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Two distributed algorithms are described that enable all users connected over a network to
cooperatively solve the problem of minimizing the sum of all users’ objective functions over
the intersection of all users’ constraint sets, where each user has its own private nonsmooth
convex objective function and closed convex constraint set, which is the intersection of a
number of simple, closed convex sets. One algorithm enables each user to adjust its estimate
by using the proximity operator of its objective function and the metric projection onto one
constraint set randomly selected from a number of simple, closed convex sets. The other
determines each user’s estimate by using the subdifferential of its objective function instead
of the proximity operator. Investigation of the two algorithms’ convergence properties for a
diminishing step-size rule revealed that, under certain assumptions, the sequences of all users
generated by each of the two algorithms converge almost surely to the same solution. It also
showed that the rate of convergence depends on the step size and that a smaller step size
results in quicker convergence. The results of numerical evaluation using a nonsmooth convex
optimization problem support the convergence analysis and demonstrate the effectiveness of
the two algorithms.
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1. Introduction

Future network models have attracted a great deal of attention. The concept of
the network model considered here differs completely from that of a conventional
client-server network model. While a conventional client-server network model ex-
plicitly distinguishes hosts providing services (servers) from hosts receiving services
(clients), the network model considered here does not assign fixed roles to hosts.
Hosts composing the network, referred to here as users, can be both servers and
clients. Hence, the network can function as an autonomous, distributed, and co-
operative system. Although there are several forms of networks in which some
operations are intentionally centralized (e.g., hybrid peer-to-peer networks), here
the focus is on networks that do not have centralized operations. Therefore, dis-
tributed mechanisms need to be used that can work in cooperation with each user
and neighboring users to control the network.

∗ This work was supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for
Scientific Research (C) (15K04763).
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Distributed optimization (see, e.g., [2], [4], [9], [11, Part II], [12, PART II], [27],
[28], [33] and references therein) plays a crucial role in making future networks
[10, 14, 23, 30], such as wireless, sensor, and peer-to-peer networks, stable and
highly reliable. One way [23, Chapter 5], [25], [33, Chapter 2] to achieve this opti-
mization is to model the utility and strategy of each user respectively as a concave
utility function and convex constraint set and solve the problem of maximizing the
overall utility of all users over the intersection of all users’ constraint sets. This
paper focuses on a constrained convex minimization problem in which each user
has its own nonsmooth convex objective function (i.e., a minus nonsmooth con-
cave utility function) and closed convex constraint set that is the intersection of a
number of simple, closed convex sets (e.g., the intersection of affine subspaces, half-
spaces, and hyperslabs). The constrained nonsmooth convex optimization problem
covers the important situations in which each user’s objective function is differ-
entiable with a non-Lipschitz continuous gradient or not differentiable (e.g., the
L1-norm) and includes, for instance, the problem of minimizing the total variation
of a signal over a convex set, Tykhonov-like problems with L1-norms [13, I. Intro-
duction], the classifier ensemble problem with sparsity and diversity learning [39,
Subsection 2.2.3], [40, Subsection 3.2.4], which is expressed as L1-norm minimiza-
tion, and the minimal antenna-subset selection problem [38, Subsection 17.4]. The
main objective of the present paper is to show that the constrained nonsmooth
convex optimization problem for many real-world applications can be solved by
using distributed optimization techniques.
Two distributed optimization algorithms are presented for solving the con-

strained convex minimization problem described above. At each iteration of the
first algorithm, each user calculates the weighted average of its estimate and the
estimates received from its neighboring users and then updates its estimate by using
the weighted average, the proximity operator of its own private nonsmooth convex
function, and the metric projection onto one constraint set randomly selected from
a number of simple, closed convex sets. The second algorithm is obtained by replac-
ing the proximity operator in the first algorithm with the subdifferential of each
user’s nonsmooth convex function.
The two algorithms are performed on the basis of a framework [24, (2a)] for

local user communications and random observations [24, (2b)], [26, (2)] of the local
constraints, which ensures that each user can observe one simple, closed convex
set onto which the metric projection can be efficiently calculated. Accordingly, the
two algorithms can be applied to two complicated cases. In Case 1, each user does
not know the full form of its private constraint set in advance and can observe
only one simple, closed convex set at each instance. In Case 2, each user knows
the full form of its private constraint set in advance, and the constraint set is
the intersection of a huge number of simple, closed convex sets, which means that
a metric projection onto the constraint set cannot be calculated easily. See [24,
Section I] and [26, Section 1] and references therein for details on applications of
the two cases, including collaborative filtering for recommender systems and text
classification problems.
Proximal point methods and subgradient methods with randomized order [4,

Section 4], [27, Section 3] are useful for constrained nonsmooth convex optimiza-
tion. These methods are implemented under the condition that each user uses a
randomly chosen component function at each iteration while the proposed algo-
rithms are performed under the condition that each user uses a randomly chosen
closed convex set onto which the metric projection can be efficiently calculated
(Subsections 3.2 and 4.2 explicitly compare the methods in [4, Section 4] and [27,
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Section 3] with the proposed algorithms). Related random projection algorithms
have been proposed for convex optimization over the intersection of a number of
closed convex sets. The algorithm most relevant to the work reported here is the
first distributed random projected gradient algorithm [24] that was proposed for
solving a constrained smooth convex minimization problem when each user’s ob-
jective function is convex with a Lipschitz continuous gradient. The centralized
random projected gradient and subgradient algorithms [26] were proposed for min-
imizing a single objective function over the intersection of an arbitrary family of
convex inequalities. The incremental constraint projection-proximal algorithm [36]
uses both random subgradient updates and random constraint updates. While there
have been no reports on distributed random projection algorithms for nonsmooth
convex optimization, thanks to the useful ideas in [24, 36], a distributed random
projected proximal algorithm (Algorithm 3.1) can be devised. Moreover, on the
basis of [24, 26], a distributed random projected subgradient algorithm (Algorithm
4.1) can be devised that is a generalization of the first distributed random projected
gradient algorithm [24, (2a), (2b)]. Furthermore, there has been much work [35]
on random projection of vectors in a higher dimensional space to a randomly cho-
sen lower dimensional subspace, and convex programming problems [29] and affine
variational inequalities [31] have been analyzed using random projections defined
in the same way [35]. Since, with the proposed algorithms, each user is assumed
to use a randomly chosen projection at each iteration that projects a vector in the
whole space to a closed convex subset of the whole space, the definition of random
projection in [29, 31, 35] clearly differs from the one used here.
This paper makes two contributions that build on previously reported results.

First, it presents two novel distributed random projection algorithms for con-
strained nonsmooth convex optimization that are based on each user’s local commu-
nications. This means that they can be implemented independently of the network
topology and that each user can calculate the weighted average of its estimate and
the neighboring users’ estimates. The algorithms proceed by performing a proximal
or subgradient step for each user’s objective function at the weighted average and
projecting onto one simple, closed convex set that is randomly selected from each
user’s local constraint sets. Since the metric projection is a special case of nonex-
pansive mapping, the algorithms are related to previous fixed point optimization
algorithms [15, 16, 18, 19, 21] for convex optimization over fixed point sets of
nonexpansive mappings. Furthermore, it presents a gradient method [18] that ac-
celerates previously reported optimization algorithms for minimizing one smooth
convex objective function over a fixed point set of a nonexpansive mapping. These
algorithms [16, 21] are synchronous decentralized algorithms that can be applied to
smooth convex optimization over fixed point sets of nonexpansive mappings. Since
these algorithms [16, 18, 21] work for only smooth convex optimization, they cannot
be applied to the constrained nonsmooth convex optimization problem considered
here. Parallel and incremental subgradient algorithms [15] have been proposed to
solve the problem of minimizing the sum of nonsmooth, convex objective functions
over fixed point sets, and incremental proximal point algorithms [19] have been
proposed for solving the problem. These algorithms [15, 19] work for nonsmooth
convex optimization over the intersection of convex constraint sets that are not al-
ways simple. However, since they work only when each user makes the best use of
its own private information, they cannot be applied to the case in which each user
does not know the explicit form of its constraint set in advance. Moreover, since
these algorithms [15, 19] can be applied only to deterministic optimization, they
cannot be applied to the case in which each user uses one constraint set selected
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randomly at each iteration. In contrast, the proposed algorithms work even when
each user randomly sets one projection selected from many projections (see Case
1 description above). Therefore, the proposed algorithms have wider application
than previous fixed point optimization algorithms [15, 16, 18, 19, 21].
The second contribution is an analysis of the proposed proximal and subgradient

algorithms. In contrast to the convergence analysis of the first distributed random
projected gradient algorithm [24], smooth convex analysis, which has tractable
properties due to the use of Lipschitz continuous gradients, cannot be applied to
the convergence analyses of the two proposed algorithms, which optimize nons-
mooth convex functions. However, convergence analyses of the two algorithms can
be performed by using useful properties [1, Propositions 12.16, 12.27, and 16.14]
(Proposition 2.1) of the proximity operators and the subgradients of nonsmooth
convex objective functions. Thanks to the supermartingale convergence theorem
[5, Proposition 8.2.10] (Proposition 2.2) and the portmanteau lemma [6, Theo-
rem 16], [34, Lemma 2.2] (Proposition 2.3), it is guaranteed that, under certain
assumptions, the sequences of all users generated by each of the two algorithms
converge almost surely to the same solution to the constrained nonsmooth convex
optimization problem considered in this paper (Theorems 3.1 and 4.1). Moreover,
the rates of convergence of the two algorithms (Proposition 3.1, (11), Proposition
4.1, and (22)) are provided to illustrate their algorithm efficiencies. The conver-
gence rate analysis leads to selection of a step size such that the two algorithms
converge quickly. Numerical results for the two algorithms are provided to support
the convergence and convergence rate analyses.
This paper is organized as follows. Section 2 gives the mathematical preliminaries

and states the main problem. Section 3 presents the proposed random projected
proximal algorithm for solving the main problem and describes its convergence
properties for a diminishing step size. Section 4 presents the proposed random
projected subgradient algorithm for solving the main problem and describes its
convergence properties for a diminishing step size. Section 5 presents a numerical
evaluation using a nonsmooth convex optimization problem and compares the be-
haviors of the two algorithms. Section 6 concludes the paper with a brief summary
and mentions future directions for improving the proposed algorithms.

2. Preliminaries

2.1. Definitions and propositions

Let Rd be a d-dimensional Euclidean space with inner product ⟨·, ·⟩ and its induced
norm ∥ ·∥, and let Rd

+ := {(x1, x2, . . . , xd) ∈ Rd : xi ≥ 0 (i = 1, 2, . . . , d)}. Let [W ]ij
and W⊤ denote the (i, j)th entry and the transpose of a matrix W . Let Pr{X}
and E[X] denote the probability and the expectation of a random variable X. The
probability space considered here is denoted by (Ω,F ,Pr).
The metric projection onto a nonempty, closed convex set C ⊂ Rd is denoted by

PC , and it is defined for all x ∈ Rd by PC(x) ∈ C and ∥x − PC(x)∥ = d(x,C) :=
inf{∥x − y∥ : y ∈ C}. Mapping PC satisfies the firm nonexpansivity condition [1,
Proposition 4.8]; i.e., ∥PC(x)−PC(y)∥2+ ∥(x−PC(x))− (y−PC(y))∥2 ≤ ∥x− y∥2
(x, y ∈ Rd). This means that ∥PC(x) − PC(y)∥ ≤ ∥x − y∥ (x, y ∈ Rd); i.e., PC is
nonexpansive. The subdifferential [1, Definition 16.1] of f : Rd → R is the set-valued
operator defined for all x ∈ Rd by ∂f(x) := {u ∈ Rd : f(y) ≥ f(x)+ ⟨y− x, u⟩ (y ∈
Rd)}. The proximity operator [1, Definition 12.23] of a convex function f : Rd → R,
denoted by proxf , maps every x ∈ Rd to the unique minimizer of f(·)+(1/2)∥x−·∥2;
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i.e., proxf (x) ∈ Argminy∈Rd [f(y) + (1/2)∥x − y∥2] (x ∈ Rd). The uniqueness and

existence of proxf (x) are guaranteed for all x ∈ Rd [1, Definition 12.23].

Proposition 2.1 Let f : Rd → R be convex. Then the following hold:

(i) ∂f(x) is nonempty for all x ∈ Rd.
(ii) Let x, p ∈ Rd. p = proxf (x) if and only if x− p ∈ ∂f(p) (i.e., ⟨y− p, x− p⟩+

f(p) ≤ f(y) for all y ∈ Rd).
(iii) proxf is firmly nonexpansive.
(iv) Let L > 0. Then f is Lipschitz continuous with a Lipschitz constant L if and

only if ∥u∥ ≤ L for all x ∈ Rd and for all u ∈ ∂f(x).

Proof: (i)–(iii) Propositions 16.14(ii) and 12.26 in [1] lead to (i) and (ii) while
Proposition 12.27 in [1] implies (iii).
(iv) Theorem 6.2.2, Corollary 6.1.2, and Exercise 6.1.9(c) in [7] lead to (iv).
The following propositions are needed to prove the main theorems.

Proposition 2.2 [The supermartingale convergence theorem [5, Proposition 8.2.10]]
Let (Yk)k≥0, (Zk)k≥0, and (Wk)k≥0 be sequences of nonnegative random vari-
ables, and let Fk (k ≥ 0) denote the collection Y0, Y1, . . . , Yk, Z0, Z1, . . . , Zk, and
W0,W1, . . . ,Wk. Suppose that

∑∞
k=0Wk < ∞ almost surely and that almost surely,

for all k ≥ 0, E[Yk+1|Fk] ≤ Yk − Zk +Wk. Then
∑∞

k=0 Zk < ∞ almost surely and
(Yk)k≥0 converges almost surely to a nonnegative random variable Y .

Proposition 2.3 [The portmanteau lemma [6, Theorem 16], [34, Lemma 2.2]] Let
(Yk)k≥0 be a sequence of random variables that converges in law to a random
variable Y . Then lim supk→∞ Pr{Yk ∈ F} ≤ Pr{Y ∈ F} for every closed set F .

A directed graph G := (V,E) is a finite nonempty set V of nodes (users) and a
collection E of ordered pairs of distinct nodes from V [3, p. 394]. A directed graph
is said to be strongly connected if, for each pair of nodes i and l, there exists a
directed path from i to l [3, p. 394].

2.2. Main problem and assumptions

Let us consider a constrained nonsmooth convex optimization problem that is
distributed over a network ofm users, indexed by V := {1, 2, . . . ,m}. User i (i ∈ V )
has its own private function fi : Rd → R and constraint setXi ⊂ Rd. On the basis of
[24, Section II], let us define the constraint set X :=

∩m
i=1Xi for the whole network.

Suppose that X is the intersection of n closed convex sets. Let I := {1, 2, . . . , n},
and let Ii (i ∈ V ) be the partition of I such that I =

∪m
i=1 Ii and Ii ∩ Il = ∅ for

all i, l ∈ V with i ̸= l. Then Xi can be defined by the intersection of closed convex
sets Xj

i (j ∈ Ii); i.e., Xi :=
∩

j∈Ii X
j
i (i ∈ V ) and X :=

∩
i∈V Xi =

∩m
i=1

∩
j∈Ii X

j
i .

The following is assumed hereafter.

Assumption 2.1 Suppose that

(A1) Xj
i ⊂ Rd (i ∈ V, j ∈ Ii) is a closed convex set onto which the metric projection

PXj
i
can be efficiently computed, and X :=

∩
i∈V Xi ̸= ∅;

(A2) fi : Rd → R (i ∈ V ) is convex;
(A3) For all i ∈ V , there exists Mi ∈ R such that sup{∥gi∥ : x ∈ Xi, gi ∈ ∂fi(x)} ≤

Mi.

Assumption (A3) is satisfied if fi (i ∈ V ) is polyhedral on Xi or Xi (i ∈ V ) is
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bounded [5, p. 471]. Proposition 2.1(iv) guarantees that, if fi (i ∈ V ) is Lipschitz
continuous on Xi, Assumption (A3) holds.
The following is the main problem discussed here.

Problem 2.1 Under Assumption 2.1,

minimize f (x) :=
∑
i∈V

fi (x) subject to x ∈ X :=
∩
i∈V

Xi,

where one assumes that Problem 2.1 has a solution.

The solution set of Problem 2.1 is denoted by X⋆ := {x⋆ ∈ X : f(x⋆) = f⋆ :=

infx∈X f(x)}. The conditionX⋆ ̸= ∅ holds, for example, when one ofXj
i s is bounded

[1, Corollary 8.31, Proposition 11.14].
The main objective here is to present distributed optimization algorithms that

enable each user to solve Problem 2.1 without using other users’ private infor-
mation. This goal is addressed by assuming that each user and its neighboring
users form a network in which each user can transmit its estimate to its neigh-
boring users. The network topology at time k is expressed as a directed graph
G(k) := (V,E(k)), where E(k) ⊂ V × V , and (i, j) ∈ E(k) stands for a link such
that user i receives information from user j at time k. Let Ni(k) ⊂ V be the set
of users that send information to user i; i.e., Ni(k) := {j ∈ V : (i, j) ∈ E(k)} and
i ∈ Ni(k) (i ∈ V, k ≥ 0). To consider Problem 2.1, the following assumptions are
needed [24, Assumptions 4 and 5], which leads to Lemma 3.3 (see [32, Theorem
4.2]) used to prove the main theorems.

Assumption 2.2 There exists Q ≥ 1 such that the graph (V,
∪Q−1

l=0 E(k + l)) is
strongly connected for all k ≥ 0.

Assumption 2.3 For k ≥ 0, user i (i ∈ V ) has the weighted parameters wij(k)
(j ∈ V ) satisfying the following:

(i) wij(k) := [W (k)]ij ≥ 0 for all j ∈ V , and wij(k) = 0 when j /∈ Ni(k);
(ii) There exists w ∈ (0, 1) such that wij(k) ≥ w for all j ∈ Ni(k).
(iii)

∑
j∈V [W (k)]ij = 1 for all i ∈ V and

∑
i∈V [W (k)]ij = 1 for all j ∈ V .

Moreover, user i (i ∈ V ) has the step size (αk)k≥0 ⊂ (0,∞) satisfying (C1)∑∞
k=0 αk = ∞ and (C2)

∑∞
k=0 α

2
k < ∞.

The matrix W (k) (k ≥ 0) satisfying Assumption 2.3(i)–(iii) is said to be doubly
stochastic [24, Assumption 5]. Theorem 1 in [37] indicates that the spectral radius
ρ of the doubly stochastic matrix W (k) (k ≥ 0) is less than 1 if and only if, for all
k ≥ 0,

lim
s→∞

W (k)s =
ee⊤

m
, (1)

where e ∈ Rd stands for the column vector in which all entries are equal to 1.
Moreover, Theorem 3.2.1 in [8] and the remark in [37, Theorem 1] show that (1)
means the network is strongly connected. Accordingly, Assumption 2.2 holds if
ρ < 1 (e.g., ρ < 1 holds when one is a simple eigenvalue of W (k) and all other
eigenvalues are strictly less than one in magnitude [37, p. 67]). See [17, Examples
2.6 and 2.7] for examples of W (k) satisfying Assumption 2.3(i)–(iii).
Assumptions (A1) and (A2) imply that, for all k ≥ 0, user i (i ∈ V ) can determine
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its estimate by using a subdifferential or proximity operator of fi and the metric
projection onto a certain constraint set selected from its own constraint sets Xj

i
(j ∈ Ii). Here it is assumed that user i (i ∈ V ) forms the metric projection on the
basis of random observations of the local constraints; i.e., user i observes a local

constraint set at time k, X
Ωi(k)
i , where Ωi(k) ∈ Ii is a random variable, and thus

uses P
X

Ωi(k)

i

. Convergence analyses are performed by assuming the following [24,

Assumptions 2 and 3]:

Assumption 2.4 The random sequences (Ωi(k))k≥0 (i ∈ V ) are independent and
identically distributed and independent of the initial points xi(0) (i ∈ V ) in the
algorithms presented here. Moreover, Pr{Ωi(k) = j} > 0 holds for i ∈ V and for
j ∈ Ii.

Assumption 2.5 There exists c > 0 such that, for all i ∈ V , for all x ∈ Rd, and for

all k ≥ 0, d(x,X)2 ≤ cE[d(x,X
Ωi(k)
i )2].

The sequences (Ωi(k))k≥0 (i ∈ V ) satisfy Assumption 2.4 when the sample con-
straints are generated through state transitions of a Markov chain [36, Subsection
4.4]. Assumption 2.4 is satisfied when the constraints are sampled in a cyclic manner
by random shuffling or in accordance with a deterministic cyclic order [36, Sub-
section 4.3]. Other examples of (Ωi(k))k≥0 satisfying Assumption 2.4 are described

in Subsections 4.1 and 4.2 in [36]. Assumption 2.5 holds when Xj
i (i ∈ V, j ∈ Ii)

is a linear inequality or an equality constraint, or when X has an interior point
(see [24, p. 223] and references therein). Even if Xj

i (i ∈ V, j ∈ Ii) is a restricted

constraint such as a linear inequality or equality constraint, Xi :=
∩

j∈Ii X
j
i (i ∈ V )

is complicated in the sense that metric projection onto Xi is not necessarily easy.
Accordingly, the metric projection onto the whole constraint set X :=

∩
i∈V Xi

cannot be efficiently computed, and hence, X :=
∩

i∈V
∩

j∈Ii X
j
i has a complicated

form even when Xj
i is simple enough to have a closed form expression of the metric

projection onto Xj
i . The proposed algorithms (Algorithms 3.1 and 4.1) using the

metric projection onto Xj
i can be applied to Problem 2.1 with such a complicated

constraint X. In contrast, the previously reported algorithms [4, Section 4], [27,
Section 3] need to use metric projection onto the whole constraint set X (see Sub-
sections 3.2 and 4.2 for detailed comparisons of the proposed algorithms with the
previous ones [4, Section 4], [27, Section 3]).
Let xi(k) ∈ Rd be the estimate of user i at time k (see (4) and (16) in Algorithms

3.1 and 4.1 for details of the definition of (xi(k))k≥0 (i ∈ V )). The proposed
algorithms are analyzed by using the expectation taken with respect to the past
history of the algorithms defined as follows [24, p. 224]. Let Fk be the σ-algebra
generated by the entire history of the algorithms up to time (k − 1) inclusively;
i.e., F0 := σ(xi(0) (i ∈ V )), and for all k ≥ 1,

Fk := σ (xi (0) (i ∈ V ), Ωi (l) (l ∈ [0, k − 1] , i ∈ V )) . (2)

3. Distributed random projected proximal algorithm

This section presents the proposed proximal algorithm using random projections
for solving Problem 2.1 under Assumptions 2.1–2.3.

Algorithm 3.1

7



October 20, 2016 Optimization GOPT-2015-0360R1

Step 0. User i (i ∈ V ) sets xi(0) arbitrarily.
Step 1. User i (i ∈ V ) receives xj(k) from its neighboring users j ∈ Ni(k) and

computes the weighted average

vi (k) :=
∑

j∈Ni(k)

wij (k)xj (k) . (3)

User i updates its estimate xi(k + 1) by using

xi (k + 1) := P
X

Ωi(k)

i

(
proxαkfi (vi (k))

)
. (4)

The algorithm sets k := k + 1 and returns to Step 1.

Definition (2) implies that, given Fk (k ≥ 0), the collection xi(0), xi(1), . . . , xi(k)
and vi(0), vi(1), . . . , vi(k) generated by Algorithm 3.1 is fully determined. Algo-
rithm 3.1 enables user i (i ∈ V ) to determine xi(k + 1) by using its proximity
operator for the weighted average vi(k) of the received xj(k) (j ∈ Ni(k)) and the

metric projection onto a constraint set X
Ωi(k)
i randomly selected from Xj

i .
The convergence analysis of Algorithm 3.1 is as follows.

Theorem 3.1 Under Assumptions 2.1–2.3, the sequence (xi(k))k≥0 (i ∈ V ) gener-
ated by Algorithm 3.1 converges almost surely to a random point x⋆ ∈ X⋆.

3.1. Proof of Theorem 3.1

The following lemma can be proven by using Proposition 2.1 and the firm non-
expansivity condition of P

X
Ωi(k)

i

and by referring to the proof of [26, Lemma 2].

Hence, the proof of Lemma 3.1 can be omitted.

Lemma 3.1 Suppose that Assumption 2.1 holds. Then for all x ∈ X, for all i ∈ V ,
for all z ∈ Xi, for all k ≥ 0, and for all τ, η, µ > 0,

∥xi (k + 1)− x∥2 ≤ ∥vi (k)− x∥2 − 2αk (fi (z)− fi (x)) +N (τ, η)α2
k

+ τ ∥vi (k)− z∥2 + (η + µ− 2)
∥∥vi (k)− proxαkfi (vi (k))

∥∥2
−

(
1− 1

µ

)
∥xi (k + 1)− vi (k)∥2 ,

where N(τ, η) := (1/τ +1/η)maxi∈V M2
i < ∞ and Mi (i ∈ V ) is as in Assumption

(A3).

The following lemma is shown.

Lemma 3.2 Suppose that Assumptions 2.1, 2.3, and 2.5 hold. Then
∑∞

k=0 ∥vi(k)−
proxαkfi(vi(k))∥

2 < ∞, and
∑∞

k=0 d(vi(k), X)2 < ∞ almost surely for all i ∈ V .

Proof: The definition of d means that d(vi(k), X) = ∥vi(k) − PX(vi(k))∥ and
d(xi(k + 1), X) ≤ ∥xi(k + 1) − PX(vi(k))∥ (i ∈ V, k ≥ 0). The condition xi(k +

1) ∈ X
Ωi(k)
i (i ∈ V, k ≥ 0) means that d(vi(k), X

Ωi(k)
i ) ≤ ∥vi(k) − xi(k + 1)∥

(i ∈ V, k ≥ 0). Then Lemma 3.1 with x = z := PX(vi(k)) (i ∈ V, k ≥ 0) guarantees
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that, for all i ∈ V , for all k ≥ 0, for all τ, η > 0, and for all µ > 1,

d (xi (k + 1) , X)2 ≤ d (vi (k) , X)2 + τd (vi (k) , X)2

+ (η + µ− 2)
∥∥vi (k)− proxαkfi (vi (k))

∥∥2 +N (τ, η)α2
k

−
(
1− 1

µ

)
d
(
vi (k) , X

Ωi(k)
i

)2
.

By taking the expectation in this inequality conditioned on Fk defined in (2),
Assumption 2.5 leads to the finding that, almost surely, for all i ∈ V , for all k ≥ 0,
for all τ, η > 0, and for all µ > 1,

E
[
d (xi (k + 1) , X)2

∣∣∣Fk

]
≤ d (vi (k) , X)2 + (η + µ− 2)

∥∥vi (k)− proxαkfi (vi (k))
∥∥2

+

{
τ − 1

c

(
1− 1

µ

)}
d (vi (k) , X)2 +N (τ, η)α2

k.

Let us take τ := 1/(6c), η := 1/3, and µ := 3/2. From η + µ − 2 = −1/6,
τ − (1/c)(1 − 1/µ) = −1/(6c), and the convexity of d(·, X)2, almost surely for all
i ∈ V and for all k ≥ 0,

E
[
d (xi (k + 1) , X)2

∣∣∣Fk

]
≤

m∑
j=1

[W (k)]ij d (xj (k) , X)2 − 1

6

∥∥vi (k)− proxαkfi (vi (k))
∥∥2

− 1

6c
d (vi (k) , X)2 +N

(
1

6c
,
1

3

)
α2
k,

where N(1/(6c), 1/3) < ∞ is guaranteed from Assumption (A3). Hence, Assump-
tion 2.3 ensures that, almost surely, for all k ≥ 0,

E

[
m∑
i=1

d (xi (k + 1) , X)2

∣∣∣∣∣Fk

]
≤

m∑
j=1

d (xj (k) , X)2 − 1

6

m∑
i=1

∥∥vi (k)− proxαkfi (vi (k))
∥∥2

− 1

6c

m∑
i=1

d (vi (k) , X)2 +mN

(
1

6c
,
1

3

)
α2
k. (5)

Proposition 2.2 and (C2) lead to
∑∞

k=0

∑m
i=1 ∥vi(k) − proxαkfi(vi(k))∥

2 < ∞ and∑∞
k=0

∑m
i=1 d(vi(k), X)2 < ∞ almost surely. This completes the proof.

The following lemma can be proven by using Lemma 3.2 and by referring to the
proof of [24, Lemma 7].

Lemma 3.3 Suppose that Assumptions 2.1, 2.2, and 2.3 hold and define v̄(k) :=
(1/m)

∑m
l=1 vl(k) for all k ≥ 0. Then

∑∞
k=0 ∥ei(k)∥2 :=

∑∞
k=0 ∥xi(k+1)−vi(k)∥2 <

∞ and
∑∞

k=0 αk∥vi(k)− v̄(k)∥ < ∞ almost surely for all i ∈ V .

Next, let us show the following lemma.

Lemma 3.4 Suppose that the assumptions in Theorem 3.1 are satisfied, and define
zi(k) := PX(vi(k)) for all i ∈ V and for all k ≥ 0 and z̄(k) := (1/m)

∑m
i=1 zi(k)

for all k ≥ 0. Then the sequence (∥xi(k)− x⋆∥)k≥0 converges almost surely for all
i ∈ V and for all x⋆ ∈ X⋆ and lim infk→∞ f(z̄(k)) = f⋆ almost surely.

9
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Proof: Choose x⋆ ∈ X⋆ arbitrarily. The convexity of ∥ · ∥2 and Assumption 2.3
imply that

∑m
i=1 ∥vi(k)− x⋆∥2 ≤

∑m
j=1 ∥xj(k)− x⋆∥2 (k ≥ 0). Lemma 3.1 implies

that, for all k ≥ 0 and for all τ, η, µ > 0,

m∑
i=1

∥xi (k + 1)− x⋆∥2 ≤
m∑
i=1

∥xi (k)− x⋆∥2 − 2αk

m∑
i=1

(f (zi (k))− fi (x
⋆))

+ τ
m∑
i=1

∥vi (k)− zi (k)∥2 −
(
1− 1

µ

) m∑
i=1

∥xi (k + 1)− vi (k)∥2

+ (η + µ− 2)
m∑
i=1

∥∥vi (k)− proxαkfi (vi (k))
∥∥2 +mN (τ, η)α2

k.

From zi(k) ∈ X (i ∈ V, k ≥ 0), the convexity of X ensures that z̄(k) ∈ X ⊂ Xi

(i ∈ V ). Accordingly, (A3) means that ∥ḡi(k)∥ ≤ Mi for all ḡi(k) ∈ ∂fi(z̄(k))
(i ∈ V, k ≥ 0). The definition of ∂fi (i ∈ V ) and the Cauchy-Schwarz inequal-
ity thus guarantee that, for all i ∈ V and for all k ≥ 0, fi(zi(k)) − fi(x

⋆) =
fi(zi(k))− fi(z̄(k)) + fi(z̄(k))− fi(x

⋆) ≥ ⟨zi(k)− z̄(k), ḡi(k)⟩+ fi(z̄(k))− fi(x
⋆) ≥

−M̄∥zi(k) − z̄(k)∥ + fi(z̄(k)) − fi(x
⋆), where M̄ := maxi∈V Mi < ∞. More-

over, the convexity of ∥ · ∥ and the nonexpansivity of PX imply that, for all
i ∈ V and for all k ≥ 0, ∥zi(k) − z̄(k)∥ = ∥(1/m)

∑m
l=1(PX(vi(k)) − zl(k))∥ ≤

(1/m)
∑m

l=1 ∥PX(vi(k)) − PX(vl(k))∥ ≤ (1/m)
∑m

l=1 ∥vi(k) − vl(k)∥, which, to-
gether with the triangle inequality, implies that, for all i ∈ V and for all
k ≥ 0, ∥zi(k) − z̄(k)∥ ≤ ∥vi(k) − v̄(k)∥ + (1/m)

∑m
l=1 ∥vl(k) − v̄(k)∥, where

v̄(k) := (1/m)
∑m

l=1 vl(k) (k ≥ 0). Accordingly, for all i ∈ V and for all k ≥ 0,

fi (zi (k))− fi (x
⋆) ≥ −M̄ ∥vi (k)− v̄ (k)∥ − M̄

m

m∑
l=1

∥vl (k)− v̄ (k)∥

+ fi (z̄ (k))− fi (x
⋆) .

(6)

Hence, the definitions of f and f⋆ imply that, for all k ≥ 0 and for all τ, η, µ > 0,

m∑
i=1

∥xi (k + 1)− x⋆∥2 ≤
m∑
i=1

∥xi (k)− x⋆∥2 + 2M̄αk

m∑
i=1

∥vi (k)− v̄ (k)∥

+ 2M̄αk

m∑
l=1

∥vl (k)− v̄ (k)∥ − 2αk (f (z̄ (k))− f⋆)

+ τ

m∑
i=1

∥vi (k)− zi (k)∥2 −
(
1− 1

µ

) m∑
i=1

∥xi (k + 1)− vi (k)∥2

+ (η + µ− 2)
m∑
i=1

∥∥vi (k)− proxαkfi (vi (k))
∥∥2 +mN (τ, η)α2

k,

which, together with d(vi(k), X) = ∥vi(k)− zi(k)∥ and d(vi(k), X
Ωi(k)
i ) ≤ ∥vi(k)−

xi(k + 1)∥ (i ∈ V, k ≥ 0), implies that, for all k ≥ 0, for all τ, η > 0, and for all

10
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µ > 1,

m∑
i=1

∥xi (k + 1)− x⋆∥2 ≤
m∑
i=1

∥xi (k)− x⋆∥2 + 4M̄αk

m∑
i=1

∥vi (k)− v̄ (k)∥

− 2αk (f (z̄ (k))− f⋆) + τ

m∑
i=1

d (vi (k) , X)2

−
(
1− 1

µ

) m∑
i=1

d
(
vi (k) , X

Ωi(k)
i

)2

+ (η + µ− 2)

m∑
i=1

∥∥vi (k)− proxαkfi (vi (k))
∥∥2 +mN (τ, η)α2

k.

Accordingly, Assumption 2.5 guarantees that, almost surely, for all k ≥ 0, for all
τ, η > 0, and for all µ > 1,

E

[
m∑
i=1

∥xi (k + 1)− x⋆∥2
∣∣∣∣∣Fk

]
≤

m∑
i=1

∥xi (k)− x⋆∥2 + 4M̄αk

m∑
i=1

∥vi (k)− v̄ (k)∥

− 2αk (f (z̄ (k))− f⋆)

+

{
τ − 1

c

(
1− 1

µ

)} m∑
i=1

d (vi (k) , X)2

+ (η + µ− 2)

m∑
i=1

∥∥vi (k)− proxαkfi (vi (k))
∥∥2

+mN (τ, η)α2
k. (7)

Setting τ := 1/(6c), η := 1/3, and µ := 3/2 (also see proof of Lemma 3.2) in the
inequality above leads to the finding that, almost surely, for all k ≥ 0,

E

[
m∑
i=1

∥xi (k + 1)− x⋆∥2
∣∣∣∣∣Fk

]
≤

m∑
i=1

∥xi (k)− x⋆∥2 − 2αk (f (z̄ (k))− f⋆)

+ 4M̄αk

m∑
i=1

∥vi (k)− v̄ (k)∥+mN

(
1

6c
,
1

3

)
α2
k.

(8)

Therefore, since z̄(k) ∈ X implies f(z̄(k))− f⋆ ≥ 0 (k ≥ 0), Proposition 2.2, (C2),
and Lemma 3.3 ensure that (∥xi(k)−x⋆∥)k≥0 converges almost surely for all i ∈ V .
Moreover,

∞∑
k=0

αk (f (z̄ (k))− f⋆) < ∞ (9)

is almost surely satisfied. Now, let us assume that lim infk→∞ f(z̄(k)) ≤ f⋆ does
not hold almost surely. Then for all Ω̄ ∈ F , Pr{Ω̄} = 1, and there exists ω ∈ Ω̄
such that lim infk→∞ f(z̄(k)(ω))− f⋆ > 0. Hence, k1 > 0 and γ > 0 can be chosen

11
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such that f(z̄(k)(ω))− f⋆ ≥ γ for all k ≥ k1. Accordingly, (9) and (C1) mean that

∞ = γ
∞∑

k=k1

αk ≤
∞∑

k=k1

αk (f (z̄ (k) (ω))− f⋆) < ∞,

which is a contradiction. Therefore, lim infk→∞ f(z̄(k)) ≤ f⋆ almost surely. From
f(z̄(k)) − f⋆ ≥ 0 (k ≥ 0), lim infk→∞ f(z̄(k)) = f⋆ almost surely. This completes
the proof.
It is now possible to prove Theorem 3.1.
Proof: Lemma 3.4 guarantees the almost sure convergence of (xi(k))k≥0 (i ∈ V ).

From (3), (vi(k))k≥0 (i ∈ V ) also converges almost surely. The definition of v̄(k)
(k ≥ 0) implies the almost sure convergence of (v̄(k))k≥0. Moreover, Lemma 3.2
implies that, for all i ∈ V ,

∑∞
k=0 d(vi(k), X)2 =

∑∞
k=0 ∥vi(k)− zi(k)∥2 < ∞ almost

surely; i.e., limk→∞ ∥vi(k)− zi(k)∥ = 0 almost surely. Accordingly, (zi(k))k≥0 (i ∈
V ) converges almost surely. This implies that (z̄(k))k≥0 converges almost surely to
x∗; i.e., (z̄(k))k≥0 converges in law to x∗. Hence, the closedness ofX and Proposition
2.3 guarantee that lim supk→∞ Pr{z̄(k) ∈ X} ≤ Pr{x∗ ∈ X}. Since the definition
of z̄(k) (k ≥ 0) implies that Pr{z̄(k) ∈ X} = 1 (k ≥ 0), Pr{x∗ ∈ X} = 1. Moreover,
Lemma 3.4 and the continuity of f ensure that, almost surely,

f (x∗) = lim
k→∞

f (z̄(k)) = lim inf
k→∞

f (z̄(k)) = f⋆; i.e., x∗ ∈ X⋆.

The definitions of v̄(k) and z̄(k) (k ≥ 0) mean that, for all k ≥ 0, ∥v̄(k)− z̄(k)∥ ≤
(1/m)

∑m
i=1 ∥zi(k) − vi(k)∥, which, together with limk→∞ ∥vi(k) − zi(k)∥ = 0 al-

most surely for all i ∈ V , implies that limk→∞ ∥v̄(k) − z̄(k)∥ = 0 almost surely.
Accordingly, the almost sure convergence of (z̄(k))k≥0 to x∗ ∈ X⋆ guarantees that
(v̄(k))k≥0 also converges almost surely to the same x∗ ∈ X⋆.
Since Lemma 3.3 implies that

∑∞
k=0 αk∥vi(k) − v̄(k)∥ < ∞ almost surely for

all i ∈ V , a discussion similar to the one for obtaining lim infk→∞ f(z̄(k)) ≤ f⋆

almost surely (see proof of Lemma 3.4) and (C1) guarantee that lim infk→∞ ∥vi(k)−
v̄(k)∥ = 0 almost surely for all i ∈ V . Moreover, the triangle inequality implies
that ∥vi(k) − x∗∥ ≤ ∥vi(k) − v̄(k)∥ + ∥v̄(k) − x∗∥ (i ∈ V, k ≥ 0). Hence, from
limk→∞ ∥v̄(k)− x∗∥ = 0 and lim infk→∞ ∥vi(k)− v̄(k)∥ = 0 (i ∈ V ) almost surely,
lim infk→∞ ∥vi(k)− x∗∥ = 0 almost surely for all i ∈ V . Therefore, the almost sure
convergence of (vi(k))k≥0 (i ∈ V ) leads to the finding that, for all i ∈ V ,

lim
k→∞

∥vi (k)− x∗∥ = 0 almost surely. (10)

Since Lemma 3.3 ensures that, for all i ∈ V , limk→∞ ∥ei(k)∥2 = limk→∞ ∥xi(k+1)−
vi(k)∥2 = 0 almost surely, (xi(k))k≥0 (i ∈ V ) converges almost surely to x∗ ∈ X⋆.
This completes the proof.

3.2. Convergence rate analysis for Algorithm 3.1

The discussion in Subsection 3.1 leads to the finding that the sequence of
the feasibility error (d(xi(k), X)2)k≥0 and the sequence of the iteration error
(∥xi(k) − x⋆∥2)k≥0 are stochastically decreasing in the sense of the inequalities
in the following proposition.

12
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Proposition 3.1 Suppose that the assumptions in Theorem 3.1 hold, that x⋆ ∈ X⋆

is a solution to Problem 2.1, and that (xi(k))k≥0 (i ∈ V ) is the sequence generated

by Algorithm 3.1. Then there exist β(j) > 0 (j = 1, 2, 3, 4, 5) such that, almost
surely, for all k ≥ 0,

E

[
m∑
i=1

d (xi (k + 1) , X)2

∣∣∣∣∣Fk

]
≤

m∑
i=1

d (xi (k) , X)2 −
∑
j=1,2

β(j)γ
(j)
k + β(3)γ

(3)
k ,

E

[
m∑
i=1

∥xi (k + 1)− x⋆∥2
∣∣∣∣∣Fk

]
≤

m∑
i=1

∥xi (k)− x⋆∥2 −
∑

j=1,2,5

β(j)γ
(j)
k +

∑
j=3,4

β(j)γ
(j)
k ,

where γ
(1)
k :=

∑m
i=1 d(vi(k), X)2, γ

(2)
k :=

∑m
i=1 ∥vi(k) − proxαkfi(vi(k))∥

2, γ
(3)
k :=

α2
k, γ

(4)
k := αk

∑m
i=1 ∥vi(k) − v̄(k)∥, and γ

(5)
k := αk(f(z̄(k)) − f⋆) (k ≥ 0) satisfy∑∞

k=0 γ
(j)
k < ∞ (j = 1, 2, 3, 4, 5).

Proof: Lemma 3.2 guarantees that γ
(1)
k :=

∑m
i=1 d(vi(k), X)2 and γ

(2)
k :=∑m

i=1 ∥vi(k)−proxαkfi(vi(k))∥
2 (k ≥ 0) satisfy

∑∞
k=0 γ

(j)
k < ∞ almost surely for j =

1, 2. Condition (C2) implies that γ
(3)
k := α2

k (k ≥ 0) satisfies
∑∞

k=0 γ
(3)
k < ∞. From

Lemma 3.3 and (9), γ
(4)
k := αk

∑m
i=1 ∥vi(k)−v̄(k)∥ and γ

(5)
k := αk(f(z̄(k))−f⋆) (k ≥

0) also satisfy
∑∞

k=0 γ
(j)
k < ∞ almost surely for j = 4, 5. Set τ := 1/(6c), η := 1/3,

and µ := 3/2, and put β(1) := −(τ−(1/c)(1−1/µ)) = 1/(6c), β(2) := 2−η−µ = 1/6,
β(3) := mN(τ, η), β(4) := 4M̄ , and β(5) := 2, where β(3), β(4) < ∞ hold from
(A3) and M̄ := maxi∈V Mi. Accordingly, (5) and (7) ensure that Proposition 3.1
holds.
From −

∑
j=1,2 β

(j)γ
(j)
k + β(3)γ

(3)
k ≤ β(3)γ

(3)
k = β(3)α2

k and −
∑

j=1,2,5 β
(j)γ

(j)
k +∑

j=3,4 β
(j)γ

(j)
k ≤

∑
j=3,4 β

(j)γ
(j)
k = (β(3)αk + β(4)

∑m
i=1 ∥vi(k)− v̄(k)∥)αk (k ≥ 0),

Proposition 3.1 and Theorem 3.1 (see (10) for the almost sure boundedness of
(vi(k))k≥0 (i ∈ V )) indicate that (xi(k))k≥0 (i ∈ V ) in Algorithm 3.1 converges
almost surely to a solution to Problem 2.1 under the following convergence rate
conditions: for all k ≥ 0,

E

[
m∑
i=1

d (xi (k + 1) , X)2

∣∣∣∣∣Fk

]
≤

m∑
i=1

d (xi (k) , X)2 +O
(
α2
k

)
,

E

[
m∑
i=1

∥xi (k + 1)− x⋆∥2
∣∣∣∣∣Fk

]
≤

m∑
i=1

∥xi (k)− x⋆∥2 +O (αk) .

(11)

Moreover, under the condition that ∥xi(k + 1) − x⋆∥ ≈ ∥xi(k) − x⋆∥ holds for all
i ∈ V and for a large enough k, (8) means that, almost surely,

f (z̄(k)) ≈ f⋆ + 2M̄
m∑
i=1

∥vi(k)− v̄(k)∥+O (αk) , (12)

where it is guaranteed from Theorem 3.1 that (∥vi(k)− v̄(k)∥)k≥0 (i ∈ V ) converges
almost surely to 0.
From Proposition 3.1, the convergence rate of Algorithm 3.1 depends on β(j) and

(γ
(j)
k )k≥0 (j = 1, 2, 3, 4, 5); i.e., the number of users m and the step size (αk)k≥0

13
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(see (11) and (12)). When m is fixed, it is desirable to set (αk)k≥0 so that, for all
k ≥ 0, E[

∑m
i=1 d(xi(k + 1), X)2|Fk] <

∑m
i=1 d(xi(k), X)2 and E[

∑m
i=1 ∥xi(k + 1)−

x⋆∥2|Fk] <
∑m

i=1 ∥xi(k)− x⋆∥2 are almost surely satisfied. Accordingly, Algorithm
3.1converges quickly if (αk)k≥0 is chosen so as to satisfy

−
∑
j=1,2

β(j)γ
(j)
k + β(3)γ

(3)
k < 0 and −

∑
j=1,2,5

β(j)γ
(j)
k +

∑
j=3,4

β(j)γ
(j)
k < 0 (k ≥ 0).

Hence, it would be desirable to set (αk)k≥0 so as to satisfy
∑

j=3,4 β
(j)γ

(j)
k =

β(3)α2
k + β(4)αk

∑m
i=1 ∥vi(k) − v̄(k)∥ ≈ 0 as much as possible, e.g., to set αk :=

α/(k + 1) with a small positive constant α. Section 5 gives numerical examples
showing that Algorithm 3.1 with αk := 10−3/(k + 1) converges more quickly than
Algorithm 3.1 with αk := 1/(k + 1).
Here, let us compare the convergence analysis of Algorithm 3.1 (Theorem 3.1

and Proposition 3.1) with the convergence analysis of the incremental subgradient-
proximal methods in [4, Section 4]. The problem considered in [4] was

minimize F (x) =
∑
i∈V

Fi(x) :=
∑
i∈V

(fi(x) + hi(x)) subject to x ∈ X, (13)

where fi, hi : Rd → R (i ∈ V ) are convex and X ⊂ Rd is nonempty, closed, and
convex. Under the conditions that fi (i ∈ V ) are suitable for a proximal iteration
and the subgradients of hi (i ∈ V ) are efficiently computed, the following method
[4, Section 4, (4.2)] was proposed for solving Problem (13):

z(k) := proxαkfωk
(x(k)) , gωk

∈ ∂hωk
(z(k)) ,

x(k + 1) := PX (z(k)− αkgωk
) ,

(14)

where (ωk)k≥0 ⊂ V := {1, 2, . . . ,m} is a sequence of random variables.
Algorithm (14) is an incremental optimization algorithm that uses the metric

projection onto the whole constraint set X and the proximity operator and sub-
differential of one function selected randomly from {Fi}i∈V while Algorithm 3.1
is a distributed optimization algorithm that uses the proximity operator of each
user’s objective function and the metric projection onto one closed convex set se-
lected randomly from each user’s constraint sets. Proposition 4.3 in [4] shows that,
under certain assumptions, Algorithm (14) with (αk)k≥0 satisfying (C1) and (C2)
converges almost surely to some random point in the solution set of Problem (13).
Theorem 3.1 guarantees the almost sure convergence of Algorithm 3.1 with the
conditions (C1) and (C2) to a random point in X⋆. Proposition 4.2 in [4] indicates
that, under certain assumptions, Algorithm (14) with αk := α > 0 (k ≥ 0) satisfies
that, for all ϵ > 0, almost surely

min
0≤k≤N

F (x(k)) ≤ F ⋆ +
5αmc2 + ϵ

2
, (15)

where F ⋆ stands for the optimal value of Problem (13), c ∈ R is a constant, X̄⋆

is the solution set of Problem (13), and N is a random variable with E[N ] ≤
md(x(0), X̄⋆)2/(αϵ). From (15) and Proposition 3.1, the convergence rates of Al-
gorithms 3.1 and (14) depend on the number of elements in V and the step size
(αk)k≥0.

14
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4. Distributed random projected subgradient algorithm

This section presents the subgradient algorithm with random projections for solving
Problem 2.1.

Algorithm 4.1

Step 0. User i (i ∈ V ) sets xi(0) arbitrarily.
Step 1. User i (i ∈ V ) receives xj(k) from its neighboring users j ∈ Ni(k) and

computes the weighted average vi(k) defined as in (3) and the subgradient
gi(k) ∈ ∂fi(vi(k)). User i updates its estimate xi(k + 1) by

xi (k + 1) := P
X

Ωi(k)

i

(vi (k)− αkgi (k)) . (16)

The algorithm sets k := k + 1 and returns to Step 1.

In this section, Assumption (A3) is replaced with

(A3)’ For all i ∈ V , there exists Mi ∈ R such that sup{∥gi∥ : x ∈ Xi, gi ∈ ∂fi(x)} ≤
Mi. For all i ∈ V , there exists Ci ∈ R such that sup{∥gi(k)∥ : gi(k) ∈
∂fi(vi(k)), k ≥ 0} ≤ Ci.

It is obvious that Assumption (A3)’ is stronger than Assumption (A3). Assumption
(A3)’ holds when fi (i ∈ V ) is Lipschitz continuous on Rd (Proposition 2.1(iv)). The
boundedness of (gi(k))k≥0 (i ∈ V ) is needed to show that Algorithm 4.1 satisfies∑∞

k=0 d(vi(k), X)2 < ∞ almost surely for all i ∈ V , which is the essential part of
the convergence analysis of Algorithm 4.1 (see Lemmas 4.1 and 4.2 for details).
Let us do a convergence analysis of Algorithm 4.1.

Theorem 4.1 Under Assumptions 2.1–2.3, the sequence (xi(k))k≥0 (i ∈ V ) gener-
ated by Algorithm 4.1 converges almost surely to a random point x⋆ ∈ X⋆.

Let us compare the distributed random projected gradient algorithm [24, (2a)
and (2b)] with Algorithm 4.1. The algorithm [24, (2a) and (2b)] is the pioneering
distributed optimization algorithm that is based on local communications of users’
estimates in a network and a gradient descent with random projections. It can
be applied to Problem 2.1 when fi (i ∈ V ) is convex and differentiable with the
Lipschitz gradient ∇fi [24, Assumption 1 c)]. The algorithm [24, (2a) and (2b)] is

xi (k + 1) := P
X

Ωi(k)

i

(vi (k)− αk∇fi (vi (k))) , (17)

where vi(k) is defined as in (3). Proposition 1 in [24] indicates that, under the as-
sumptions in Theorem 3.1, the sequence (xi(k))k≥0 (i ∈ V ) generated by Algorithm
(17) converges almost surely to x⋆ ∈ X⋆. In contrast to Algorithm (17), Algorithm
4.1 can be applied to nonsmooth convex optimization (see Assumption 2.1(A2))
by using the subgradients gi(k) ∈ ∂fi(vi(k)) (i ∈ V, k ≥ 0) and enables all users to
arrive at the same solution to Problem 2.1 under the assumptions in Theorem 4.1
that are stronger than the ones in Theorem 3.1. In Algorithm 3.1, each user sets
xi(k + 1) by using its proximity operator (see (4) for definition of xi(k) (k ≥ 0) in
Algorithm 3.1) and can solve Problem 2.1 under the assumptions in Theorem 3.1
(see Theorem 3.1).
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4.1. Proof of Theorem 4.1

The proof starts with the following lemma, which can be proven by referring to
the proof of [26, Lemma 2].

Lemma 4.1 Suppose that Assumption 2.1 holds. Then for all x ∈ X, for all i ∈ V ,
for all z ∈ Xi, for all k ≥ 0, and for all τ, η > 0,

∥xi (k + 1)− x∥2 ≤ ∥vi (k)− x∥2 − 2αk (fi (z)− fi (x)) +M (τ, η)α2
k

+ τ ∥vi (k)− z∥2 + (η − 1) ∥vi (k)− xi (k + 1)∥2 ,

where M(τ, η) := maxi∈V (M
2
i /τ + C2

i /η) < ∞, and Mi and Ci (i ∈ V ) are as in
Assumption (A3)’.

The following lemma can also be proven by referring to the proof of Lemma 3.2
and by using Lemma 4.1 (see [20] for the details of the proof of Lemma 4.2).

Lemma 4.2 Suppose that Assumptions 2.1, 2.5, and 2.3 hold. Then∑∞
k=0 d(vi(k), X)2 < ∞ almost surely for all i ∈ V .

Proof: A discussion similar to the one for obtaining (5) implies that, almost
surely, for all k ≥ 0,

E

[
m∑
i=1

d (xi (k + 1) , X)2

∣∣∣∣∣Fk

]
≤

m∑
j=1

d (xj (k) , X)2 − 1

4c

m∑
i=1

d (vi (k) , X)2

+mM

(
1

2c
,
1

4

)
α2
k.

(18)

Proposition 2.2 and (C2) lead to
∑∞

k=0

∑m
i=1 d(vi(k), X)2 < ∞ almost surely; i.e.,∑∞

k=0 d(vi(k), X)2 < ∞ almost surely for all i ∈ V . This completes the proof.
A discussion similar to the one for proving Lemma 3.3 leads to the following

(The proof of Lemma 4.3 is also described in [20]).

Lemma 4.3 Suppose that Assumptions 2.1, 2.2, and 2.3 hold, and define v̄(k) :=
(1/m)

∑m
l=1 vl(k) and ei(k) := xi(k+1)−vi(k) for all k ≥ 0 and for all i ∈ V . Then∑∞

k=0 ∥ei(k)∥2 < ∞ and
∑∞

k=0 αk∥vi(k)− v̄(k)∥ < ∞ almost surely for all i ∈ V .

The same discussion as for the proof of Lemma 3.4 leads to the following (see
[20] for the details of the proof of Lemma 4.4).

Lemma 4.4 Suppose that the assumptions in Theorem 4.1 are satisfied and de-
fine zi(k) := PX(vi(k)) for all i ∈ V and for all k ≥ 0 and define z̄(k) :=
(1/m)

∑m
i=1 zi(k) for all k ≥ 0. Then the sequence (∥xi(k) − x⋆∥)k≥0 converges

almost surely for all i ∈ V and for all x⋆ ∈ X⋆, and lim infk→∞ f(z̄(k)) = f⋆

almost surely.

Proof: Choose x⋆ ∈ X⋆ arbitrarily. It can be observed that (6) holds for Algorithm
4.1 because the definitions of z̄(k) and v̄(k) (k ≥ 0) in the proof of Theorem 3.1 are
the same as the definitions of z̄(k) and v̄(k) (k ≥ 0) in Lemma 4.4. A discussion
similar to the one for proving (7) means that, almost surely for all k ≥ 0, for all

16
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τ > 0, and for all η ∈ (0, 1),

E

[
m∑
i=1

∥xi (k + 1)− x⋆∥2
∣∣∣∣∣Fk

]
≤

m∑
i=1

∥xi (k)− x⋆∥2 + 4M̄αk

m∑
i=1

∥vi (k)− v̄ (k)∥

− 2αk (f (z̄ (k))− f⋆) + τ

m∑
i=1

d (vi (k) , X)2

+
η − 1

c

m∑
i=1

d (vi (k) , X)2 +mM (τ, η)α2
k, (19)

which, together with τ := 1/(2c), η := 1/4, and τ + (η − 1)/c = −1/(4c), implies
that, almost surely, for all k ≥ 0,

E

[
m∑
i=1

∥xi (k + 1)− x⋆∥2
∣∣∣∣∣Fk

]
≤

m∑
i=1

∥xi (k)− x⋆∥2 − 2αk (f (z̄ (k))− f⋆)

+ 4M̄αk

m∑
i=1

∥vi (k)− v̄ (k)∥+mM

(
1

2c
,
1

4

)
α2
k,

(20)

where M(1/(2c), 1/4) < ∞ holds from (A3)’. Therefore, Proposition 2.2, (C2),
and Lemma 4.3 ensure that (

∑m
i=1 ∥xi(k)− x⋆∥2)k≥0 converges almost surely; i.e.,

(∥xi(k)− x⋆∥)k≥0 converges almost surely for all i ∈ V . Moreover, since z̄(k) ∈ X
implies f(z̄(k))− f⋆ ≥ 0 (k ≥ 0), there is also another finding: almost surely

∞∑
k=0

αk (f (z̄ (k))− f⋆) < ∞. (21)

Hence, a discussion similar to the one for proving Lemma 3.4 leads to
lim infk→∞ f(z̄(k)) = f⋆ almost surely. This completes the proof.
Theorem 4.1 can be proven by referring to the proof of Theorem 3.1.
Proof: By referring to the proof of Theorem 3.1, the almost sure convergence of

(xi(k))k≥0 (i ∈ V ) and Lemma 4.2 lead to the conclusion that (vi(k))k≥0, (zi(k))k≥0

(i ∈ V ), (v̄(k))k≥0, and (z̄(k))k≥0 converge almost surely. Moreover, Lemma 4.4
and the continuity of f ensure that (v̄(k))k≥0 and (z̄(k))k≥0 converge almost surely
to x∗ ∈ X⋆. By referring to the proof of Theorem 3.1, Lemma 4.3, (C1), and the
triangle inequality guarantee that limk→∞ ∥vi(k)−x∗∥ = 0 almost surely for all i ∈
V . Since Lemma 4.3 ensures that, for all i ∈ V , limk→∞ ∥ei(k)∥2 = limk→∞ ∥xi(k+
1) − vi(k)∥2 = 0 almost surely, (xi(k))k≥0 (i ∈ V ) converges almost surely to
x∗ ∈ X⋆. This completes the proof.

4.2. Convergence rate analysis for Algorithm 4.1

The following proposition is proven by referring to the discussion in Subsection 4.1.

Proposition 4.1 Suppose that the assumptions in Theorem 4.1 hold, that x⋆ ∈ X⋆

is a solution to Problem 2.1, and that (xi(k))k≥0 (i ∈ V ) is the sequence generated

by Algorithm 4.1. Then there exist β(j) > 0 (j = 1, 2, 3, 4) such that, almost surely,

17
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for all k ≥ 0,

E

[
m∑
i=1

d (xi (k + 1) , X)2

∣∣∣∣∣Fk

]
≤

m∑
i=1

d (xi (k) , X)2 − β(1)γ
(1)
k + β(2)γ

(2)
k ,

E

[
m∑
i=1

∥xi (k + 1)− x⋆∥2
∣∣∣∣∣Fk

]
≤

m∑
i=1

∥xi (k)− x⋆∥2 −
∑
j=1,4

β(j)γ
(j)
k +

∑
j=2,3

β(j)γ
(j)
k ,

where γ
(1)
k :=

∑m
i=1 d(vi(k), X)2, γ

(2)
k := α2

k, γ
(3)
k := αk

∑m
i=1 ∥vi(k) − v̄(k)∥, and

γ
(4)
k := αk(f(z̄(k))− f⋆) (k ≥ 0) satisfy

∑∞
k=0 γ

(j)
k < ∞ (j = 1, 2, 3, 4).

Proof: From Lemma 4.2 and (C2), γ
(1)
k :=

∑m
i=1 d(vi(k), X)2 and γ

(2)
k := α2

k

(k ≥ 0) satisfy
∑∞

k=0 γ
(1)
k < ∞ almost surely and

∑∞
k=0 γ

(2)
k < ∞. Lemma 4.3

and (21) ensure that γ
(3)
k := αk

∑m
i=1 ∥vi(k) − v̄(k)∥ and γ

(4)
k := αk(f(z̄(k)) − f⋆)

(k ≥ 0) also satisfy
∑∞

k=0 γ
(j)
k < ∞ almost surely for j = 3, 4. Set τ := 1/(2c) and

η := 1/4, β(1) := −(τ + (η − 1)/c) = 1/(4c), β(2) := mM(τ, η), β(3) := 4M̄ , and
β(4) := 2, where β(2), β(3) < ∞ hold from (A3)’ and M̄ := maxi∈V Mi. Accordingly,
(18) and (19) ensure that Proposition 4.1 holds.
A discussion similar to the one for obtaining (11), Proposition 4.1, and Theorem

4.1 indicates that (xi(k))k≥0 (i ∈ V ) in Algorithm 4.1 converges almost surely to
a solution to Problem 2.1 for the following convergence rates: for all k ≥ 0,

E

[
m∑
i=1

d (xi (k + 1) , X)2

∣∣∣∣∣Fk

]
≤

m∑
i=1

d (xi (k) , X)2 +O
(
α2
k

)
,

E

[
m∑
i=1

∥xi (k + 1)− x⋆∥2
∣∣∣∣∣Fk

]
≤

m∑
i=1

∥xi (k)− x⋆∥2 +O (αk) .

(22)

Under the condition that ∥xi(k + 1) − x⋆∥ ≈ ∥xi(k) − x⋆∥ for all i ∈ V and for a
large enough k, (20) implies that, almost surely,

f (z̄(k)) ≈ f⋆ + 2M̄
m∑
i=1

∥vi(k)− v̄(k)∥+O(αk), (23)

where (∥vi(k) − v̄(k)∥)k≥0 is the almost sure convergent sequence (see proof of
Theorem 4.1). It can be observed from (11), (12), (22), and (23) that Algorithms
3.1 and 4.1 have almost the same convergence rate. Section 5 gives numerical
examples showing that Algorithms 3.1 and 4.1 have almost the same convergence
rate when they have the same step size.
Next, let us consider the case in which fi (i ∈ V ) is convex and differentiable and

∇fi (i ∈ V ) satisfies the Lipschitz continuity condition [24, Assumption 1 c)]. Then
Algorithm 4.1 coincides with the first distributed random projection algorithm [24,
(2a) and (2b)] (see (17)) defined as follows for all k ≥ 0 and for all i ∈ V :

xi (k + 1) := P
X

Ωi(k)

i

(vi (k)− αk∇fi (vi (k))) , (24)

where vi(k) (i ∈ V, k ≥ 0) is as in (3) and (αk)k≥0 satisfies (C1) and (C2). The
proof of Lemma 5 and (18) in [24] indicate that algorithm (24), under (A3), almost

18
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surely satisfies the following convergence rate conditions for a large enough k.

E

[
m∑
i=1

d (xi (k + 1) , X)2

∣∣∣∣∣Fk

]
≤

(
1 +O

(
α2
k

)) m∑
i=1

d (xi (k) , X)2 +O
(
α2
k

)
,

E

[
m∑
i=1

∥xi (k + 1)− x⋆∥2
∣∣∣∣∣Fk

]
≤

(
1 +O

(
α2
k

)) m∑
i=1

∥xi (k)− x⋆∥2 +O (αk) .

(25)

Proposition 4.1 implies that, if the stronger assumption (A3)’ is satisfied, Algorithm
(24) satisfies (22) that are better properties for convergence rate than (25).
Let us compare the convergence analysis used here (Theorem 4.1 and Proposi-

tion 4.1) with that of the incremental subgradient methods in [27]. The following
incremental subgradient method with randomization can optimize the sum of non-
smooth, convex functions

∑
i∈V fi over a nonempty, closed convex set X [27, (3.1)]:

gωk
∈ ∂fωk

(x(k)),

x(k + 1) := PX (x(k)− αkgωk
) ,

(26)

where (ωk)k≥0 ⊂ V is a sequence of random variables.
Algorithm (26) is an incremental optimization algorithm that uses the metric

projection onto the whole constraint set X and the subdifferential of one function
selected randomly from {fi}i∈V while Algorithm 4.1 is a distributed optimization
algorithm that uses the subdifferential of each user’s objective function and the
metric projection onto one closed convex set selected randomly from each user’s
constraint sets. Under certain assumptions, Algorithm (26) with (αk)k≥0 satisfying
(C1) and (C2) converges almost surely to some minimizer of

∑
i∈V fi over X [27,

Proposition 3.2]. Theorem 4.1 with conditions (C1) and (C2) indicates the almost
sure convergence of Algorithm 4.1 to a random point in X⋆. Proposition 3.1 in
[27] indicates that, under certain assumptions, Algorithm (26) with αk := α > 0
(k ≥ 0) means that the following relationship is almost surely satisfied.

inf
k≥0

∑
i∈V

fi (x(k)) ≤
∑
i∈V

fi (x
⋆) +

αmc2

2
, (27)

where x⋆ ∈ X represents the minimizer of
∑

i∈V fi over X and c ∈ R is a constant.
From (27) and Proposition 4.1, the convergence rates of Algorithms 4.1 and (26)
depend on the number of elements in V and the step size (αk)k≥0, as seen in
Algorithms 3.1 and (14) (see Subsection 3.2).

5. Numerical evaluation

Let us apply Algorithms 3.1 and 4.1 to Problem 2.1 with fi : Rd → R, and Xi ⊂ Rd

(i ∈ V := {1, 2, . . . ,m}) defined by

fi (x) :=
d∑

j=1

aij |xj − bij | and Xi :=
d∩

j=1

{
x ∈ Rd : ∥x− cij∥ ≤ rij

}
,

19
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where ai := (aij)
d
j=1, bi := (bij)

d
j=1, ri := (rij)

d
j=1 ∈ Rd

+ (i ∈ V ), and cij ∈ Rd

(i ∈ V, j = 1, 2, . . . , d), meaning that this is the problem of minimizing the sum
of the weighted L1-norms f(x) =

∑m
i=1 fi(x) over the intersection of closed balls

X =
∩m

i=1Xi. The metric projection onto Xj
i := {x ∈ Rd : ∥x − cij∥ ≤ rij} (i ∈

V, j = 1, 2, . . . , d) can be computed within a finite number of arithmetic operations
[1, Chapter 28]. Function fi (i ∈ V ) satisfies the Lipschitz continuity condition.

Hence, Assumptions 2.1 and 2.5 hold. The set X
Ωi(k)
i (i ∈ V, k ≥ 0) used in

the numerical evaluation was chosen randomly from the sets Xj
i so as to satisfy

Assumption 2.4. The subdifferential ∂fi and the proximity operator proxαfi (i ∈
V, α > 0) can be calculated explicitly [13, Lemma 10, (30), (35)].
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Figure 1.: Network model used in numerical evaluation, where users within each
marked area can communicate with each other

In the evaluation, a network with 48 users (i.e., m := 48) and 16 subnetworks
was used, as illustrated in Figure 1. It was assumed that users within each marked
area (i.e., all users in each subnetwork) could communicate with each other. For
example, user 2 could communicate with users 1, 3, and 4 (i.e., N2(k) = {1, 2, 3, 4})
while user 1 could communicate with not only users 2, 3, and 4 but also users 46,
47, and 48 (i.e., N1(k) = {1, 2, 3, 4, 46, 47, 48}). The weighted parameters wij(k)
(i ∈ V, j ∈ Ni(k)) were set to satisfy Assumption 2.3 (e.g., user 2 had w2,j (j ∈
N2(k)) such that w2,j(k) = wj,2(k) = 3/8 (j = 2, 3) and w2,j(k) = wj,2(k) = 1/8
(j = 1, 4), and user 1 had w1,j (j ∈ N1(k)) such that w1,1(k) = 2/8 and w1,j(k) =
wj,1 = 1/8 (j = 2, 3, 4, 46, 47, 48)). The point vi(k) (i ∈ V ) defined in (3) (e.g.,
v2(k) = (3/8)(x2(k) + x3(k)) + (1/8)(x1(k) + x4(k))) was computed by passing
along xj(k) (j ∈ Ni(k)) in a prearranged cyclic order.
The computer used in the evaluation had two Intel Xeon E5-2640 v3 (2.60 GHz)

CPUs. Each had 8 physical cores and 16 threads; i.e., the total number of cores
was 16, and the total number of threads was 32. The computer had 64 GB DDR4
memory and ran the Ubuntu 14.04.1 (Linux kernel: 3.16.0-30-generic, 64 bit) oper-
ating system. The evaluation programs were run in Python 3.4.0; Numpy 1.8.2 was
used to compute the linear algebra operations. We set d := 100 and m := 48 and
used ai := (aij)

d
j=1 ∈ (0, 1]d, bi := (bij)

d
j=1 ∈ [0, 1)d, ri := (rij)

d
j=1 ∈ [3, 4)d (i ∈ V ),

and cij ∈ [−
√

(3/4)d,
√

(3/4)d)d (i ∈ V, j = 1, 2, . . . , d) to satisfy X ̸= ∅ generated
randomly by numpy.random. One hundred samplings were performed, each starting
from different random initial points xi(0) (i ∈ V ) in the range [−2, 2]d, and the
results were averaged.
From the discussion in Subsections 3.2 and 4.2, it can be expected that Algo-

rithms 3.1 and 4.1 with small step sizes converge quickly. To see how the step size af-
fects their convergence rates, we compared their rates for αk = 1/(k+1) with those
for αk = 10−3/(k+1). Step size αk = 1/(k+1) is the simplest sequence satisfying
(C1) and (C2) in Assumption 2.3. The selection of step size αk = 10−3/(k+1) was
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based on the numerical results in [16, 22], which presented fixed point optimization
algorithms that minimize the sum of smooth, convex functions over the intersec-
tion of simple, closed convex sets. The previous results [16, 22] indicated that fixed
point optimization algorithms with a small step size such as αk = 10−3/(k + 1)
converge more quickly than ones with the standard step size αk = 1/(k + 1). Ac-
cordingly, the numerical evaluation described here used step sizes αk = 1/(k + 1)
and 10−3/(k + 1) and investigated which one resulted in quicker convergence for
Algorithms 3.1 and 4.1.
Let us define two performance measures for each i ∈ V and for all k ≥ 0,

Di (k) :=

∥∥∥∥∥∥xi (k)−
d∏

j=1

PXj
i
(xi (k))

∥∥∥∥∥∥ and Fi (k) := fi (xi (k)) , (28)

and observe the behaviors of Di(k) and Fi(k) for Algorithms 3.1 and 4.1 with
αk = 1/(k + 1) and 10−3/(k + 1). If (Di(k))k≥0 (i ∈ V ) converges to 0, (xi(k))k≥0

converges to a fixed point of
∏d

j=1 PXj
i
, i.e., to a point inXi =

∩d
j=1X

j
i [1, Corollary

4.37].
First, let us observe the behaviors of (x1(k))

1000
k=0 calculated for user 1, which

belongs to two subnetworks. Figures 2 and 3 show that Algorithm 3.1 converged
more quickly to a point in X1 with αk = 10−3/(k + 1) than with αk = 1/(k + 1).
From Figures 2 and 3, it can be seen that Algorithm 3.1 with αk = 10−3/(k + 1)
optimizes f1 over X1 in the early stages.
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(b) D1(k) vs. elapsed time

Figure 2.: Behaviors ofD1(k) for Algorithm 3.1 with αk = 1/(k+1) and 10−3/(k+1)
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(b) F1(k) vs. elapsed time

Figure 3.: Behaviors of F1(k) for Algorithm 3.1 with αk = 1/(k+1) and 10−3/(k+1)
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Figures 4 and 5 show that Algorithm 4.1 also converged more quickly to a point
in X1 with αk = 10−3/(k + 1) than with αk = 1/(k + 1). This is consistent with
the finding that the algorithms had the same convergence rate (see (11) and (22)).
Investigation of the behaviors of (Di(k))

1000
k=0 and (Fi(k))

1000
k=0 (i = 2, 3, . . . , 48)

revealed that (xi(k))
1000
k=0 (i = 2, 3, . . . , 48) generated by Algorithms 3.1 and 4.1

with αk = 10−3/(k + 1) converged more quickly than (xi(k))
1000
k=0 generated by

Algorithms 3.1 and 4.1 with αk = 1/(k + 1) and that they have almost the same
convergence rate when they use the same step sizes, as seen in Figures 2–5. It also
revealed that all users’ sequences generated by both algorithms converged to the
same point. The details are omitted due to the lack of space.
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(b) D1(k) vs. elapsed time

Figure 4.: Behaviors ofD1(k) for Algorithm 4.1 with αk = 1/(k+1) and 10−3/(k+1)
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(a) F1(k) vs. no. of iterations
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(b) F1(k) vs. elapsed time

Figure 5.: Behaviors of F1(k) for Algorithm 4.1 with αk = 1/(k+1) and 10−3/(k+1)

To illustrate the efficiency of Algorithms 3.1 and 4.1 for the whole network, let
us observe the behaviors of D(k) and F (k) for all k ≥ 0:

D (k) :=

m∑
i=1

∥∥∥∥∥∥xi (k)−
d∏

j=1

PXj
i
(xi (k))

∥∥∥∥∥∥ and F (k) :=

m∑
i=1

fi (xi (k)) .

If (xi(k))k≥0 (i ∈ V ) converge to the same point, the convergence of (D(k))k≥0 to

0 implies that (xi(k))k≥0 (i ∈ V ) converges to a fixed point of
∏d

j=1 PXj
i
for all

i ∈ V ; i.e., to a point in
∩m

i=1

∩d
j=1X

j
i =

∩m
i=1Xi =: X.

Figure 6 shows that (xi(k))
1000
k=0 (i ∈ V ) generated by Algorithm 3.1 with αk =

10−3/(k + 1) converged to a point in X faster than with αk = 1/(k + 1). Figure
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(a) D(k) vs. no. of iterations (D(103) ≈
0.049868 for αk = 10−3/(k + 1))
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(b) D(k) vs. elapsed time

Figure 6.: Behaviors ofD(k) for Algorithm 3.1 with αk = 1/(k+1) and 10−3/(k+1)
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(a) F (k) vs. no. of iterations (F (103) ≈
2587.784266 for αk = 10−3/(k + 1))
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(b) F (k) vs. elapsed time

Figure 7.: Behaviors of F (k) for Algorithm 3.1 with αk = 1/(k+1) and 10−3/(k+1)

7 shows that (F (k))1000k=0 generated by Algorithm 3.1 with αk = 10−3/(k + 1) was
stable in the early stages.
Figures 8 and 9 illustrate the behaviors of (D(k))1000k=0 and (F (k))1000k=0 for Al-

gorithm 4.1 with αk = 1/(k + 1), 10−3/(k + 1). Figure 9 shows that the value
of F (103) generated by Algorithm 4.1 with αk = 10−3/(k + 1) was about 2587,
which is almost the same as the value of F (103) generated by Algorithm 3.1 with
αk = 10−3/(k + 1) (Figure 7). Although the value of D(103) (≈ 0.049868) gener-
ated by Algorithm 3.1 with αk = 10−3/(k+1) was smaller than that (≈ 0.053781)
generated by Algorithm 4.1 with αk = 10−3/(k + 1), Figures 6–9 show that the
behaviors for Algorithm 4.1 were almost the same as the ones for Algorithm 3.1.
Finally, the users are divided into 16 groups,

G1 := {2, 3, 4} , G2 := {5, 6, 7} , . . . , G16 := {47, 48, 1} ,

and the values of the objective functions and performance measures for each group
are compared.

FGj
:=

∑
i∈Gj

Fi

(
103

)
and DGj

:=
∑
i∈Gj

Di

(
103

)
(j = 1, 2, . . . , 16) ,

where Fi(k) and Di(k) (i ∈ V, k ≥ 0) are defined as in (28).
It can be seen from Table 1, which shows the values of FGj

and DGj
(j =

1, 2, . . . , 16) for Algorithm 3.1 with αk = 1/(k+1) and 10−3/(k+1), that the DGj
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(a) D(k) vs. no. of iterations (D(103) ≈
0.053781 when αk = 10−3/(k + 1))
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(b) D(k) vs. elapsed time

Figure 8.: Behaviors ofD(k) for Algorithm 4.1 with αk = 1/(k+1) and 10−3/(k+1)
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(a) F (k) vs. no. of iterations (F (103) ≈
2587.630859 when αk = 10−3/(k + 1))
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(b) F (k) vs. elapsed time

Figure 9.: Behaviors of F (k) for Algorithm 4.1 with αk = 1/(k+1) and 10−3/(k+1)

Table 1.: Values of FGj
:=

∑
i∈Gj

Fi(10
3) and DGj

:=
∑

i∈Gj
Di(10

3) (j =

1, 2, . . . , 16) for Algorithm 3.1 with αk = 1/(k + 1) and 10−3/(k + 1)

(a) αk = 1/(k + 1)

Group FGj
DGj

01 163.428093 0.325050
02 158.725168 0.301325
03 154.834519 0.340681
04 157.867759 0.325576
05 169.889020 0.342258
06 160.626418 0.304963
07 161.166806 0.328647
08 148.522159 0.342929
09 160.980531 0.270875
10 160.546361 0.356931
11 162.681703 0.326232
12 158.329823 0.361666
13 166.747981 0.329523
14 157.684287 0.253613
15 154.678365 0.326188
16 150.104832 0.292431

(b) αk = 10−3/(k + 1)

Group FGj
DGj

01 166.805046 0.000154
02 161.267547 0.000816
03 157.564483 0.000780
04 160.620520 0.000016
05 172.271029 0.000024
06 162.896308 0.006480
07 163.472768 0.000000
08 151.511558 0.000712
09 163.481266 0.000000
10 163.301971 0.000316
11 164.912426 0.006555
12 160.847494 0.022754
13 169.300357 0.010475
14 160.186324 0.000000
15 156.894949 0.000785
16 152.450221 0.000000
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Table 2.: Values of FGj
:=

∑
i∈Gj

Fi(10
3) and DGj

:=
∑

i∈Gj
Di(10

3) (j =

1, 2, . . . , 16) for Algorithm 4.1 with αk = 1/(k + 1) and 10−3/(k + 1)

(a) αk := 1/(k + 1)

Group FGj
DGj

01 163.488124 0.319108
02 158.709368 0.299227
03 154.986973 0.332485
04 157.928141 0.324662
05 169.901684 0.321779
06 160.636388 0.308214
07 161.228299 0.314448
08 148.436659 0.362904
09 160.756450 0.266202
10 160.449748 0.368771
11 162.608469 0.340017
12 158.361547 0.347438
13 166.913645 0.321366
14 157.718005 0.240146
15 154.436379 0.348402
16 150.187445 0.286736

(b) αk := 10−3/(k + 1)

Group FGj
DGj

01 166.798378 0.000058
02 161.254440 0.001169
03 157.543728 0.001018
04 160.614962 0.000035
05 172.259768 0.000000
06 162.899171 0.006912
07 163.458852 0.000000
08 151.501730 0.000813
09 163.477941 0.000000
10 163.295545 0.000309
11 164.885338 0.007128
12 160.815178 0.025368
13 169.319284 0.009938
14 160.189071 0.000000
15 156.886623 0.001033
16 152.430848 0.000000

values generated by Algorithm 3.1 with αk = 10−3/(k+1) were smaller than those
generated with αk = 1/(k + 1). In particular, DG4

, DG7
, DG9

, DG14
, and DG16

were dramatically lower with αk = 10−3/(k + 1). It can be seen from Table 2 that
Algorithm 4.1 performed better with αk = 10−3/(k+1) than with αk = 1/(k+1).
This is becauseDG5

,DG7
,DG9

,DG14
, andDG16

were approximately zero with αk =
10−3/(k+1). Tables 1 and 2 show that the values of FGj

generated by Algorithm 3.1
were almost the same as those generated by Algorithm 4.1. Accordingly, Algorithms
3.1 and 4.1 with the same step size have almost the same convergence rate and
converge more quickly with αk = 10−3/(k + 1) than with αk = 1/(k + 1), as seen
in the figures.
The analyses in Subsections 3.2 and 4.2 and the results of the numerical evalu-

ation indicate that the rate of convergence of Algorithm 3.1 is almost the same as
that of Algorithm 4.1 when they have the same step size and that the algorithms
are stable and converge quickly when they have smaller step sizes.

6. Conclusion and future work

The problem of minimizing the sum of all users’ nonsmooth convex objective func-
tions over the intersection of all users’ closed convex constraint sets was discussed,
and two distributed algorithms were presented for solving the problem. One algo-
rithm uses each user’s proximity operator and metric projection onto a set ran-
domly selected from components of its constraint set while the other is obtained
by replacing the proximity operator of the first algorithm with the subdifferential.
Convergence analysis showed that, under certain assumptions, the sequences of all
users generated by each of the two algorithms converge almost surely to the same
solution to the problem. It also showed that the rates of convergence depend on
the step size of the sequence and that it is desired to use small-step-size sequences
so that the algorithms converge quickly. The results of numerical evaluation using
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a nonsmooth convex optimization problem support this analysis and demonstrate
the effectiveness of the two algorithms.
The proposed algorithms work well when each user randomly sets one metric

projection selected from many projections. Since nonexpansive mappings are gen-
eralizations of metric projections and thus have wider application, developing dis-
tributed random algorithms that work when one user randomly chooses one non-
expansive mapping at a time is a promising undertaking.
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