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Abstract. Convex optimization over fixed point sets has applications such as
network resource allocation and machine learning. In this paper, we present
methods combining the Halpern fixed point approximation method with subgra-
dient methods for solving the problems and their convergence analyses.

1. Introduction

In this paper, we consider a convex optimization problem with fixed point con-
straints of nonexpansive mappings. Solutions to this problem have practical appli-
cations such as network resource allocation [7, 8, 9, 13, 15] and machine learning
[6, 14].

Iterative methods have been presented for solving the problem. Reference [12]
presented incremental proximal methods based on the Krasnosel’skĭı-Mann fixed
point algorithm [16, 17] and the Halpern fixed point algorithm [5, 22]. Reference
[20] presented parallel proximal methods based on the Krasnosel’skĭı-Mann fixed
point algorithm and the Halpern fixed point algorithm. Meanwhile, incremental
and parallel subgradient methods based on the Krasnosel’skĭı-Mann fixed point
algorithm were presented in [10, 11].

In this paper, we present incremental and parallel optimization methods com-
bining the Halpern fixed point algorithm with subgradient methods for solving the
problem and their convergence analyses.

This paper is organized as follows. Section 2 gives the mathematical preliminar-
ies. Section 3 considers the problem of minimizing the sum of convex functions over
the intersection of nonexpansive mappings and presents incremental and parallel
subgradient methods for solving the problem together with their convergence anal-
yses. Section 4 concludes the paper with a brief summary and mention of future
work.

2. Mathematical Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and its induced norm ∥ · ∥
and Id denote the identity mapping on H. Let N denote the set of all positive
integers including zero and R denote the set of all real numbers.
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The subdifferential [1, Definition 16.1], [18, Section 23] of a convex function
f : H → R is defined for all x ∈ H by ∂f(x) := {u ∈ H : f(y) ≥ f(x)+⟨y−x, u⟩ (y ∈
H)}. A point u ∈ ∂f(x) is called the subgradient of f at x ∈ H. A : H ⇒ H is
said to be inverse-strongly monotone (α-inverse-strongly monotone) [3, Definition,
p.200] (see [1, Definition 4.4], [4, Definition 2.3.9(e)] for the definition of this oper-
ator, which is called a cocoercive operator) if there exists α > 0 such that, for all
x, y ∈ H, for all u ∈ A(x), and for all v ∈ A(y), ⟨x− y, u− v⟩ ≥ α∥u− v∥2.

T : H → H is said to be Lipschitz continuous (L-Lipschitz continuous) if there
exists L > 0 such that ∥T (x) − T (y)∥ ≤ L∥x − y∥ for all x, y ∈ H. T is said to
be nonexpansive [1, Definition 4.1(ii)] if T is 1-Lipschitz continuous, i.e., ∥T (x) −
T (y)∥ ≤ ∥x−y∥ for all x, y ∈ H. The metric projection [1, Subchapter 4.2, Chapter
28] onto a nonempty, closed convex set C (⊂ H), denoted by PC , is defined for all
x ∈ H by PC(x) ∈ C and ∥x − PC(x)∥ = d(x,C) := infy∈C ∥x − y∥. PC is firmly
nonexpansive, i.e., ∥PC(x)− PC(y)∥2 + ∥(Id− PC)(x)− (Id− PC)(y)∥2 ≤ ∥x− y∥2
for all x, y ∈ H, with Fix(PC) = C [1, Proposition 4.8, (4.8)], where Fix(T ) is the
fixed point set of a mapping T defined by Fix(T ) := {x ∈ H : x = T (x)}.

The following is the Halpern fixed point approximation method [5, 22] for finding
a fixed point of a nonexpansive mapping T : H → H: for all n ∈ N,

xn+1 := αnx0 + (1− αn)T (xn),(2.1)

where x0 ∈ H and (αn)n∈N ⊂ (0, 1]. The sequence (xn)n∈N generated by (2.1) with
(αn)n∈N satisfying limn→+∞ αn = 0 and

∑+∞
n=0 αn = +∞ converges strongly to the

minimizer of ∥ · −x0∥2 over Fix(T ) [2, Theorem 6.19].
Thanks to [19, Proposition 12.60] and [1, Theorem 18.15], we have the following

proposition.

Proposition 2.1. Let f : H → R be convex and continuous. Then, the following
properties are equivalent:

(i) ∂f is (1/L)-inverse-strongly monotone;
(ii) f is Fréchet differentiable and ∇f is L-Lipschitz continuous.

3. Subgradient Methods

In this paper, we consider the following problem (see also [11, Problem 2.1] and
[12, Problem 2.1]):

Problem 3.1.

Minimize f(x) :=
∑
i∈I

fi(x) subject to x ∈
∩
i∈I

Fix(Ti),

where we assume that

(A1) Ti : H → H (i ∈ I := {1, 2, . . . , I}) is firmly nonexpansive with
∩

i∈I Fix(Ti) ̸=
∅;

(A2) fi : H → R is convex and continuous with dom(fi) := {x ∈ H : fi(x) <
+∞} = H, ∂fi : H ⇒ H (i ∈ I) is (1/L)-inverse-strongly monotone, and
the subgradient of fi at any x ∈ H can be efficiently computed.
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Algorithm 1 Incremental subgradient method for solving Problem 3.1

Require: (αn)n∈N ⊂ (0, 1], (λn)n∈N ⊂ (0,+∞)
1: n← 0, x0 = x0,0 ∈ H, x̄i ∈ H (i ∈ I)
2: loop
3: for i = 1, 2, . . . , I do
4: gn,i ∈ ∂fi(xn,i−1)
5: yn,i := Ti(xn,i−1 − λngn,i)
6: xn,i := αnx̄i + (1− αn)yn,i
7: end for
8: xn+1 = xn,I = xn+1,0

9: n← n+ 1
10: end loop

We present the following subgradient method based on the Halpern fixed point
approximation method (2.1) (step 6 in Algorithm 1) for solving Problem 3.1.

Consider a network system with I users and suppose that user i has its own
private objective function fi and firmly nonexpansive mapping Ti. Furthermore,
assume that user i can communicate with user (i− 1), where user 0 is user I. This
implies that user i can use xn,i−1, which is computed by user (i − 1). Since user i
tries to minimize fi over Fix(Ti), user i computes yn,i = Ti(xn,i−1 − λngn,i) (step
5 in Algorithm 1) using xn,i−1 and gn,i ∈ ∂fi(xn,i−1). User i then computes xn,i =
αnx̄i + (1−αn)yn,i (step 6 in Algorithm 1) to find a fixed point of Ti. Accordingly,
each user in the network system can implement Algorithm 1. Problem 3.1 in such
a network system includes network resource allocation [9, 13] and machine learning
[6, 14].

We assume the following:

Assumption 3.2. The decreasing sequences (αn)n∈N and (λn)n∈N converge to 0
and satisfy the following conditions1:

(C1)

+∞∑
n=0

αn = +∞, (C2) lim
n→+∞

1

αn+1

∣∣∣∣ 1

λn+1
− 1

λn

∣∣∣∣ = 0, (C3) lim
n→+∞

αn

λn
= 0,

(C4) lim
n→+∞

1

λn+1

∣∣∣∣1− αn

αn+1

∣∣∣∣ = 0, (C5)
λn

λn+1
≤ σ for some σ ≥ 1.

Moreover, (yn,i)n∈N (i ∈ I) is bounded2.

The following is a convergence analysis of Algorithm 1.

Proposition 3.3. Consider Problem 3.1 and suppose that Assumption 3.2 holds.
Then, any weak sequential cluster point of the sequence (xn,i)n∈N (i ∈ I) generated
by Algorithm 1 belongs to the solution set of Problem 3.1.

1Examples of (λn)n∈N and (αn)n∈N are λn = 1/(n+1)a and αn = 1/(n+1)b, where a ∈ (0, 1/2)
and b ∈ (a, 1− a).

2See the discussion in [9, Assumption 3.2] for examples satisfying the boundedness of (yn,i)n∈N
(i ∈ I).
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Proof. Assumptions (A1), (A2), and 3.2 and Proposition 2.1 imply that the as-
sumptions in [9, Lemma 3.2] hold. Accordingly, the proof of [9, Lemma 3.2] ensures
that

lim
n→+∞

∥xn − Ti(xn)∥ = 0 (i ∈ I) and lim sup
n→+∞

f(xn) ≤ f⋆,

where f⋆ is the optimal value of Problem 3.1. Let x⋆ be any weak sequential
cluster point of (xn)n∈N. Then, there exists a subsequence (xnk

)k∈N of (xn)n∈N
which converges weakly to x⋆. From limn→+∞ ∥xn − Ti(xn)∥ = 0 (i ∈ I) (see also
the proof of [9, Lemma 3.2]), we have that x⋆ ∈

∩
i∈I Fix(Ti). Moreover, from

lim supn→+∞ f(xn) ≤ f⋆ and the continuity of f , we have

f(x⋆) ≤ lim inf
k→+∞

f(xnk
) ≤ lim sup

k→+∞
f(xnk

) ≤ lim sup
n→+∞

f(xn) ≤ f⋆,

which implies that x⋆ is a solution of Problem 3.1. Here, let j ∈ {1, 2, . . . , I − 1}
be fixed arbitrarily and let x∗j be any weak sequential cluster point of (xn,j)n∈N.

Then, there exists a subsequence (xnl,j)l∈N of (xn,j)n∈N which converges weakly to
x∗j . From limn→+∞ ∥xn−xn,i−1∥ = 0 (i ∈ I) (see [9, Lemma 3.2(iii)]), we have that

(xnl
)l∈N weakly converges to x∗j . A discussion similar to the one for showing that

x⋆ is a solution of Problem 3.1 guarantees that x∗j is also a solution of Problem 3.1.
This completes the proof. □

Next, we present the following algorithm.

Algorithm 2 Parallel subgradient method for solving Problem 3.1

Require: (αn)n∈N ⊂ (0, 1], (λn)n∈N ⊂ (0,+∞)
1: n← 0, x0 ∈ H, x̄i ∈ H (i ∈ I)
2: loop
3: for i = 1, 2, . . . , I do
4: gn,i ∈ ∂fi(xn)
5: yn,i := Ti(xn − λngn,i)
6: xn,i := αnx̄i + (1− αn)yn,i
7: end for

8: xn+1 =
1

I

∑
i∈I

xn,i

9: n← n+ 1
10: end loop

Consider a network system with I users and suppose that user i has its own
private objective function fi and firmly nonexpansive mapping Ti. We also assume
the existence of the operator managing the network system. This implies that the
operator can use xn,i, which is computed by user i and that each user knows xn
transmitted from the operator. Since user i tries to minimize fi over Fix(Ti), user i
computes yn,i = Ti(xn−λngn,i) (step 5 in Algorithm 2) using xn and gn,i ∈ ∂fi(xn).
User i then computes xn,i = αnx̄i + (1 − αn)yn,i (step 6 in Algorithm 2) to find
a fixed point of Ti. The operator can compute xn+1 = (1/I)

∑
i∈I xn,i, since the

operator knows all of xn,i (step 8 in Algorithm 2). Accordingly, the operator and
each user in the network system can implement Algorithm 2. Problem 3.1 in such
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a network system with an operator includes storage allocation [15]. Reference [21]
researched the actual computation times of parallel and incremental subgradient
methods by using parallel computing on multi-core processors for a concrete convex
optimization problem.

The following is a convergence analysis of Algorithm 2.

Proposition 3.4. Consider Problem 3.1 and suppose that Assumption 3.2 holds.
Then, any weak sequential cluster point of the sequence (xn)n∈N generated by Algo-
rithm 2 belongs to the solution set of Problem 3.1.

Proof. Assumptions (A1), (A2), and 3.2 and Proposition 2.1 imply that the as-
sumptions in [9, Lemma 4.2] hold. Accordingly, [9, Lemma 4.2(iii), (4.8)] ensures
that

lim
n→+∞

∥xn − Ti(xn)∥ = 0 (i ∈ I) and lim sup
n→+∞

f(xn) ≤ f⋆,

where f⋆ is the optimal value of Problem 3.1. A discussion similar to the one
showing that x⋆ is a solution of Problem 3.1 (the proof of Proposition 3.3) leads to
the assertion in Proposition 3.4. □

4. Conclusion and Future Work

This paper presented two subgradient methods, based on the Halpern fixed point
approximation method, for solving the problem of minimizing the sum of convex
functions over the intersection of fixed point sets of nonexpansive mappings in a real
Hilbert space. It also presented their convergence analyses under the condition that
the subdifferential of each convex function is inverse-strongly monotone. Since the
condition implies that each convex function has the Lipschitz gradient, it would be
strong. Accordingly, we should develop Halpern-type subgradient methods without
assuming this condition.
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