N and (αn)n∈N are γn := 1/(n + 1)a and αn := 1/(n + 1)b (a ∈
(0, 1/2), b ∈ (a, 1− a), a+ b < 1).
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Step 1 in Algorithm 3.1 is a search for the fixed point of T (i), which
is based on the Halpern algorithm [9, 35] defined by x0 ∈ H and xn+1 =
αnx0+(1−αn)T

(i)(xn) (n ∈ N). The algorithm with limn→∞ αn = 0 and (C1)
strongly converges to the minimizer of ∥ ·−x0∥2 over Fix(T (i)) [9, 35]. More-

over, since x
(i)
n in Step 1 uses the proximity operator Proxγnf (i) , it can be seen

intuitively that, for all i ∈ I, (x(i)
n )n∈N in Step 1 converges to not only a fixed

point of T (i) but also a minimizer of f (i). Furthermore, Steps 1 and 2 in Algo-
rithm 3.1 lead to the finding that xn+1 = x

(I)
n (x

(I−1)
n ) = x

(I)
n (x

(I−1)
n (x

(I−2)
n )) =

· · · = x
(I)
n (x

(I−1)
n , x

(I−2)
n , . . . , x

(1)
n ); i.e., xn+1 has all the information of x

(i)
n

(i ∈ I) needed to optimize f (i) over Fix(T (i)). Hence, it can be seen that
(xn)n∈N approximates a minimizer of

∑
i∈I f

(i) over
∩

i∈I Fix(T
(i)). See sub-

section 3.1 for the proof for the convergence property of (xn)n∈N in Algorithm
3.1.

This convergence result depends on the following assumption.

Assumption 3.2. The sequence (y
(i)
n := Proxγnf (i)(x

(i−1)
n ))n∈N (i ∈ I) gen-

erated by Algorithm 3.1 is bounded.

Assume that, for all i ∈ I, argminx∈H f (i)(x)(= Fix(Proxf (i))) ̸= ∅ and

Fix(T (i)) is bounded. Then, user i can choose in advance a bounded, closed
convex set X(i) (e.g., X(i) is a closed ball with a large enough radius) satis-
fying X(i) ⊃ Fix(T (i)). Accordingly, user i can compute, for example,

x(i)
n := PX(i)

[
αnx

(i) + (1− αn)T
(i)
(
y(i)n

)]
(7)

instead of x
(i)
n in Algorithm 3.1. Since X(i) (i ∈ I) is bounded, (x(i)

n )n∈N (i ∈
I) is bounded. Moreover, since Proposition 2.1(ii) ensures that ∥y(i)n − x∥ ≤
∥x(i−1)

n − x∥ (i ∈ I, x ∈ Fix(Proxf (i))), the boundedness of (x
(i)
n )n∈N (i ∈ I)

guarantees that (y
(i)
n )n∈N (i ∈ I) is bounded. Hence, it can be assumed that

(x
(i)
n )n∈N (i ∈ I) in Algorithm 3.1 is as in (7) in place of Assumption 3.2.
Next, a convergence analysis of Algorithm 3.1 is presented.

Theorem 3.1. Under Assumptions (A1), (A2), 3.1, and 3.2, any weak se-

quential cluster point of (x
(i)
n )n∈N (i ∈ I) generated by Algorithm 3.1 belongs

to the solution set of Problem 2.1.

An application example of Algorithm 3.1 is as follows. Let X(i) ⊂ H
(i ∈ I) be bounded, closed, and convex (see (7)), let C

(i)
k ⊂ H (i ∈ I, k ∈
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K(i) := {1, 2, . . . , K(i)}) be a closed convex set onto which the projection can

be easily calculated, and let (w
(i)
k )k∈K(i) ⊂ (0, 1) (i ∈ I) satisfy

∑
k∈K(i) w

(i)
k =

1. Here let us define

g(i)(x) :=
1

2

∑
k∈K(i)

w
(i)
k

(
min
y∈C(i)

k

∥x− y∥

)2

(x ∈ H), (8)

T̄ (i) := PX(i)

 ∑
k∈K(i)

w
(i)
k P

C
(i)
k

 , and T (i) :=
1

2

(
Id + T̄ (i)

)
(i ∈ I). (9)

The function g(i) (i ∈ I) defined by (8) stands for the mean square value of

the distances from x ∈ H to C
(i)
k s. Accordingly, we can express a subset of

X(i) with the elements closest to C
(i)
k s in terms of the mean square norm by

Cg(i) :=

{
x ∈ X(i) : g(i)(x) = min

y∈X(i)
g(i)(y)

}
(i ∈ I). (10)

The Cg(i) is referred to as the generalized convex feasible set [5, section I,
Framework 2], [36, Definition 4.1]. The condition Cg(i) ̸= ∅ (i ∈ I) holds from
the boundedness of X(i) [36, Remark 4.3(a)]. Even if X(i) ∩

∩
k∈K(i) C

(i)
k = ∅,

Cg(i) is well-defined. In particular, Cg(i) = X(i) ∩
∩

k∈K(i) C
(i)
k holds when

X(i) ∩
∩

k∈K(i) C
(i)
k ̸= ∅. Furthermore, T̄ (i) (i ∈ I) is nonexpansive with

Fix(T̄ (i)) = Cg(i) [36, Proposition 4.2]; i.e., T (i) (i ∈ I) defined by (9) is
firmly nonexpansive and

Fix
(
T (i)
)
= Fix

(
T̄ (i)
)
= Cg(i) (i ∈ I).

Therefore, Theorem 3.1 leads to the following.

Corollary 3.1. Let T (i) (i ∈ I) be a mapping defined by (9), let f (i) (i ∈ I)
satisfy (A2), and let (x

(i)
n )n∈N (i ∈ I) be the sequence generated by (7), where

(αn)n∈N and (γn)n∈N satisfy Assumption 3.1. Then, any weak sequential clus-

ter point of (x
(i)
n )n∈N (i ∈ I) belongs to the solution set of Problem 2.1 with

X =
∩

i∈I Cg(i).

Section 5 applies the proposed algorithms to the problem of minimizing f
over

∩
i∈I Cg(i) and compares the behaviors of the proposed algorithms with

the existing ones.
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3.1. Proof of Theorem 3.1

First, the following lemma is proven.

Lemma 3.1. Suppose that Assumptions (A1), (A2), and 3.2 hold and (x
(i)
n )n∈N

and (y
(i)
n )n∈N (i ∈ I) are the sequences generated by Algorithm 3.1. Then,

(T (i)(y
(i)
n ))n∈N and (x

(i)
n )n∈N (i ∈ I) are bounded.

Proof. Assumption (A1) guarantees that ∥T (i)(y
(i)
n ) − x∥ ≤ ∥y(i)n − x∥

(i ∈ I, n ∈ N, x ∈ X), which, together with Assumption 3.2, implies that

(T (i)(y
(i)
n ))n∈N (i ∈ I) is bounded. The definition of x

(i)
n (i ∈ I, n ∈ N)

and the boundedness of (T (i)(y
(i)
n ))n∈N lead to the boundedness of (x

(i)
n )n∈N

(i ∈ I). □
Next, the following lemma is considered.

Lemma 3.2. Suppose that Assumptions (A1), (A2), 3.1, and 3.2 are satis-
fied. Then, the following hold:

(i) limn→∞ ∥xn+1 − xn∥/γn = 0;

(ii) limn→∞ ∥y(i)n − T (i)(y
(i)
n )∥ = 0 and limn→∞ ∥x(i−1)

n − y
(i)
n ∥ = 0 (i ∈ I);

(iii) limn→∞ ∥xn − y
(i)
n ∥ = 0 and limn→∞ ∥xn − T (i)(xn)∥ = 0 (i ∈ I).

Proof. (i) The definition of x
(i)
n (i ∈ I, n ∈ N) and (A1) imply that, for

all i ∈ I and for all n ≥ 1,∥∥∥x(i)
n − x

(i)
n−1

∥∥∥
=
∥∥∥(1− αn)

(
T (i)

(
y(i)n

)
− T (i)

(
y
(i)
n−1

))
+ (αn − αn−1)

(
x(i) − T (i)

(
y
(i)
n−1

))∥∥∥
≤(1− αn)

∥∥∥T (i)
(
y(i)n

)
− T (i)

(
y
(i)
n−1

)∥∥∥+ |αn − αn−1|
∥∥∥x(i) − T (i)

(
y
(i)
n−1

)∥∥∥
≤(1− αn)

∥∥∥y(i)n − y
(i)
n−1

∥∥∥+M1|αn − αn−1|,

where M1 := maxi∈I(sup{∥x(i) − T (i)(y
(i)
n )∥ : n ∈ N}) and M1 < ∞ holds

from Lemma 3.1. Given definition ȳ
(i)
n := Proxγn+1f (i)(x

(i−1)
n ) (i ∈ I, n ∈ N),

Proposition 2.1(ii) ensures that, for all i ∈ I and for all n ≥ 1,∥∥∥y(i)n − y
(i)
n−1

∥∥∥ ≤
∥∥∥Proxγnf (i)

(
x(i−1)
n

)
− Proxγnf (i)

(
x
(i−1)
n−1

)∥∥∥+ ∥∥∥ȳ(i)n−1 − y
(i)
n−1

∥∥∥
≤
∥∥∥x(i−1)

n − x
(i−1)
n−1

∥∥∥+ ∥∥∥ȳ(i)n−1 − y
(i)
n−1

∥∥∥ .
11



Proposition 2.1(i) means that y
(i)
n−1 := Proxγn−1f (i)(x

(i−1)
n−1 ) and ȳ

(i)
n−1 := Proxγnf (i)(x

(i−1)
n−1 )

satisfy (x
(i−1)
n−1 −y

(i)
n−1)/γn−1 ∈ ∂f (i)(y

(i)
n−1) and (x

(i−1)
n−1 −ȳ

(i)
n−1)/γn ∈ ∂f (i)(ȳ

(i)
n−1).

Accordingly, the monotonicity of ∂f (i) guarantees that, for all i ∈ I and for
all n ≥ 1, ⟨

y
(i)
n−1 − ȳ

(i)
n−1,

x
(i−1)
n−1 − y

(i)
n−1

γn−1

−
x
(i−1)
n−1 − ȳ

(i)
n−1

γn

⟩
≥ 0.

Hence,

1

γn−1γn

{⟨
y
(i)
n−1 − ȳ

(i)
n−1, (γn − γn−1) x

(i−1)
n−1

⟩
+
⟨
y
(i)
n−1 − ȳ

(i)
n−1,−γn

(
y
(i)
n−1 − ȳ

(i)
n−1

)⟩
+
⟨
y
(i)
n−1 − ȳ

(i)
n−1, (γn−1 − γn) ȳ

(i)
n−1

⟩}
≥ 0,

which, together with the triangle inequality, means that∥∥∥y(i)n−1 − ȳ
(i)
n−1

∥∥∥2 ≤ |γn − γn−1|
γn

(∥∥∥x(i−1)
n−1

∥∥∥+ ∥∥∥ȳ(i)n−1

∥∥∥)∥∥∥y(i)n−1 − ȳ
(i)
n−1

∥∥∥
≤ M2

|γn − γn−1|
γn

∥∥∥y(i)n−1 − ȳ
(i)
n−1

∥∥∥ ,
where M2 := maxi∈I(sup{∥x(i−1)

n ∥+∥ȳ(i)n ∥ : n ∈ N}) and M2 < ∞ holds from
Lemma 3.1, Assumption 3.2, and Proposition 2.1(ii). Thus, for all i ∈ I and
for all n ≥ 1, ∥∥∥y(i)n−1 − ȳ

(i)
n−1

∥∥∥ ≤ M2
|γn − γn−1|

γn
.

Therefore, for all i ∈ I and for all n ≥ 1,∥∥∥x(i)
n − x

(i)
n−1

∥∥∥ ≤ (1− αn)
∥∥∥x(i−1)

n − x
(i−1)
n−1

∥∥∥+M2
|γn − γn−1|

γn
+M1|αn − αn−1|,

(11)

which implies that, for all n ≥ 1,

∥xn+1 − xn∥ ≤ (1− αn) ∥xn − xn−1∥+ IM1|αn − αn−1|+ IM2
|γn − γn−1|

γn
.
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Hence, for all n ≥ 1,

∥xn+1 − xn∥
γn

≤ (1− αn)
∥xn − xn−1∥

γn−1

+ (1− αn)

{
∥xn − xn−1∥

γn
− ∥xn − xn−1∥

γn−1

}
+ IM1

|αn − αn−1|
γn

+ IM2
|γn − γn−1|

γ2
n

≤ (1− αn)
∥xn − xn−1∥

γn−1

+ IM1
|αn − αn−1|

γn
+ IM2

|γn − γn−1|
γ2
n

+M3

∣∣∣∣ 1γn − 1

γn−1

∣∣∣∣ ,
where M3 := sup{∥xn+1 − xn∥ : n ∈ N} < ∞. This leads to the finding that

∥xn+1 − xn∥
γn

≤ (1− αn)
∥xn − xn−1∥

γn−1

+ αnXn (n ≥ 1),

where

Xn := IM1
1

αn

|αn − αn−1|
γn

+ IM2
1

αn

|γn − γn−1|
γ2
n

+M3
1

αn

∣∣∣∣ 1γn − 1

γn−1

∣∣∣∣ (n ≥ 1).

Proposition 2.2 and (C1), (C2), (C3), and (C4) ensure that

lim
n→∞

∥xn+1 − xn∥
γn

= 0. (12)

Equation (12) and limn→∞ γn = 0 imply that limn→∞ ∥xn+1 − xn∥ = 0.
(ii) The convexity of ∥ · ∥2 and (A1) guarantee that, for all x ∈ X, for all

n ∈ N, and for all i ∈ I,∥∥x(i)
n − x

∥∥2 ≤ αn

∥∥x(i) − x
∥∥2 + (1− αn)

∥∥T (i)
(
y(i)n

)
− T (i)(x)

∥∥2
≤ αn

∥∥x(i) − x
∥∥2 + ∥∥y(i)n − x

∥∥2 − (1− αn)
∥∥y(i)n − T (i)

(
y(i)n

)∥∥2 .
Proposition 2.1(i) and y

(i)
n := Proxγnf (i)(x

(i−1)
n ) (i ∈ I, n ∈ N) mean that, for

all x ∈ X, for all n ∈ N, and for all i ∈ I,⟨
x− y(i)n , x(i−1)

n − y(i)n

⟩
≤ γn

(
f (i)(x)− f (i)

(
y(i)n

))
.

Moreover, from ⟨x, y⟩ = (1/2)(∥x∥2 + ∥y∥2 − ∥x− y∥2) (x, y ∈ H),⟨
x− y(i)n , x(i−1)

n − y(i)n

⟩
=

1

2

(∥∥x− y(i)n

∥∥2 + ∥∥x(i−1)
n − y(i)n

∥∥2 − ∥∥x− x(i−1)
n

∥∥2)
13



for all x ∈ X, for all i ∈ I, and for all n ∈ N. Hence, for all x ∈ X, for all
n ∈ N, and for all i ∈ I,∥∥y(i)n − x

∥∥2 ≤ ∥∥x(i−1)
n − x

∥∥2 − ∥∥x(i−1)
n − y(i)n

∥∥2 + 2γn
(
f (i)(x)− f (i)

(
y(i)n

))
.

(13)

Accordingly, setting M4 := maxi∈I ∥x(i) − x∥2 (x ∈ X) leads to∥∥x(i)
n − x

∥∥2 ≤ M4αn − (1− αn)
∥∥y(i)n − T (i)

(
y(i)n

)∥∥2 (14)

+
∥∥x(i−1)

n − x
∥∥2 − ∥∥x(i−1)

n − y(i)n

∥∥2 + 2γn
(
f (i)(x)− f (i)

(
y(i)n

))
.

Since Proposition 2.1(iii) and (A2) ensure the existence of z(i) ∈ ∂f (i)(x)
and the boundedness of ∂f (i)(x) (x ∈ X, i ∈ I), the definition of ∂f (i)

and Assumption 3.2 imply that there exists M5 < ∞ such that 2(f (i)(x) −
f (i)(y

(i)
n )) ≤ 2⟨x − y

(i)
n , z(i)⟩ ≤ 2∥x − y

(i)
n ∥∥z(i)∥ ≤ M5 (x ∈ X, i ∈ I, n ∈ N).

Hence, for all x ∈ X and for all n ∈ N,

∥xn+1 − x∥2 ≤ IM4αn − (1− αn)
∑
i∈I

∥∥y(i)n − T (i)
(
y(i)n

)∥∥2 + ∥xn − x∥2 + IM5γn

−
∑
i∈I

∥∥x(i−1)
n − y(i)n

∥∥2 .
Since Lemma 3.1 means the existence of M6 < ∞ such that, for all x ∈ X
and for all n ∈ N,

∥xn − x∥2 − ∥xn+1 − x∥2 = (∥xn − x∥ − ∥xn+1 − x∥) (∥xn − x∥+ ∥xn+1 − x∥)
≤ M6 ∥xn+1 − xn∥ ,

we have that, for all x ∈ X and for all n ∈ N,

(1− αn)
∑
i∈I

∥∥y(i)n − T (i)
(
y(i)n

)∥∥2 ≤ IM4αn + IM5γn +M6∥xn+1 − xn∥,∑
i∈I

∥∥x(i−1)
n − y(i)n

∥∥2 ≤ IM4αn + IM5γn +M6∥xn+1 − xn∥,

which, together with limn→∞ ∥xn+1−xn∥ = 0 and limn→∞ αn = limn→∞ γn =
0, implies that

lim
n→∞

∥∥y(i)n − T (i)
(
y(i)n

)∥∥ = 0 and lim
n→∞

∥∥x(i−1)
n − y(i)n

∥∥ = 0 (i ∈ I). (15)

14



(iii) From ∥x(i)
n − T (i)(y

(i)
n )∥ = αn∥x(i) − T (i)(y

(i)
n )∥ (i ∈ I, n ∈ N) and

limn→∞ αn = 0, limn→∞ ∥x(i)
n − T (i)(y

(i)
n )∥ = 0 (i ∈ I). Since, for all i ∈ I

and for all n ∈ N,∥∥xn − x(i−1)
n

∥∥ ≤
i−1∑
j=1

(∥∥x(j−1)
n − y(j)n

∥∥+ ∥∥y(j)n − T (j)(y(j)n )
∥∥+ ∥∥T (j)(y(j)n )− x(j)

n

∥∥) ,
(15) and limn→∞ ∥x(i)

n − T (i)(y
(i)
n )∥ = 0 (i ∈ I) guarantee that limn→∞ ∥xn −

x
(i−1)
n ∥ = 0 (i ∈ I). From ∥y(i)n − xn∥ ≤ ∥y(i)n − x

(i−1)
n ∥ + ∥x(i−1)

n − xn∥
(i ∈ I, n ∈ N), (15) implies that

lim
n→∞

∥∥xn − y(i)n

∥∥ = 0 (i ∈ I). (16)

Moreover, since ∥xn−T (i)(xn)∥ ≤ ∥xn−y
(i)
n ∥+∥y(i)n −T (i)(y

(i)
n )∥+∥T (i)(y

(i)
n )−

T (i)(xn)∥ (i ∈ I, n ∈ N), (A1), (15), and (16) ensure that

lim
n→∞

∥∥xn − T (i)(xn)
∥∥ = 0 (i ∈ I). (17)

This proves Lemma 3.2. □
Lemmas 3.1 and 3.2 lead to the following lemma.

Lemma 3.3. Suppose that the assumptions in Lemma 3.2 hold. Then, the
following hold:

(i) lim supn→∞ f(xn) ≤ f(x) for all x ∈ X;
(ii) There exists a weak sequential cluster point of (xn)n∈N that belongs to

the solution set X⋆ of Problem 2.1;
(iii) Any weak sequential cluster point of (x

(i)
n )n∈N (i ∈ I) is in X⋆.

Proof. (i) Inequality (14) guarantees that, for all x ∈ X, for all n ∈ N,
and for all i ∈ I,∥∥x(i)

n − x
∥∥2 ≤ ∥∥x(i−1)

n − x
∥∥2 + 2γn

(
f (i)(x)− f (i)

(
y(i)n

))
+M4αn,

which, together with xn+1 = x
(I)
n = x

(0)
n+1 (n ∈ N) and f :=

∑
i∈I f

(i), implies
that

∥xn+1 − x∥2 ≤ ∥xn − x∥2 + 2γn
∑
i∈I

(
f (i)(x)− f (i)

(
y(i)n

))
+ IM4αn

= ∥xn − x∥2 + IM4αn

+ 2γn

(
f(x)− f(xn) +

∑
i∈I

[
f (i)(xn)− f (i)

(
y(i)n

)])
.
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Since Lemma 3.1 means that M6 < ∞ exists such that ∥xn − x∥2 − ∥xn+1 −
x∥2 ≤ M6∥xn+1 − xn∥ (x ∈ X,n ∈ N), for all x ∈ X and for all n ∈ N,

2 (f(xn)− f(x)) ≤ M6∥xn − xn+1∥
γn

+ IM4
αn

γn
+ 2

∑
i∈I

[
f (i)(xn)− f (i)

(
y(i)n

)]
.

Moreover, the definition of ∂f (i) (i ∈ I), (A2), Lemma 3.1, and Proposition
2.1(iii) lead to the existence of M7 < ∞ such that, for all i ∈ I and for

all n ∈ N, f (i)(xn) − f (i)(y
(i)
n ) ≤ M7∥xn − y

(i)
n ∥, which, together with (16),

implies that lim supn→∞[f (i)(xn) − f (i)(y
(i)
n )] ≤ 0 (i ∈ I). Hence, (12) and

(C5) ensure that

2 lim sup
n→∞

(f(xn)− f(x)) ≤ 2
∑
i∈I

lim sup
n→∞

[
f (i)(xn)− f (i)

(
y(i)n

)]
≤ 0.

Therefore, lim supn→∞ f(xn) ≤ f(x) (x ∈ X).
(ii) Lemma 3.1 guarantees the existence of a weak sequential cluster point

of (xn)n∈N. Let x∗ ∈ H be an arbitrary weak sequential cluster point of
(xn)n∈N. Then, there exists (xnk

)k∈N (⊂ (xn)n∈N) such that (xnk
)k∈N weakly

converges to x∗. Here, i ∈ I is arbitrarily fixed, and x∗ /∈ Fix(T (i)) is
assumed. Then, Proposition 2.3, Lemma 3.2(iii), and (A1) produce a con-
tradiction:

lim inf
k→∞

∥xnk
− x∗∥ < lim inf

k→∞

∥∥xnk
− T (i)(x∗)

∥∥
= lim inf

k→∞

∥∥xnk
− T (i) (xnk

) + T (i) (xnk
)− T (i)(x∗)

∥∥
= lim inf

k→∞

∥∥T (i) (xnk
)− T (i)(x∗)

∥∥
≤ lim inf

k→∞
∥xnk

− x∗∥.

Therefore, x∗ ∈ Fix(T (i)) (i ∈ I); i.e., x∗ ∈ X. Moreover, (A2), the weak
convergence of (xnk

)k∈N to x∗ ∈ X, and Proposition 2.4 imply that f(x∗) ≤
lim infk→∞ f(xnk

). Accordingly, Lemma 3.3(i) guarantees that, for all x ∈ X,

f(x∗) ≤ lim inf
k→∞

f(xnk
) ≤ lim sup

k→∞
f(xnk

) ≤ lim sup
n→∞

f(xn) ≤ f(x); i.e., x∗ ∈ X⋆.

(iii) Lemma 3.3(ii) means that any weak sequential cluster point of (xn)n∈N
is in X⋆. From Lemma 3.1, limn→∞ ∥xn−x

(i−1)
n ∥ = 0 (i ∈ I), and xn+1 = x

(I)
n

(n ∈ N), any weak sequential cluster point of (x
(i)
n )n∈N (i ∈ I) is in X⋆. This

completes the proof. □
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4. Krasnosel’skĭı-Mann-type Incremental Proximal Point Algorithm

The following algorithm using the Krasnosel’skĭı-Mann algorithm [17, 21]
is presented.

Algorithm 4.1.

Step 0. User i (i ∈ I) sets (αn)n∈N ⊂ (0, 1] and (γn)n∈N ⊂ (0,∞). User I sets

x0 ∈ H arbitrarily and transmits x
(0)
0 := x0 ∈ H to user 1.

Step 1. User i (i ∈ I) computes x
(i)
n ∈ H cyclically using

x(i)
n := αnx

(i−1)
n + (1− αn)T

(i)
(
Proxγnf (i)

(
x(i−1)
n

))
(i = 1, 2, . . . , I).

Step 2. User I defines xn+1 ∈ H using xn+1 := x
(I)
n and transmits x

(0)
n+1 := xn+1

to user 1. The value of n is then set to n+1, and the processing returns
to Step 1.

Two assumptions are made here.

Assumption 4.1. User i (i ∈ I) uses (αn)n∈N ⊂ (0, 1] and (γn)n∈N ⊂ (0,∞)
satisfying the following conditions:5

(C6) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, (C7) lim
n→∞

γn = 0, (C8)
∞∑
n=0

γn = ∞.

Assumption 4.2. The sequence (y
(i)
n := Proxγnf (i)(x

(i−1)
n ))n∈N (i ∈ I) gen-

erated by Algorithm 4.1 is bounded.

Step 1 in Algorithm 4.1 is a search for the fixed point of T (i), which is
based on the Krasnosel’skĭı-Mann algorithm [17, 21] defined by x0 ∈ H and
xn+1 = αnxn + (1−αn)T

(i)(xn) (n ∈ N). It is guaranteed that the algorithm
with (C6) weakly converges to a fixed point of T (i) [17, 21]. Accordingly,
from the use of the proximity operator Proxγnf (i) , it can be seen intuitively

that (x
(i)
n ) in Step 1 approximates a fixed point of T (i) as well as a minimizer

of f (i). From the incremental steps in Steps 1 and 2 (see also the discussion
of Algorithm 3.1), it can be seen that Algorithm 4.1 optimizes

∑
i∈I f

(i)

over
∩

i∈I Fix(T
(i)). The mathematical proof for the convergence property of

(xn)n∈N in Algorithm 4.1 is given in subsection 4.1.
Next, a convergence analysis of Algorithm 4.1 is presented.

5Examples of (γn)n∈N and (αn)n∈N are γn := 1/(n + 1)a and αn := t (a ∈ (0, 1], t ∈
(0, 1)).
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Theorem 4.1. Under Assumptions (A1), (A2), 4.1, and 4.2, there exists a

weak sequential cluster point of (x
(i)
n )n∈N (i ∈ I) generated by Algorithm 4.1

which belongs to the solution set of Problem 2.1.

The discussion in section 3 leads to the following.

Corollary 4.1. Let T (i) (i ∈ I) be a mapping defined by (9), let f (i) (i ∈ I)
satisfy (A2), and let (x

(i)
n )n∈N (i ∈ I) be the sequence generated by (7) when

x(i) is replaced by x
(i−1)
n , where (αn)n∈N and (γn)n∈N satisfy Assumption 4.1.

Then, there exists a weak sequential cluster point of (x
(i)
n )n∈N (i ∈ I) which

belongs to the solution set of Problem 2.1 with X =
∩

i∈I Cg(i).

4.1. Proof of Theorem 4.1

The proof starts with the following lemma.

Lemma 4.1. The sequence (xn)n∈N generated by Algorithm 4.1 satisfies that,
for all x ∈ X and for all n ∈ N,

∥xn+1 − x∥2 ≤ ∥xn − x∥2 − (1− αn)
∑
i∈I

{∥∥x(i−1)
n − y(i)n

∥∥2 + ∥∥y(i)n − T (i)
(
y(i)n

)∥∥2}
+ 2(1− αn)γn

∑
i∈I

[
f (i)(x)− f (i)

(
y(i)n

)]
.

Proof. The definition of x
(i)
n (i ∈ I, n ∈ N) and the convexity of ∥ · ∥2

guarantee that, for all x ∈ X, for all n ∈ N, and for all i ∈ I,∥∥x(i)
n − x

∥∥2 ≤ αn

∥∥x(i−1)
n − x

∥∥2 + (1− αn)
∥∥T (i)

(
y(i)n

)
− x
∥∥2 ,

which, together with (A1), implies that∥∥x(i)
n − x

∥∥2 ≤ αn

∥∥x(i−1)
n − x

∥∥2 + (1− αn)
∥∥y(i)n − x

∥∥2
− (1− αn)

∥∥y(i)n − T (i)
(
y(i)n

)∥∥2 .
Moreover, (13) means that, for all x ∈ X, for all n ∈ N, and for all i ∈ I,∥∥x(i)

n − x
∥∥2 ≤ αn

∥∥x(i−1)
n − x

∥∥2 + (1− αn)

{∥∥x(i−1)
n − x

∥∥2 − ∥∥x(i−1)
n − y(i)n

∥∥2
+ 2γn

(
f (i)(x)− f (i)

(
y(i)n

))}
− (1− αn)

∥∥y(i)n − T (i)
(
y(i)n

)∥∥2
=
∥∥x(i−1)

n − x
∥∥2 − (1− αn)

∥∥x(i−1)
n − y(i)n

∥∥2
+ 2(1− αn)γn

(
f (i)(x)− f (i)

(
y(i)n

))
− (1− αn)

∥∥y(i)n − T (i)
(
y(i)n

)∥∥2 .
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Summing this inequality over all i completes the proof of Lemma 4.1. □
The following lemma indicates that Theorem 4.1 holds when (xn)n∈N in

Algorithm 4.1 is Fejér monotone with respect to X⋆ [1, chapter 5].

Lemma 4.2. Suppose that Assumptions (A1), (A2), 4.1, and 4.2 hold and
there exists n0 ∈ N such that ∥xn+1 − x⋆∥ ≤ ∥xn − x⋆∥ for all x⋆ ∈ X⋆ and
for all n ≥ n0. Then, the following hold:

(i) limn→∞ ∥x(i−1)
n − y

(i)
n ∥ = 0 and limn→∞ ∥y(i)n − T (i)(y

(i)
n )∥ = 0 (i ∈ I);

(ii) limn→∞ ∥xn − y
(i)
n ∥ = 0 and limn→∞ ∥xn − T (i)(xn)∥ = 0 (i ∈ I);

(iii) lim infn→∞ f(xn) ≤ f(x) (x ∈ X);

(iv) There exists (x
(i)
nl )l∈N ⊂ (x

(i)
n )n∈N (i ∈ I) which weakly converges to

x∗ ∈ X⋆.

Proof. (i) The definition of ∂f (i) ensures that, for all x ∈ X, for all n ∈ N,
and for all i ∈ I, f (i)(x)−f (i)(y

(i)
n ) ≤ ⟨x−y

(i)
n , z(i)⟩ ≤ N1, where z

(i) ∈ ∂f (i)(x)

(i ∈ I), N1 := maxi∈I(sup{⟨y(i)n − x, z(i)⟩ : n ∈ N}), and N1 < ∞ is satisfied
from Assumption 4.2. Accordingly, Lemma 4.1 guarantees that, for all x⋆ ∈
X⋆ and for all n ∈ N,

(1− αn)
∑
i∈I

∥∥x(i−1)
n − y(i)n

∥∥2 ≤ ∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 + 2IN1(1− αn)γn,

(1− αn)
∑
i∈I

∥∥y(i)n − T (i)
(
y(i)n

)∥∥2 ≤ ∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 + 2IN1(1− αn)γn,

(18)

which, together with (C6), (C7), and the existence of limn→∞ ∥xn − x⋆∥ (by

∥xn+1 − x⋆∥ ≤ ∥xn − x⋆∥ (x⋆ ∈ X⋆, n ≥ n0)), means that limn→∞ ∥x(i−1)
n −

y
(i)
n ∥ = 0 and limn→∞ ∥y(i)n − T (i)(y

(i)
n )∥ = 0 (i ∈ I).

(ii) From∥∥x(i)
n − x(i−1)

n

∥∥ ≤
∥∥T (i)

(
y(i)n

)
− x(i−1)

n

∥∥ ≤
∥∥T (i)

(
y(i)n

)
− y(i)n

∥∥+ ∥∥y(i)n − x(i−1)
n

∥∥ ,
Lemma 4.2(i) leads to limn→∞ ∥x(i)

n − x
(i−1)
n ∥ = 0 (i ∈ I). Since∥∥T (i)

(
y(i)n

)
− x(i)

n

∥∥ ≤
∥∥T (i)

(
y(i)n

)
− y(i)n

∥∥+ ∥∥y(i)n − x(i−1)
n

∥∥+ ∥∥x(i−1)
n − x(i)

n

∥∥ ,
Lemma 4.2(i) implies that limn→∞ ∥T (i)(y

(i)
n ) − x

(i)
n ∥ = 0 (i ∈ I). Thus, a

discussion similar to the one for obtaining (16) and (17) leads to limn→∞ ∥xn−
x
(i−1)
n ∥ = 0, limn→∞ ∥xn− y

(i)
n ∥ = 0, and limn→∞ ∥xn−T (i)(xn)∥ = 0 (i ∈ I).
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(iii) From f :=
∑

i∈I f
(i), the definition of ∂f (i), (A2), and Proposition

2.1(iii), there exists N2 < ∞ such that, for all x ∈ X and for all n ∈ N,∑
i∈I

[
f (i)(x)− f (i)

(
y(i)n

)]
= f(x)− f(xn) +

∑
i∈I

[
f (i)(xn)− f (i)

(
y(i)n

)]
≤ f(x)− f(xn) +N2

∑
i∈I

∥∥xn − y(i)n

∥∥ .
Accordingly, Lemma 4.1 implies that, for all x ∈ X and for all n ∈ N,

2(1− αn)γn

(
f(xn)− f(x)−N2

∑
i∈I

∥∥xn − y(i)n

∥∥) ≤ ∥xn − x∥2 − ∥xn+1 − x∥2.

(19)

Summing up (19) from n = 0 to infinity leads to

∞∑
n=0

γn(1− αn)

(
f(xn)− f(x)−N2

∑
i∈I

∥∥xn − y(i)n

∥∥) ≤ ∥x0 − x∥ < ∞.

It is next shown that lim infn→∞(1−αn)(f(xn)−f(x)−N2

∑
i∈I ∥xn−y

(i)
n ∥) ≤

0 (x ∈ X). If this assertion does not hold, there exist m0 ∈ N and γ > 0

such that (1− αn)(f(xn)− f(x)−N2

∑
i∈I ∥xn − y

(i)
n ∥) ≥ γ for all n ≥ m0.

Accordingly, (C8) ensures that, for all x ∈ X,

∞ = γ
∞∑

n=m0

γn ≤
∞∑

n=m0

γn(1− αn)

(
f(xn)− f(x)−N2

∑
i∈I

∥∥xn − y(i)n

∥∥) < ∞,

which is a contradiction. Hence, (C6) and Lemma 4.2(ii) imply that there
exists α ∈ (0, 1) such that, for all x ∈ X,

(1− α) lim inf
n→∞

(f(xn)− f(x)) ≤ lim inf
n→∞

(1− αn) (f(xn)− f(x))

≤ N2 lim sup
n→∞

(1− αn)
∑
i∈I

∥∥xn − y(i)n

∥∥ = 0.

Therefore, lim infn→∞ f(xn) ≤ f(x) (x ∈ X).
(iv) Lemma 4.2(iii) ensures the existence of a subsequence (xnl

)l∈N of
(xn)n∈N such that, for all x ∈ X,

lim
l→∞

f (xnl
) = lim inf

n→∞
f(xn) ≤ f(x).
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The boundedness of (xnl
)l∈N guarantees that there exists (xnlm

)m∈N ⊂ (xnl
)l∈N

that weakly converges to x∗. The same discussion as in the proof of Lemma
3.3(ii) leads to x∗ ∈ X. Since Proposition 2.4 implies that f(x∗) ≤ lim infm→∞ f(xnlm

),

f(x∗) ≤ lim inf
m→∞

f
(
xnlm

)
= lim

l→∞
f (xnl

) ≤ f(x) (x ∈ X), i.e., x∗ ∈ X⋆.

Consider another subsequence (xnlk
)k∈N ⊂ (xnl

)l∈N that weakly converges
to x∗. From the above discussion, x∗ ∈ X⋆. Here, assume that x∗ ̸= x∗.
Then, the existence of limn→∞ ∥xn − x⋆∥ (x⋆ ∈ X⋆) and Proposition 2.3 lead
to a contradiction:

lim
n→∞

∥xn − x∗∥ = lim
m→∞

∥∥xnlm
− x∗∥∥ < lim

m→∞

∥∥xnlm
− x∗

∥∥
= lim

n→∞
∥xn − x∗∥ = lim

k→∞

∥∥∥xnlk
− x∗

∥∥∥ < lim
k→∞

∥∥∥xnlk
− x∗

∥∥∥
= lim

n→∞
∥xn − x∗∥ .

Therefore, any subsequence of (xnl
)l∈N converges weakly to x∗ ∈ X⋆. This

means that (xnl
)l∈N weakly converges to x∗ ∈ X⋆. From limn→∞ ∥xn −

x
(i−1)
n ∥ = 0 (i ∈ I), (x(i)

nl )n∈N (i ∈ I) weakly converges to x∗ ∈ X⋆. This
completes the proof. □

Next it is proven that Theorem 4.1 holds when (xn)n∈N in Algorithm 4.1
is not Fejér monotone with respect to X⋆.

Lemma 4.3. Suppose that Assumptions (A1), (A2), 4.1, and 4.2 hold and
there exist x⋆

0 ∈ X⋆ and (xnj
)j∈N ⊂ (xn)n∈N such that ∥xnj

− x⋆
0∥ < ∥xnj+1 −

x⋆
0∥ for all j ∈ N. Then, the following hold:

(i) limj→∞ ∥x(i−1)
nj − y

(i)
nj ∥ = 0 and limj→∞ ∥y(i)nj − T (i)(y

(i)
nj )∥ = 0 (i ∈ I);

(ii) limj→∞ ∥xnj
− y

(i)
nj ∥ = 0 and limj→∞ ∥xnj

− T (i)(xnj
)∥ = 0 (i ∈ I);

(iii) lim supj→∞ f(xnj
) ≤ f(x⋆

0);

(iv) There exists a weak sequential cluster point of (xn)n∈N which is in X⋆.

Proof. (i) A discussion similar to the one for obtaining (18) and ∥xnj
−

x⋆
0∥ < ∥xnj+1 − x⋆

0∥ (j ∈ N) ensure that, for all j ∈ N,(
1− αnj

)∑
i∈I

∥∥∥x(i−1)
nj

− y(i)nj

∥∥∥2 < 2IN1

(
1− αnj

)
γnj

,

(
1− αnj

)∑
i∈I

∥∥∥y(i)nj
− T (i)

(
y(i)nj

)∥∥∥2 < 2IN1

(
1− αnj

)
γnj

,
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which, together with (C6) and (C7), implies that limj→∞ ∥x(i−1)
nj − y

(i)
nj ∥ = 0

and limj→∞ ∥y(i)nj − T (i)(y
(i)
nj )∥ = 0 (i ∈ I).

(ii) The same reasoning as in the proofs of Lemmas 4.2(ii) and 4.3(i) lead

to limj→∞ ∥xnj
− x

(i−1)
nj ∥ = 0, limj→∞ ∥xnj

− y
(i)
nj ∥ = 0, and limj→∞ ∥xnj

−
T (i)(xnj

)∥ = 0 (i ∈ I). Assumption 4.2 and limj→∞ ∥xnj
− y

(i)
nj ∥ = 0 imply

the boundedness of (xnj
)j∈N.

(iii) A discussion similar to the one for obtaining (19) means that, for all

j ∈ N, f(xnj
) − f(x⋆

0) < N2

∑
i∈I ∥xnj

− y
(i)
nj ∥, which, together with Lemma

4.3(ii), means that

lim sup
j→∞

(
f
(
xnj

)
− f (x⋆

0)
)
≤ N2

∑
i∈I

lim
j→∞

∥∥∥xnj
− y(i)nj

∥∥∥ = 0.

Thus, lim supj→∞ f(xnj
) ≤ f(x⋆

0).
(iv) The boundedness of (xnj

)j∈N implies that there exists (xnjk
)k∈N ⊂

(xnj
)j∈N such that (xnjk

)k∈N weakly converges to x⋆. The same discussion
as in the proof of Lemma 3.3(ii) leads to x⋆ ∈ X. Moreover, (A2) and
Proposition 2.4 imply that f(x⋆) ≤ lim infk→∞ f(xnjk

). Accordingly, Lemma
4.3(iii) guarantees that

f(x⋆) ≤ lim inf
k→∞

f
(
xnjk

)
≤ lim sup

k→∞
f
(
xnjk

)
≤ lim sup

j→∞
f
(
xnj

)
≤ f (x⋆

0) .

That is, x⋆ ∈ X⋆. From limj→∞ ∥xnj
− x

(i−1)
nj ∥ = 0 (i ∈ I), (x(i)

njk
)k∈N (i ∈ I)

weakly converges to x⋆ ∈ X⋆. This completes the proof. □

5. Numerical Examples

Consider the following problem with nonsmooth, convex objective func-
tions [6, Example 28] (see also Corollaries 3.1 and 4.1).

Problem 5.1. Assume that user i (i ∈ I := {1, 2, . . . , I}) has its own pri-

vate parameters ω
(i)
j > 0, a

(i)
j ∈ R, d(i)k ∈ R, and c

(i)
k ∈ RN with c

(i)
k ̸= 0, where

j ∈ N := {1, 2, . . . , N} and k ∈ K := {1, 2, . . . , K}. Define f (i) : RN → R
and C

(i)
k ⊂ RN (i ∈ I, k ∈ K) using

f (i)(x) :=
∑
j∈N

ω
(i)
j

∣∣∣xj − a
(i)
j

∣∣∣ (x ∈ RN
)
and C

(i)
k :=

{
x ∈ RN :

⟨
c
(i)
k , x

⟩
≤ d

(i)
k

}
.
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Then,

minimize
∑
i∈I

f (i)(x) subject to x ∈
∩
i∈I

Cg(i) ,

where Cg(i) (i ∈ I) is the generalized convex feasible set defined by (8) and

(10) when w
(i)
k := 1/K and X(i) = C := {x ∈ RN : ∥x∥ ≤ 1} (i ∈ I, k ∈ K).

Here, T (i) : RN → RN (i ∈ I) is defined by (9) with X(i) = C and

w
(i)
k := 1/K (k ∈ K). Accordingly, T (i) (i ∈ I) is firmly nonexpansive with

Fix(T (i)) = Cg(i) (see section 3). Hence, it is evident that Problem 5.1 is an
example of Problem 2.1.

The experimental evaluations of the two proposed algorithms were done
using a 27-inch iMac with a 3.2 GHz Intel Core i5 processor and 24 GB
1600 MHz DDR3 memory. The algorithms were written in Java 1.8.0 60-b27
with N := 100, I := 10, and K := 3. The values of ω

(i)
j ∈ (0, 1], a

(i)
j ∈

[−3, 3], d
(i)
k ∈ [0, 1], c

(i)
k with ∥c(i)k ∥ = 1, and x(i) were randomly generated

using org.apache.commons.math3.random.MersenneTwister. Algorithm 3.1
was used with (7) when X(i) := C, and (αn)n∈N and (γn)n∈N were defined by6

γn :=
10−3

(n+ 1)a

(
a =

1

4
,
1

8

)
and αn :=

10−3

(n+ 1)b

(
b =

1

2
,
3

4

)
(20)

while Algorithm 4.1 was used with (7) when x(i) was replaced by x
(i−1)
n ,

X(i) := C, αn := t = 1/2, and (γn)n∈N was as given in (20).
The incremental subgradient method (ISM) [15] and parallel subgradi-

ent method (PSM) [13] were used for comparison. ISM can be obtained

by replacing Proxγnf (i)(x
(i−1)
n ) in Algorithm 4.1 with x

(i−1)
n − γng

(i)
n , where

g
(i)
n ∈ ∂f (i)(x

(i−1)
n ). The sequence generated by PSM is defined by xn+1 :=

(1/I)
∑

i∈I x
(i)
n , where x

(i)
n := txn+(1−t)T (i)(xn−γng

(i)
n ) and g

(i)
n ∈ ∂f (i)(xn).

It is evident that Algorithms 3.1 and 4.1 use the proximity operators of f (i)s
while ISM and PSM use the subgradients of f (i)s. To see how the choice of
the order of the indices in I := {1, 2, . . . , I} affects the convergence rate of
Algorithms 3.1 and 4.1, we compared Algorithms 3.1 and 4.1 when (Case 1)

6Numerical results in [12, 14] indicate that the existing fixed point algorithms with
small step sizes (e.g., γn := 10−2/(n+1)a, 10−3/(n+1)a) have faster convergence. Hence,
the experiment described in this section used the step sizes in (20).
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x
(i)
n (i ∈ I) is calculated in the order of 1, 2, . . . , I and when (Case 2) x

(i)
n

(i ∈ I) is calculated in randomly shuffled order. We found that the perfor-
mances of Algorithms 3.1 and 4.1 in Case 1 were almost the same as those
in Case 2. Only the results for Case 1 are given due to lack of space.

One hundred samplings, each starting from a different randomly chosen
initial point, were performed, and the results were averaged. Two perfor-
mance measures were used. For each n ∈ N,

Fn :=
1

100

100∑
s=1

∑
i∈I

f (i) (xn(s)) and Dn :=
1

100

100∑
s=1

∑
i∈I

∥∥xn(s)− T (i) (xn(s))
∥∥ ,

where (xn(s))n∈N is the sequence generated from initial point x(s) (s =
1, 2, . . . , 100) for each of the four algorithms. The value of Dn represents
the mean value of the sums of the distances between xn(s) and T (i)(xn(s)).
Hence, if (Dn)n∈N converges to 0, (xn)n∈N converges to some point in

∩
i∈I Fix(T

(i)) =∩
i∈I Cg(i) .

5.1. Case in which C ∩
∩

i∈I
∩

k∈K C
(i)
k ̸= ∅

Let us first consider Problem 5.1 when the intersection of C and
∩

i∈I
∩

k∈K C
(i)
k

is nonempty.

Table 1: Comparison of proposed algorithms (Algorithms 3.1 and 4.1) with the existing

algorithms (ISM and PSM) when C ∩
∩

i∈I
∩

k∈K C
(i)
k ̸= ∅ (Algorithm(i) (resp. Algo-

rithm(ii)) uses (20) with a = 1/4 and b = 1/2 (resp. a = 1/8 and b = 3/4))

|Fn−1 − Fn| < 10−3 |Dn−1 −Dn| < 10−6

n time [s] Fn n time [s] Dn

Alg.3.1(i) 1850 0.028578 757.573942 1867 0.028840 0.003832
Alg.3.1(ii) 638 0.010049 749.866910 696 0.010949 0.003741
Alg.4.1(i) 1186 0.018333 749.866177 40 0.000665 0.000590
Alg.4.1(ii) 643 0.010307 749.641208 32 0.000555 0.001088
ISM(i) 1182 0.020897 749.870305 40 0.000781 0.000590
ISM(ii) 635 0.011474 749.649724 139 0.002594 0.002777
PSM(i) ≥ 2000 0.035836 761.479481 410 0.007589 0.000284
PSM(ii) ≥ 2000 0.035874 755.881753 331 0.006216 0.000697

Table 1 shows the number of iterations n and elapsed time when the
algorithms (Algorithms 3.1 and 4.1, ISM, and PSM) satisfied |Fn−1 − Fn| <
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10−3 and |Dn−1 − Dn| < 10−6. As shown, the (Fn)n∈N generated by the
incremental algorithms (Alg.3.1(ii), Alg.4.1(ii), and ISM(ii)) using (20) with
a = 1/8 and b = 3/4 converged faster than those (Alg.3.1(i), Alg.4.1(i),
and ISM(i)) using a = 1/4 and b = 1/2. Slowly diminishing step sizes
such as γn = 10−3/(n + 1)1/8 apparently affect the fast convergence of the
algorithms. The number of iterations when PSM satisfied |Fn−1 − Fn| <
10−3 was more than 2000, and PSM converged slowly compared with the
incremental algorithms. The (Dn)n∈N generated by all of the algorithms
converged to 0; i.e., the algorithms converged to a point in the constrained
set in Problem 5.1. Alg.4.1(i) and ISM(i) performed better than Alg.3.1(i)
and PSM(i), and Alg.3.1(ii), Alg.4.1(ii), and ISM(ii) had almost the same
performance and converged faster than PSM(ii).

5.2. Case in which C ∩
∩

i∈I
∩

k∈K C
(i)
k = ∅

Next, let us consider Problem 5.1 when the intersection of C and
∩

i∈I
∩

k∈K C
(i)
k

is empty. Here, we assume that all users have the same T (i) to satisfy∩
i∈I Cg(i) =

∩
i∈I Fix(T

(i)) ̸= ∅. Accordingly, we consider the problem of

minimizing
∑

i∈I f
(i) over Cg(i) ̸= ∅, where C ∩

∩
k∈K C

(i)
k = ∅.

Table 2: Comparison of proposed algorithms (Algorithms 3.1 and 4.1) with the existing

algorithms (ISM and PSM) when C ∩
∩

k∈K C
(i)
k = ∅ (Elapsed time of computing x1999 in

PSM(i) (resp. PSM(ii)) was 0.037320 [s] (resp. 0.036403 [s]), and F1999 in PSM(i) (resp.
PSM(ii)) was 977.37171882 (resp. 955.43829899))

|Fn−1 − Fn| < 10−3 |Dn−1 −Dn| < 10−6

n time [s] Fn n time [s] Dn

Alg.3.1(i) 1219 0.020320 847.919647 250 0.004305 0.001109
Alg.3.1(ii) 1419 0.023099 737.425991 82 0.001473 0.001106
Alg.4.1(i) 1347 0.021702 879.651936 67 0.001217 0.000439
Alg.4.1(ii) 1807 0.029254 776.443722 36 0.000708 0.000795
ISM(i) 1348 0.024998 879.602066 43 0.001264 0.000485
ISM(ii) 1803 0.032661 776.644340 29 0.000707 0.000813
PSM(i) 6 0.000250 996.357860 70 0.001550 0.000288
PSM(ii) 6 0.000238 996.326212 65 0.001376 0.000491

Table 2 shows the results for Algorithms 3.1 and 4.1, ISM, and PSM.
Although Alg.3.1(ii), Alg.4.1(ii), and ISM(ii) needed more iterations to sat-
isfy |Fn−1 − Fn| < 10−3 than Alg.3.1(i), Alg.4.1(i), and ISM(i), Alg.3.1(ii),
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Alg.4.1(ii), and ISM(ii) better optimized
∑

i∈I f
(i) than Alg.3.1(i), Alg.4.1(i),

and ISM(i). PSM converged slowly compared with the incremental algo-
rithms, as also seen in Table 1. All the algorithms converged to a point in
Cg(i) in the early stages and, in particular, Alg.3.1(ii) (F1419 ≈ 737), which
is based on the Halpern fixed point algorithm, performed better than the
algorithms based on the Krasnosel’skĭı-Mann fixed point algorithm. This
is because the Halpern fixed point algorithm can minimize a certain con-
vex function over the fixed point set of a nonexpansive mapping while the
Krasnosel’skĭı-Mann fixed point algorithm can only find a fixed point. Since
Problem 5.1 is to minimize a convex function over the fixed point set of a
nonexpansive mapping, Alg.3.1(ii) based on the Halpern algorithm is better
suited for Problem 5.1 than the algorithms based on the Krasnosel’skĭı-Mann
algorithm.

6. Conclusion and future work

The problem of minimizing the sum of all users’ nonsmooth, convex objec-
tive functions over the intersection of all users’ fixed point sets in a Hilbert
space was discussed, and two incremental proximal point algorithms were
presented for solving the problem. One combines an incremental subgradi-
ent method with the Halpern fixed point algorithm, and the other is based on
the Krasnosel’skĭı-Mann fixed point algorithm. Convergence analysis showed
that, under certain assumptions, any weak sequential cluster point of the se-
quence generated by the Halpern-type algorithm is guaranteed to belong to
the solution set of the problem and that there exists a weak sequential cluster
point of the sequence generated by the Krasnosel’skĭı-Mann-type algorithm,
which also belongs to the solution set. Numerical evaluations using concrete,
nonsmooth, convex optimization problems showed the efficiency of the two
algorithms.

Although nonsmooth, convex optimization with fixed point constraints in
a Hilbert space was discussed, the numerically tested problems were defined
in a finite-dimensional space. Future work includes generating numerical
results that have special features of an infinite-dimensional space.

Since the bundle method [11, chapter XIV] is one of the most efficient
methods for solving the problem of minimizing a general nonsmooth function,
it would be of great interest to investigate whether bundle-type algorithms
are well suited for nonsmooth (nonconvex) optimization with fixed point con-
straints. The first step would be to devise bundle-type algorithms for non-
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smooth convex optimization over fixed point sets on the basis of previously
reported results for the bundle method.
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