
Optimality and Convergence for Convex Ensemble

Learning with Sparsity and Diversity based on Fixed

Point OptimizationI

Yoichi Hayashia,∗, Hideaki Iidukab

aDepartment of Computer Science, Meiji University, Tama-ku, Kawasaki, Kanagawa
214-8571, Japan.

bDepartment of Computer Science, Meiji University, Tama-ku, Kawasaki, Kanagawa
214-8571, Japan.

Abstract

This paper discusses the classifier ensemble problem with sparsity and di-
versity learning, which is a central issue in machine learning. The current
approach for reducing the size and increasing the accuracy of a classifier en-
semble is to formulate it as a convex quadratic programming problem, which
is a relaxation problem, and then solve it by using the existing methods for
convex quadratic programming or by computing closed-form solutions. This
paper presents a novel computational approach for solving the classifier en-
semble problem with sparsity and diversity learning without any recourse
to relaxation problems and their associated methods. We first show that
the classifier ensemble problem can be expressed as a minimization prob-
lem for the sum of certain convex functions over the intersection of fixed
point sets of quasi-nonexpansive mappings. Next, we propose fixed point
optimization algorithms for solving the minimization problem and show that
the algorithms converge to the solution of the minimization problem. It is
shown that the proposed algorithms can directly solve the classifier ensem-
ble problem with sparsity and diversity learning. Finally, we compare the

IThis work was supported in part by the International Collaborative Research Project
supported by Meiji University, and in part by the Japan Society for the Promotion of
Science through a Grant-in-Aid for Scientific Research (C) (15K04763).

∗Corresponding author
Email addresses: hayashiy@cs.meiji.ac.jp (Yoichi Hayashi),

iiduka@cs.meiji.ac.jp (Hideaki Iiduka)

Preprint submitted to Neurocomputing August 17, 2017

performance of the proposed sparsity and diversity learning methods against
an existing method in classification experiments using data sets from the
UCI machine learning repository and the LIBSVM. The experimental re-
sults show that the proposed methods have higher classification accuracies
than the existing method.

Keywords: convex ensemble learning, incremental subgradient method,
fixed point, quasi-nonexpansive mapping
2000 MSC: 65K05, 68Q32, 90C25

1. Introduction

Methods for selecting classifiers to be combined in an ensemble have been
gaining attention in the literature. When classifiers are aggregated, the re-
sulting ensemble will generally perform better than any individual compo-
nent [27]. Techniques such as bagging [5] and boosting [21] have been used
extensively; however, although these methods are effective, they can be com-
putationally expensive, particularly when using unlabeled test data.

A crucial factor when constructing an ensemble is the diversity and ac-
curacy of the individual classifiers. If individual classifiers in a set are highly
correlated, then there will be little improvement in the accuracy by creating
an ensemble from them [26]. It is thus desirable to select diverse classifiers
to improve the accuracy. Methods for pruning ensembles have been devel-
oped to reduce their size while increasing their accuracy [18]. The resulting
ensembles are called pruned or sparse ensembles.

In the unordered bagging algorithm, the generalization error typically de-
creases with the inclusion of additional classifiers, which favors larger ensem-
ble sizes. In [18], it was shown that by modifying the ordering of aggregation
in the bagging algorithm, the generalization error can be minimized using
an intermediate number of variables. This is in agreement with similar stud-
ies on neural networks which found it may be better to create an ensemble
from a subset, instead of using all of the available networks [28]. Linear
programming methods have also been proposed to sparsely combine multi-
ple classifiers using a sparse weight vector [26]. Ideally, a sparse model will
be more computationally efficient as well as having a better generalization
performance.

The above ensemble classifier algorithms have been developed to optimize
diversity and sparsity independently. However, algorithms which combine

2

these objectives are clearly preferable. A number of methods have been
proposed to meet both of these objectives simultaneously. Examples include
pruning the error correcting output code by utilizing diversity and accuracy
information simultaneously [19], or using ordered aggregation to measure
each base classifier’s accuracy for a given problem [29]. For some ensembles,
it was shown that using a small subset of the original members could improve
the generalization performance [29]. Studies have also investigated how to
simultaneously optimize both diversity and sparsity for ensembles of neural
networks using a multiobjective approach, e.g., [7, 8].

Alternatively, the ensemble subset selection problem can be treated as a
quadratic integer programming problem, where the solution is obtained us-
ing a semi-definite programming technique. This approach has been shown
to outperform the heuristic methods in the literature in computational ex-
periments [27]. An example of such an approach was presented in Kim et
al. [16]. A meta-evolutionary approach, called evolutionary pruning, was
developed to optimize ensembles, rather than create an ensemble of individ-
ually optimized members. This method used a Bayesian approach, where the
ensemble size is specified in advance, and then ensembles competed based on
their predictive performance [16]. Using this approach, both diversity and
accuracy could be optimized.

A related approach for optimizing both sparsity and diversity was devel-
oped in [23]. The optimization of the sparsity and diversity was formulated
as a complex quadratic problem, where errors were minimized with a least
squares function. This was a relaxation problem for the selection of ensem-
ble members, where diversity was measured using Yule’s Q statistic. This
method was found to perform favorably in a number of different aspects com-
pared to other algorithms, such as the bagging algorithm [23]. This work was
extended in [24], by introducing a penalty for sparsity and diversity.

This study proposes a new approach for the classifier ensemble problem,
with sparsity and diversity learning, without recourse to relaxation problems
and their related methods.

The approach presented here uses fixed point theory for nonexpansive
mappings [1], [10, Chapter 3], [11, Chapter 1]. Here, classifier ensemble
optimization is expressed as a minimization problem for the sum of certain
convex functions over the intersection of fixed point sets of certain quasi-
nonexpansive mappings. Fixed point optimization algorithms [14] (see also
[12, 13, 15]) are used to solve this minimization problem and the iterations
of the algorithm are shown to converge. This convergence guarantees that

3

the algorithms can optimize the classifier ensemble in terms of sparsity and
diversity learning.

This paper is organized as follows. Section 2 introduces the relevant the-
ory and definitions and expresses the classifier ensemble problem as a convex
optimization problem over fixed point constraints. Section 3 proposes meth-
ods for solving the convex optimization problem and shows that the algorithm
converges with diminishing step size. Section 4 presents numerical experi-
ments using the UCI classification and LIBSVM data sets and compares the
performances of the proposed methods with the method proposed in [24].
Section 5 summarizes the key findings and conclusions of this paper.

2. Mathematical Preliminaries

Let XT denote the transpose of a matrix X. Let RN be an N -dimensional
Euclidean space with inner product ⟨·, ·⟩ and induced norm ∥ · ∥, and let
RN

+ := {(xi)
N
i=1 : xi ≥ 0 (i = 1, 2, . . . , N)}. Let N denote the set of all

positive integers including zero. The identity mapping on RN is denoted by
Id.

2.1. Convexity and subdifferentiability

A function f : RN → R is said to be strictly convex [4, Definition 8.6] if,
for all α ∈ (0, 1) and for all x, y ∈ RN , x ̸= y implies f(αx + (1 − α)y) <
αf(x) + (1− α)f(y). The subdifferential [4, Definition 16.1], [20, Section 23]
of a convex function f : RN → R at x ∈ RN is

∂f(x) :=
{
z ∈ RN : f(y) ≥ f(x) + ⟨y − x, z⟩

(
y ∈ RN

)}
.

If f : RN → R is convex and differentiable, then ∂f(x) = {∇f(x)} (x ∈ RN)
[4, Proposition 17.26]. Suppose that f is differentiable; then, f is strictly
convex if and only if ∇f is strictly monotone; i.e., ⟨x−y,∇f(x)−∇f(y)⟩ > 0
(x, y ∈ RN with x ̸= y) [25, Proposition 25.10].

2.2. Quasi nonexpansivity and fixed-point closedness

The fixed point set of Q : RN → RN is denoted by

Fix(Q) :=
{
x ∈ RN : Q(x) = x

}
.

Q is said to be quasi-nonexpansive [4, Definition 4.1(iii)] if ∥Q(x) − y∥ ≤
∥x − y∥ for all x ∈ RN and for all y ∈ Fix(Q). When a quasi-nonexpansive

4

mapping has one fixed point, its fixed point set is closed and convex [3,
Proposition 2.6]. R : RN → RN is called a quasi-firmly nonexpansivemapping
[2, Section 3] if a quasi-nonexpansive mapping Q : RN → RN exists such that
R = (1/2)(Id + Q). Q is nonexpansive if ∥Q(x) − Q(y)∥ ≤ ∥x − y∥ for all
x, y ∈ RN . R is said to be firmly nonexpansive if there exists a nonexpansive
mapping Q such that R = (1/2)(Id +Q).

Let f0 : RN → R be a convex function with lev≤0f0 := {x ∈ RN : f0(x) ≤
0} ̸= ∅. Then ∂f0(x) (x ∈ RN) has a point, and the subgradient of f0 at x
can be denoted by f ′

0(x) ∈ ∂f0(x). The subgradient projection relative to f0
[3, Proposition 2.3], [22, Subchapter 4.3] is defined for all x ∈ RN by

Qf0
sp(x) :=

x− f0(x)

∥f ′
0(x)∥2

f ′
0(x) if f0(x) > 0,

x otherwise.

The metric projection onto a nonempty, closed convex subset C of RN , de-
noted by PC , is defined by PC(x) ∈ C and ∥x− PC(x)∥ = infy∈C ∥x− y∥.

Q : RN → RN is said to be fixed-point closed [2, Lemma 2.1] if x ∈
Fix(Q) whenever (xn)n∈N ⊂ RN is such that limn→∞ xn = x ∈ RN and
limn→∞ ∥xn −Q(xn)∥ = 0.

Proposition 2.1. Suppose that f0 : RN → R is convex with lev≤0f0 ̸= ∅ and
C ⊂ RN is nonempty, closed, and convex. Then, the following hold.

(i) [2, Lemma 3.1], [3, Proposition 2.3], [22, Subchapter 4.3] Qf0
sp satisfies

the quasi-firm nonexpansivity and fixed-point closedness conditions and
Fix(Qf0

sp) = lev≤0f0.

(ii) [4, (4.8), Proposition 4.8] PC satisfies the firm nonexpansivity condition
and Fix(PC) = C.

Proposition 2.1(ii) ensures that PC is nonexpansive. Accordingly, if (xn)n∈N
converges to x ∈ RN , we have lim supn→∞ ∥PC(xn)−PC(x)∥ ≤ limn→∞ ∥xn−
x∥ = 0; i.e., PC is continuous.

2.3. Main problem

First, we outline the mathematical model for a classifier ensemble [23,
Section 2], [24, Section 3]. In ensemble learning for classification problems,
each instance a is associated with a label y. It is assumed that there are

5

N different classifiers (hn)Nn=1 for classifying a into K classes. For a pro-
cess instance a, each classifier hn (n = 1, 2, . . . , N) outputs a discriminant
measure xn := hn(a); i.e., we have x := (xn)Nn=1 ∈ RN . The final classifi-
cation for a is determined with the classifier ensemble after the outputs of
multiple classifiers are fused to give the combined class similarity measures.
A weighted measure [23, (1)], [24, (1)] is computed for each instance a by
H(a) :=

∑N
n=1 w

nxn = ⟨w, x⟩, where wn ∈ R (n = 1, 2, . . . , N) is the weight
for the nth classifier and w := (wn)Nn=1 ∈ RN .

For a sample set ((am, ym))
M
m=1, with M samples and N different clas-

sifiers, we have ((xm, ym))
M
m=1, where xm := (xn

m)
N
n=1 ∈ RN and xn

m ∈ R
(n = 1, 2, . . . , N,m = 1, 2, . . . ,M) is the measure for the nth classifier in
an ensemble and the mth sample in the sample set. The main objective
of the basic learning algorithm for a classifier ensemble is to find the clas-
sifier weights w = (wn)Nn=1 ∈ RN that produce the smallest empirical loss.
Accordingly, the objective of the general optimization problem for obtain-
ing the classifier weights w is to minimize the least squares loss defined by
f(w) := (1/2)

∑M
m=1(⟨w, xm⟩ − ym)

2 (w ∈ RN) over C1 := RN
+ [23, (2), (3)],

[24, (2), (4)].
The aim of sparsity learning [23, Subsection 2.2.2], [24, Subsection 3.2.2]

for combining multiple classifiers is to minimize the function f over the inter-
section of C1 := RN

+ and C2 := {w := (wn)Nn=1 ∈ RN : ∥w∥1 :=
∑N

n=1 |wn| ≤
t1}, where t1 is the sparsity control parameter. This implies the classi-
fier weights for sparsity learning are learned by incorporating the l1-norm
∥ · ∥1. Meanwhile, the aim of diversity learning [24, Subsections 3.2.3 and
4.1] is to minimize the function f over the intersection of C1 := RN

+ and

C3 := {w ∈ RN : fdiv(w) :=
∑M

m=1{⟨[xm], w⟩ − ⟨xm, w⟩2} ≥ t2}, where
[xm] := ((xn

m)
2)Nn=1 = ((x1

m)
2, (x2

m)
2, . . . , (xN

m)
2)T ∈ RN and t2 is the diver-

sity control parameter. See (12)–(14) in [24] for a detailed derivation of the
ensemble diversity measure fdiv.

From the above discussion, this paper considers the following classifier
ensemble problem with sparsity and diversity learning [23, (10)], [24, (15)].

Problem 2.1. Given vectors xm := (xn
m)

N
n=1 = (x1

m, x
2
m, . . . , x

N
m)

T ∈ RN with
xn
m ̸= 0 (n = 1, 2, . . . , N,m = 1, 2, . . . ,M) and ym ∈ R (m = 1, 2, . . . ,M),

and ti > 0 (i = 1, 2), let [xm] := ((xn
m)

2)Nn=1 = ((x1
m)

2, (x2
m)

2, . . . , (xN
m)

2)T ∈

6

RN . Then,

minimize f(w) :=
1

2

M∑
m=1

(⟨w, xm⟩ − ym)
2 subject to w ∈ C1 ∩ C2 ∩ C3,

where each Ci (i = 1, 2, 3) is a nonempty, closed convex set defined as follows.

C1 := RN
+ ,

C2 :=

{
w := (wn)Nn=1 ∈ RN : ∥w∥1 :=

N∑
n=1

|wn| ≤ t1

}
,

C3 :=

{
w ∈ RN :

M∑
m=1

{
⟨[xm], w⟩ − ⟨xm, w⟩2

}
≥ t2

}
.

The existing approach [23, 24] for the classifier ensemble problem is to
formulate Problem 2.1 as the following relaxation problem [24, (16)],

minimize f(w) + ᾱ∥w∥1 − β̄

M∑
m=1

{
⟨[xm], w⟩ − ⟨xm, w⟩2

}
subject to w ∈ C1,

(2.1)

where ᾱ and β̄ are control parameters for sparsity regularization and diversity
calculation, and then solve the above problem using the existing methods for
convex quadratic programming or by computing closed-form solutions. From
[24, (18)], the closed-form solution w∗ to the relaxation problem (2.1) is

w∗⊤ :=
1

1 + 2β̄

(
M∑

m=1

(
ymxm + β̄[xm]

)
− ᾱI

)⊤(M∑
m=1

(
xmx

⊤
m

))−1

, (2.2)

where I := (1, 1, . . . , 1)⊤ ∈ RN . In this paper, we propose fixed point opti-
mization algorithms for solving Problem 2.1 without any recourse to relax-
ation problems and their associated methods.

Here, let us define a function f̄m : RN → R (m = 1, 2, . . . ,M) for all
w ∈ RN by f̄m(w) := (⟨xm, w⟩ − ym)

2. Then, ∇f̄m(w) = 2(⟨xm, w⟩ − ym)xm

(m = 1, 2, . . . ,M). Accordingly, for all w1, w2 ∈ RN where w1 ̸= w2,⟨
w1 − w2,∇f̄m(w1)−∇f̄m(w2)

⟩
= 2 ⟨w1 − w2, (⟨xm, w1⟩ − ym)xm − (⟨xm, w2⟩ − ym)xm⟩
= 2 ⟨w1 − w2, ⟨w1 − w2, xm⟩xm⟩
= 2 ⟨w1 − w2, xm⟩2 ,

7

which, together with xn
m ̸= 0 (n = 1, 2, . . . , N), implies that ∇f̄m (m =

1, 2, . . . ,M) satisfies the strict monotonicity condition; i.e.,

f(·) := 1

2

M∑
m=1

(⟨·, xm⟩ − ym)
2 =

1

2

M∑
m=1

f̄m is strictly convex. (2.3)

Next, we show that each Ci (i = 1, 2, 3) can be expressed as the fixed point
of a certain nonexpansive mapping. From Proposition 2.1(ii),

PC1 is firmly nonexpansive and continuous with Fix (PC1) = C1. (2.4)

It is obvious from the definitions of firmly nonexpansive and quasi-firmly
nonexpansive mappings that PC1 is quasi-firmly nonexpansive. PC1 can be
easily computed within a finite number of arithmetic operations [4, Subchap-
ter 28.3]. Define f0(w) := ∥w∥1− t1 (w ∈ RN), then f0 satisfies the convexity
and nonsmoothness conditions and C2 = lev≤0f0 ̸= ∅. Proposition 2.1(i)
thus implies that

Qf0
sp is quasi-firmly nonexpansive and fixed-point closed with Fix

(
Qf0

sp

)
= C2.

(2.5)

Since the subgradient of f0 := ∥ · ∥1− t1 at any point in RN can be efficiently
calculated [4, Example 16.25], it is easy to compute Qf0

sp. We define a function

g0 : RN → R for all w ∈ RN by g0(w) := t2 −
∑M

m=1{⟨[xm], w⟩ − ⟨xm, w⟩2}.
Then, g0 is convex and differentiable with C3 = lev≤0g0. Hence,

Qg0
sp is quasi-firmly nonexpansive and fixed-point closed with Fix

(
Qg0

sp

)
= C3.

(2.6)

Qg0
sp can then be computed from the closed-form expression of ∇g0.
We now discuss the following convex optimization problem over the in-

tersection of fixed point sets of quasi-nonexpansive mappings.

Problem 2.2. Suppose that fi : RN → R is strictly convex and Qi : RN →
RN (i ∈ I := {1, 2, . . . , I}) is quasi-firmly nonexpansive and fixed-point
closed. Our objective is to

find w⋆ ∈ W ⋆ :=

{
w⋆ ∈ W :=

∩
i∈I

Fix(Qi) :
∑
i∈I

fi (w
⋆) = inf

w∈W

∑
i∈I

fi(w)

}
,

where one assumes that W ⋆ ̸= ∅.

8

Under W ⋆ ̸= ∅, the strict convexity of f leads to the uniqueness of the
solution to Problem 2.2 [25, Corollary 25.15].

Here, we show that Problem 2.1 is contained within Problem 2.2. From
(2.4), (2.5), and (2.6), Q1 := PC1 , Q2 := Qf0

sp, and Q3 := Qg0
sp are quasi-firmly

nonexpansive and fixed-point closed with
∩3

i=1Ci =
∩3

i=1 Fix(Qi). Define
Q̄ : RN → RN and Q : RN → RN by

Q̄ :=
3∑

i=1

ωiQi and Q :=
1

2

(
Id + Q̄

)
, (2.7)

where ωi > 0, (i = 1, 2, 3) satisfies
∑3

i=1 ωi = 1. Then, Q̄ is quasi-nonexpansive
and Q := (1/2)(Id+Q̄) is quasi-firmly nonexpansive with Fix(Q) = Fix(Q̄) =∩3

i=1 Fix(Qi) [4, Exercise 4.11]. Furthermore, Q satisfies the fixed-point
closedness condition. Therefore, we can conclude that Problem 2.1 is equiv-
alent to the problem of minimizing the strictly convex function defined by
(2.3) over the fixed point set of the quasi-firmly nonexpansive mapping Q
defined by (2.7); i.e.,

Problem 2.1 is a special case of Problem 2.2 when I = 1. (2.8)

Let us divide f defined by (2.3) into

f =
3∑

i=1

ωif =
3∑

i=1

fi. (2.9)

Since f defined by (2.3) is strictly convex, fi := ωif (i = 1, 2, 3) is also
strictly convex. Therefore, we can conclude that Problem 2.1 is equivalent
to the problem of minimizing the strictly convex function defined by (2.9)
over the intersection of the fixed point sets of the quasi-firmly nonexpansive
mappings Q1 := PC1 , Q2 := Qf0

sp, and Q3 := Qg0
sp defined by (2.4), (2.5), and

(2.6); i.e.,

Problem 2.1 is a special case of Problem 2.2 when I = 3. (2.10)

3. Fixed Point Optimization Algorithms

3.1. Convergence analysis of the algorithm for Problem 2.2 when I = 1

Let us consider Problem 2.2 when I := 1, i.e., the problem of minimizing
a strictly convex function f over the fixed point set of a quasi-firmly nonex-
pansive and fixed-point closed mapping Q. The relationship (2.8) between

9

Problems 2.1 and 2.2 guarantees that Problem 2.2, when I := 1, includes
Problem 2.1.

The following algorithm [14, Algorithm 3.1] is for solving Problem 2.2
when I := 1.

Algorithm 3.1.

Step 0. Choose w0 ∈ RN arbitrarily, set α ∈ (0, 1) and (λn)n∈N ⊂ (0,∞),
and define Qα := αId + (1− α)Q.

Step 1. Compute wn+1 ∈ RN by

wn+1 := Qα (wn)− λngn, where gn ∈ ∂f (Qα(wn)) .

Set n := n+ 1 and return to Step 1.

The following is a convergence analysis of Algorithm 3.1. Proposition 3.1
can be proved from [14, Theorem 3.2] (proof omitted).

Proposition 3.1. Suppose that (wn)n∈N generated by Algorithm 3.1 is bounded
and (λn)n∈N satisfies limn→∞ λn = 0 and

∑∞
n=0 λn = ∞. Then, (wn)n∈N con-

verges to the solution of Problem 2.2 when I := 1.

Let us apply Algorithm 3.1 to Problem 2.1. Since f in Problem 2.1 is
strictly convex and differentiable (see also (2.3)) and Q in Problem 2.1 is
defined by (2.7), Algorithm 3.1 can be applied to Problem 2.1 in the form

Qα(wn) = αwn + (1− α)
1

2

(
wn + ω1PRN

+
(wn) + ω2Q

f0
sp(wn) + ω3Q

g0
sp(wn)

)
,

wn+1 := Qα(wn)− λn∇f (Qα(wn)) (n ∈ N).
(3.1)

To ensure the boundedness of (wn)n∈N generated by Algorithm 3.1, the algo-
rithm can be modified as follows.

wn+1 := PK [Qα(wn)− λn∇f (Qα(wn))] (n ∈ N), (3.2)

where K ⊂ RN is bounded, closed, and convex and PK can be easily com-
puted. Since C2 is bounded, we can choose a closed ball K (⊃ C2) with a
large enough radius (see [14, Assumption 3.2] for the details of the modi-
fication of Algorithm 3.1). Therefore, Proposition 3.1 guarantees that the

10

sequence (wn)n∈N generated by Algorithm (3.2) converges to the solution of
Problem 2.1.

The following proposition is required to determine the rate of convergence
of Algorithm 3.1 (Algorithms (3.1) and (3.2)). We omit the details but
Proposition 3.2 can be proved from [14, Corollary 3.2].

Proposition 3.2. Suppose that the assumptions in Proposition 3.1 hold,
w⋆ ∈ W ⋆ is the unique solution to Problem 2.2, and λn := 1/(n + 1) for all
n ∈ N. If there exists β > 0 such that α > β2/(β2 + 2) and d(wn,W) :=
∥wn − PW (wn)∥ ≤ β∥wn −Qα(wn)∥ for all n ∈ N and if (∥wn −Q(wn)∥)n∈N
is monotone decreasing,1 Then, for n ∈ N,

∥wn −Q (wn)∥ = O
(

1√
n+ 1

)
and f (wn)− f (w⋆) = O

(
1√
n+ 1

)
.

3.2. Convergence analysis of the algorithm for Problem 2.2 when I > 1

Let us consider Problem 2.2 when I > 1. The expression (2.10) relat-
ing Problems 2.1 and 2.2 guarantees that Problem 2.1 is contained within
Problem 2.2 when I := 3.

We present an incremental subgradient algorithm [14, Algorithm 4.1] for
solving Problem 2.2 when I > 1.

Algorithm 3.2.

Step 0. Choose w0 := w0,0 ∈ RN arbitrarily, set αi ∈ (0, 1) (i ∈ I) and
(λn)n∈N ⊂ (0,∞), and define Qαi

:= αiId + (1− αi)Qi (i ∈ I).

Step 1. Compute wn,i ∈ RN (i ∈ I) by

wn,i := Qαi
(wn,i−1)− λngn,i, where gn,i ∈ ∂fi (Qαi

(wn,i−1)) .

Step 2. Set wn+1 := wn+1,0 := wn,I . The algorithm sets n := n + 1 and
returns to Step 1.

The following proposition shows that Algorithm 3.2 converges to the so-
lution of the main problem (see [14, Theorem 4.2] for a proof).

1In the case where α := 1/2 and Q := (1/(1−α))(PW −αId), β = 1 can be chosen [14,
p.523]. Proposition 3.1 guarantees that (wn)n∈N in Algorithm 3.1 satisfies limn→∞ ∥wn −
Q(wn)∥ = 0.

11

Proposition 3.3. Suppose that (wn,i)n∈N (i ∈ I) generated by Algorithm 3.2
is bounded and (λn)n∈N satisfies limn→∞ λn = 0 and

∑∞
n=0 λn = ∞. Then,

(wn,i)n∈N (i ∈ I) converges to the solution of Problem 2.2.

Algorithm 3.2 for Problem 2.1 is written as

wn := wn,0,

wn,1 := PK

[
PRN

+
(wn,0)− ω1λn∇f

(
PRN

+
(wn,0)

)]
,

Qα2 := α2Id + (1− α2)Q
f0
sp,

wn,2 := PK [Qα2 (wn,1)− ω2λn∇f (Qα2 (wn,1))] ,

Qα3 := α3Id + (1− α3)Q
g0
sp,

wn+1 = wn,3 := PK [Qα3 (wn,2)− ω3λn∇f (Qα3 (wn,2))] (n ∈ N),

(3.3)

where K is a closed ball with a radius large enough to satisfy K ⊃ C2. The
same discussion as in Subsection 3.1 describing the existence of a simple,
bounded, closed, and convex set K leads to the boundedness of (wn,i)n∈N
(i ∈ I). Proposition 3.3 thus guarantees that the sequence (wn,i)n∈N (i ∈ I)
generated by Algorithm (3.3) converges to the solution of Problem 2.1.

Moreover, Algorithm 3.2 can be applied to Problem 2.2 under the follow-
ing conditions: for all m ∈ I = {1, 2, . . . ,M},

fm(w) := f̄m(w) = (⟨xm, w⟩ − ym)
2 (w ∈ RN),

Qm is defined by one of PRN
+
, Qf0

sp, and Qg0
sp.

This implies that Algorithm 3.2 is suitable for use when Problem 2.1 cannot
be solved under centralized control.

The following proposition can be proved from [14, Corollary 4.2] and es-
tablishes the rate of convergence of Algorithm 3.2 (Algorithm (3.3)). See [14,
Subsection 4.3] for the details of the convergence rate analysis for Algorithm
3.2.

Proposition 3.4. Suppose that the assumptions in Proposition 3.3 hold,
w⋆ ∈ W ⋆ is the unique solution to Problem 2.2, and λn := 1/(n + 1) for all
n ∈ N. If there exists βi > 0 such that αi > β2

i /(β
2
i + 2) and d(wn,i−1,W) ≤

βi∥wn,i−1 − Qαi
(wn,i−1)∥ for all n ∈ N and if (∥wn,i−1 − Qi(wn,i−1)∥)n∈N is

monotone decreasing for all i ∈ I, then, for n ∈ N and for all i ∈ I,

∥wn,i−1 −Qi (wn,i−1)∥ = O
(

1√
n+ 1

)
and f (wn)− f (w⋆) = O

(
1√
n+ 1

)
.

12

4. Numerical experiments

This section compares the proposed sparsity and diversity learning meth-
ods with the learning method in [24]. The experiments use the “Adult,”
“Arrhythmia,” “Phishing,” “Sonar,” and “Heart” data sets from the UCI
machine learning repository [9, 17] and the LIBSVM [6]. Information for the
data sets is shown in Table 1. In the experiments, 3-fold cross validation
for the data sets was performed. The base learner was the support vector
machine classifier, and 100 ensembles were constructed by bagging. The ex-
periments used a 13-inch MacBook Air with an Intel(R) Core(TM) i7-5650U
CPU processor, two 4 GB 1600 MHz DDR3 memory modules (the total RAM
is 8 GB), and Mac OS X El Capitan (Version 10.11.6) operating system. The
algorithms used in the experiments were coded in Python 3.5.3.

Table 1: Data sets used for classification

Data set Instances Attributes Classes

Adult 32561 123 2
Arrhythmia 420 278 2
Phishing 11055 68 2
Sonar 208 60 2
Heart 270 13 2

The existing sparsity and diversity learning (SDL) method [24] uses the
closed-form solution w∗ defined by (2.2) for the relaxation problem (2.1), i.e.,

w∗⊤ :=
1

1 + 2β̄

(
M∑

m=1

(
ymxm + β̄[xm]

)
− ᾱI

)⊤(M∑
m=1

(
xmx

⊤
m

))−1

, (4.1)

where ᾱ and β̄ are computed by the grid search algorithm in [24, Figure
2]. When the matrix

∑M
m=1

(
xmx

⊤
m

)
is singular, (

∑M
m=1

(
xmx

⊤
m

)
)−1 in (4.1)

is replaced with the pseudo inverse matrix of
∑M

m=1

(
xmx

⊤
m

)
. Meanwhile,

the proposed SDL methods use the solution w⋆ to Problem 2.1 that can be
computed by Algorithms (3.2) and (3.3). In the experiments, Algorithms
(3.2) and (3.3) were implemented using an initial estimate w0 = 0, α = αi =
1/2 (i = 1, 2, 3), and λn := 10−3/(n + 1) (n ∈ N).2 The stopping condition
for Algorithms (3.2) and (3.3) was n = 1000 or ∥wn − wn−1∥ < 10−2.

2Numerical results in [14, 15] indicate that fixed point algorithms with small step sizes

13

Table 2 shows the classification accuracies for the existing SDL method
[24] and the proposed SDL methods using Algorithms (3.2) and (3.3). The re-
sults indicate that the proposed methods performed better than the existing
method when using (4.1). In particular, compared with the SDL using (4.1),
the classification accuracies were improved by the proposed SDL method
when using Algorithm (3.2) (resp. Algorithm (3.3)) with 50.63%, 12.47%,
1.25%, 14.71%, and 0.75% (resp., 50.61%, 12.47%, 0.54%, 8.82%, and 0.75%)
for the “Adult,” “Arrhythmia,” “Phishing,” “Sonar,” and “Heart” data sets.
The average accuracies of the SDL methods using Algorithms (4.1), (3.2),
and (3.3) were 58.51%, 74.47%, and 73.15%, respectively. Here, we verify
whether the performances of the existing and proposed SDL methods were
different with a t-test. The value of the T.TEST function3 in Microsoft Ex-
cel for Algorithms (4.1) and (3.2) (resp. Algorithms (4.1) and (3.3)) was
0.154975719 (resp. 0.190029206). This implies that the average performance
of the existing SDL method was different from that of the proposed SDL
methods. Therefore, from the results of the t-tests and Table 2, we can
conclude that the proposed SDL methods using Algorithms (3.2) and (3.3)
are superior for solving the classifier ensemble problem with sparsity and
diversity learning.

Table 2: Classification accuracies (%) and elapsed time (sec) for the SDL methods applied
to the data in Table 1.

Alg.(4.1) [24] Alg.(3.2) Alg.(3.3)
Accuracy Time Accuracy Time Accuracy Time

Adult 25.31 4.81 75.94 10.08 75.92 16.58
Arrhythmia 43.65 2.01 56.12 0.14 56.12 0.14
Phishing 90.25 0.83 91.50 1.72 90.79 2.68
Sonar 52.45 0.09 67.16 0.05 61.27 0.07
Heart 80.90 0.02 81.65 0.07 81.65 0.09

When the “Adult,” “Phishing,” and “Heart” data sets were used, the
elapsed time for the SDL method using Algorithm (4.1) was shorter than
the elapsed time for the SDL method using Algorithms (3.2) and (3.3). This

have faster convergence. Hence, the experiments described in this section used λn :=
µ/(n+ 1) with a small positive constant µ.

3https://support.office.com/en-us/article/T-TEST-function-d4e08ec3-c545-485f-962e-
276f7cbed055

14

is because the “Adult,” “Phishing,” and “Heart” data sets have smaller at-
tributes so that (

∑M
m=1(xmx

⊤
m))

−1 in Algorithm (4.1) was efficiently com-
puted. Next, we consider the “Arrhythmia” data set which has larger at-
tributes than the “Adult,” “Phishing,” and “Heart” data sets. The SDL
method using Algorithm (4.1) is time-consuming because Algorithm (4.1)
requires us to compute the inverse of a large matrix. Accordingly, the SDL
methods using Algorithms (3.2) and (3.3) were completed faster than the one
using Algorithm (4.1).

5. Conclusion

Classifier ensembles with sparsity and diversity learning are an area of
active research, from both practical and theoretical viewpoints. The main
contributions of this paper are summarized as follows. We first show that
the classifier ensemble problem can be expressed as a minimization prob-
lem for the sum of specified convex functions over the intersection of fixed
point sets of certain quasi-nonexpansive mappings. Next, we propose fixed
point optimization algorithms and show that they converge to the solution of
the minimization problem. The results suggest that the proposed algorithm
can directly solve the classifier ensemble problem with sparsity and diver-
sity learning. Finally, we compare numerically the proposed sparsity and
diversity learning methods with an existing sparsity and diversity learning
method [24]. The numerical results show that the proposed methods can
provide a more than 50% increase in the classification accuracy, compared to
the existing method.

The present algorithms have a different optimization structure to the
method in Yin et al. [24] with its diversity and sparsity notions. Our results
contribute to the field of ensemble selection by providing better analytical
solutions for diversity and sparsity using their respective objective function
and constraints.

Acknowledgements

We are sincerely grateful to the editors-in-chief, Zidong Wang and Steven
Hoi, the anonymous associate editor, and the two anonymous reviewers for
insightful comments. We also thank Kazuhiro Hishinuma for his input on
the numerical examples.

15

[1] Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving
convex feasibility problems. SIAM Review 38, 367–426 (1996)

[2] Bauschke, H.H., Chen, J.: A projection method for approximating fixed
points of quasi nonexpansive mappings without the usual demiclosedness
condition. Journal of Nonlinear and Convex Analysis 15, 129–135 (2014)

[3] Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence prin-
ciple for Fejér-monotone methods in Hilbert space. Mathematics of
Operations Research 26, 248–264 (2001)

[4] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Op-
erator Theory in Hilbert Spaces. Springer (2011)

[5] Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

[6] Chang, C.C., Lin, C.J.: LIBSVM : a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology 2, 1–27 (2011)
URL https://www.csie.ntu.edu.tw/~cjlin/libsvm/

[7] Chen, H., Tino, P., Yao, X.: Predictive ensemble pruning by expectation
propagation. IEEE Transactions on Knowledge and Data Engineering
21, 999–1013 (2009)

[8] Chen, H., Yao, X.: Multiobjective neural network ensembles based on
regularized negative correlation learning. IEEE Transactions on Knowl-
edge and Data Engineering 22, 1751–1783 (2009)

[9] Frank, A., Asuncion, A.: UCI Machine Learning Repository. University
of California, Irvine, School of Information and Computer Science (2010)
URL http://archive.ics.uci.edu/ml/

[10] Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press
(1990)

[11] Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and
Nonexpansive Mappings. Dekker (1984)

[12] Iiduka, H.: Convex optimization over fixed point sets of quasi-
nonexpansive and nonexpansive mappings in utility-based bandwidth

16

allocation problems with operational constraints. Journal of Computa-
tional and Applied Mathematics 282, 225–236 (2015)

[13] Iiduka, H.: Parallel optimization algorithm for smooth convex optimiza-
tion over fixed point sets of quasi-nonexpansive mappings. Journal of
the Operations Research Society of Japan 58, 330–352 (2015)

[14] Iiduka, H.: Convergence analysis of iterative methods for nonsmooth
convex optimization over fixed point sets of quasi-nonexpansive map-
pings. Mathematical Programming 159, 509–538 (2016)

[15] Iiduka, H.: Proximal point algorithms for nonsmooth convex optimiza-
tion with fixed point constraints. European Journal of Operational Re-
search 253, 503–513 (2016)

[16] Kim, Y., Street, N.W., Menczer, F.: Meta-evolutionary ensembles.
IEEE International Joint Conference on Neural Networks 123, 2791–
2796 (2002)

[17] The MathWorks, Inc.: Sample Data Sets-MATLAB. URL https://

www.mathworks.com/help/stats/_bq9uxn4.html

[18] Martinez-Munoz, G., Hernandez-Lobato, D., Suarez, A.: An analysis
of ensemble pruning techniques based on ordered aggregation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 31, 245–259
(2009)

[19] Özöğür-Akyü, S., Windeatt, T., Smith, R.: Pruning of error correcting
output codes by optimization of accuracy-diversity trade off. Machine
Learning 22, 1751–1783 (2015)

[20] Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)

[21] Schapire, R.E.: A brief introduction to boosting. pp. 1401–1406. 16th In-
ternational Joint Conference on Artificial Intelligence, Burlington: Mor-
gan Kauffman (1999)

[22] Vasin, V.V., Ageev, A.L.: Ill-posed problems with a priori information.
V.S.P. Intl Science, Utrecht (1995)

17

[23] Yin, X.C., Huang, K., Hao, H.W., Iqbal, K., Wang, Z.B.: A novel
classifier ensemble method with sparsity and diversity. Neurocomputing
134, 214–221 (2014)

[24] Yin, X.C., Huang, K., Yang, C., Hao, H.W.: Convex ensemble learning
with sparsity and diversity. Information Fusion 20, 49–58 (2014)

[25] Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/B.
Nonlinear Monotone Operators. Springer (1985)

[26] Zhang, L., Zhou, W.D.: Sparse ensemble using weighted combination
methods based on linear programming. Pattern Recognition 44, 97–106
(2011)

[27] Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite
programming. Journal of Machine Learning Research 7, 1315–1338
(2006)

[28] Zhou, Z.H., Wu, J.W., Tang, W.: Ensembling neural networks: many
could be better than all? Artificial Intelligence 137, 239–263 (2002)

[29] Zor, C., Windeatt, T., Kittler, J.: Ecoc matrix pruning using accuracy
information. In: Multiple Classifier Systems, vol. 7872. 11th Interna-
tional Workshop, MCS 2013, Nanjing, China, May 15–17, 2013 Pro-
ceedings (2013)

18

