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Two optimization algorithms are proposed for solving a stochastic programming problem
for which the objective function is given in the form of the expectation of convex functions
and the constraint set is defined by the intersection of fixed point sets of nonexpansive
mappings in a real Hilbert space. This setting of fixed point constraints enables consideration
of the case in which the projection onto each of the constraint sets cannot be computed
efficiently. Both algorithms use a convex function and a nonexpansive mapping determined
by a certain probabilistic process at each iteration. One algorithm blends a stochastic gradient
method with the Halpern fixed point algorithm. The other is based on a stochastic proximal
point algorithm and the Halpern fixed point algorithm; it can be applied to nonsmooth
convex optimization. Convergence analysis showed that, under certain assumptions, any weak
sequential cluster point of the sequence generated by either algorithm almost surely belongs
to the solution set of the problem. Convergence rate analysis illustrated their efficiency,
and the numerical results of convex optimization over fixed point sets demonstrated their
effectiveness.
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1. Introduction

Stochastic programming problems have been recognized as significant, interesting prob-
lems that arise from practical applications in engineering and operational research.
Stochastic optimization methods have thus been developed to efficiently solve various
stochastic programming problems.
This paper considers a convex stochastic programming problem for which the objective

function is given by the sum of convex functions or by a form of the expectation of convex
functions and surveys stochastic optimization methods for solving it and related work.
Incremental proximal point algorithms with randomized order [3, 5] minimize the sum of
convex functions. Random gradient and subgradient algorithms [35] solve the problem of
minimizing one convex function over sublevel sets of convex functions. It also discusses the
connection between stochastic gradient descent and the randomized Kaczmarz method

This work was supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific
Research (C) (15K04763).



December 31, 2017 Optimization Methods & Software GOMS-2017-0013R1

[37]. Stochastic approximation and sample average approximation methods [38] optimize
the expected value of objective functions over a closed convex set. Incremental stochastic
subgradient algorithms [44] minimize the sum of convex functions over a closed convex
set. Stochastic approximation algorithms [13, 14, 29] perform convex stochastic composite
optimization over a closed convex set. A distributed random projection algorithm [30]
minimizes the sum of smooth, convex functions over the intersection of closed convex sets
while incremental constraint projection-proximal methods [45] can be used to minimize
the expected value of nonsmooth, convex functions over the intersection of closed convex
sets. Multi-stage stochastic programming has been discussed [4, 12, 42, 52], and the
results [1, 15–17, 41, 47] can even be applied to nonconvex stochastic optimization over
the whole space or certain convex constraints. A proposed stochastic forward-backward
splitting algorithm [11] can be used to find the zeros of monotone operators.
In contrast to the stochastic programming considered in previous reports, this pa-

per discusses stochastic programming problems in which each of the constraints is the
fixed point set of a certain nonexpansive mapping. Convex optimization with fixed point
constraints in a real Hilbert space is interesting and important because it enables con-
sideration of optimization problems with complicated constraint sets onto which metric
projections cannot be easily calculated and because it has many practical applications
[7, 8, 22, 24, 43, 48, 49]. Although convex optimization with fixed point constraints has
been analyzed in the deterministic case [7, 22–25, 27, 48] and stochastic fixed point al-
gorithms have been presented [6, Subchapter 10.3], [10], there have been no reports on
stochastic optimization methods for convex optimization with fixed point constraints.
This paper is the first to consider convex stochastic programming problems with fixed

point constraints and to present stochastic optimization algorithms for solving them.
After the mathematical preliminaries and main problem statement are presented, the
smooth convex stochastic programming problem is discussed (Section 3), and a stochas-
tic optimization algorithm is proposed to solve it. This algorithm (Algorithm 1) blends
a stochastic gradient method [6, Subchapter 10.2], [30, 35–37, 44] with the Halpern fixed
point algorithm [18, 46], which is a useful fixed point algorithm. Next, the nonsmooth
convex stochastic programming problem is discussed (Section 4), and an algorithm (Al-
gorithm 2) is presented that is based on the stochastic proximal point algorithm [3, 5, 45]
and the Halpern fixed point algorithm.
One contribution of this paper is to enable consideration of (nonsmooth) convex

stochastic optimization over fixed point sets of nonexpansive mappings, in contrast to
recent papers [22–24, 26, 27] that discussed deterministic convex optimization over the
fixed point sets of nonexpansive mappings. The previous algorithm [23] is a centralized
acceleration algorithm for minimizing one smooth, strongly convex function over the
fixed point set of a nonexpansive mapping. Although the algorithms in [22, 27] are de-
centralized algorithms that optimize the sum of smooth, convex objective functions over
fixed point sets of nonexpansive mappings, they can work under the restricted situation
such that the gradients of the functions are Lipschitz continuous and strongly or strictly
monotone. The decentralized algorithms in [24, 26] can be applied to nonsmooth con-
vex optimization with fixed point constraints. However, since the algorithms in [24, 26],
as with the previous algorithms [22, 23, 27], can be applied only to deterministic opti-
mization, they cannot work on convex stochastic optimization over fixed point sets of
nonexpansive mappings.
Another contribution is convergence analysis of the two proposed algorithms with

diminishing step-size sequences. From the fact that a mapping containing the gradient of a
convex function satisfies the nonexpansivity condition (Proposition 2.1), it is shown that,
under certain assumptions, any weak sequential cluster point of the sequence generated by
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the proposed gradient algorithm almost surely belongs to the solution set of the problem
(Theorem 3.1). The nonexpansivity condition of the proximity operator (Proposition 2.2)
means that, under certain assumptions, any weak sequential cluster point of the sequence
generated by the proposed proximal point algorithm almost surely belongs to the solution
set of the problem (Theorem 4.1). Convergence rate analysis of the two algorithms is also
provided (Propositions 3.1 and 4.1).
This paper is organized as follows. Section 2 gives the mathematical preliminaries and

states the main problem. Section 3 presents convergence and convergence rate analyses
of the proposed gradient algorithm under certain assumptions. Section 4 presents con-
vergence and convergence rate analyses of the proposed proximal point algorithm under
certain assumptions. Section 5 considers specific convex optimization problems and com-
pares numerically the behaviors of the two algorithms. Section 6 concludes the paper
with a brief summary.

2. Preliminaries

2.1 Notation and definitions

Let H be a separable real Hilbert space with inner product ⟨·, ·⟩, its induced norm
∥ · ∥, and Borel σ-algebra B. Let N be the set of all positive integers including zero.
Let Id denote the identity mapping on H. Let Fix(T ) := {x ∈ H : T (x) = x} be the
fixed point set of a mapping T : H → H. The set of weak sequential cluster points [2,
Subchapters 1.7 and 2.5] of a sequence (xn)n∈N in H is denoted by W(xn)n∈N; i.e.,
x ∈ W(xn)n∈N if and only if there exists a subsequence (xnl

)l∈N of (xn)n∈N such that
(xnl

)l∈N weakly converges to x. Let E[X] denote the expectation of a random variable
X. Given a probability space (Ω,F ,P), a H-valued random variable x is defined by a
measurable mapping x : (Ω,F) → (H,B). The σ-algebra generated by a family Φ of
random variables is denoted by σ(Φ). Suppose that (xn)n∈N is a sequence of H-valued
random variables and C ⊂ H. Then, any weak sequential cluster point of (xn)n∈N is
said to almost surely belong to C if there exists Ω0 ∈ F such that P(Ω0) = 1 and
W(xn(ω))n∈N ⊂ C for all ω ∈ Ω0 (see also the proof of [10, Corollary 2.7(i)]). Suppose
that (xn)n∈N and (yn)n∈N are positive real sequences. Let O and o denote Landau’s
symbols; i.e., yn = O(xn) if there exist c > 0 and n0 ∈ N such that yn ≤ cxn for all
n ≥ n0, and yn = o(xn) if, for all ϵ > 0, there exists n0 ∈ N such that yn ≤ ϵxn for all
n ≥ n0.
A mapping T : H → H is said to be nonexpansive [2, Definition 4.1(ii)] if it is Lipschitz

continuous with constant 1; i.e., ∥T (x) − T (y)∥ ≤ ∥x − y∥ for all x, y ∈ H. T is firmly
nonexpansive [2, Definition 4.1(i)] if ∥T (x)−T (y)∥2+∥(Id−T )(x)−(Id−T )(y)∥2 ≤ ∥x−
y∥2 for all x, y ∈ H. This firm nonexpansivity condition obviously implies nonexpansivity.
Given a nonempty, closed convex set C ⊂ H, the metric projection onto C, denoted by
PC , is defined for all x ∈ H by PC(x) ∈ C and ∥x− PC(x)∥ = infy∈C ∥x− y∥.
The subdifferential [2, Definition 16.1, Corollary 16.14] of a continuous, convex function

f : H → R is the set-valued operator ∂f defined for all x ∈ H by ∂f(x) = {u ∈ H : f(y) ≥
f(x) + ⟨y − x, u⟩ (y ∈ H)} ̸= ∅. The condition ∂f(x) = {∇f(x)} holds for all x ∈ H
when f is Gâteaux differentiable [2, Proposition 17.26]. The proximity operator of f [2,
Definition 12.23], [33, 34], denoted by Proxf , maps every x ∈ H to the unique minimizer
of f(·) + (1/2)∥x− ·∥2.
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2.2 Main problem and propositions

The following problem is considered in this paper.

Problem 2.1 Assume that

(A1) T (i) : H → H (i ∈ I := {1, 2, . . . , I}) is firmly nonexpansive;
(A2) f (i) : H → R (i ∈ I) is convex and continuous.

Then, our objective is to

minimize f(x) := E
[
f (w)(x)

]
subject to x ∈ X :=

∩
i∈I

Fix
(
T (i)

)
,

where f (w) is a function involving a random variable w ∈ I, and one assumes that

(i) the solution set of the problem is nonempty;
(ii) there is an independent identically distributed sample w0, w1, . . . of realizations of the

random variable w;
(iii) there is an oracle such that

• for (x,w) ∈ H × I, it returns a stochastic firmly nonexpansive mapping T(w)(x) :=
T (w)(x);

• for (z, w) ∈ H × I, it returns a stochastic subgradient G(w)(z) ∈ ∂f (w)(z) or a
stochastic proximal point Proxf (w)(z).

Problem 2.1 is discussed for the situation in which (T(wn), f (wn)) (wn ∈ I) is sampled at
each iteration n. Let J be the number of f (i). Even if I < J (resp. I > J), the setting that
T (i) := Id (i = I+1, I+2, . . . , J) (resp. f (j)(x) := 0 (x ∈ H, j = J+1, J+2, . . . , I)), which
satisfies (A1) (resp. (A2)), enables one to regard the stochastic optimization problem even
when J ̸= I as Problem 2.1.
The following propositions are used to prove the main theorems.

Proposition 2.1 [20, Proposition 2.3] Let f : H → R be convex and Fréchet differ-
entiable, and let ∇f : H → H be Lipschitz continuous with Lipschitz constant L. Then,
Id− λ∇f is nonexpansive for all λ ∈ [0, 2/L].

Proposition 2.2 [2, Propositions 12.26, 12.27, and 16.14] Let f : H → R be convex and
continuous. Then, the following hold:

(i) Let x, p ∈ H. Then, p = Proxf (x) if and only if x− p ∈ ∂f(p).
(ii) Proxf is firmly nonexpansive with Fix(Proxf ) = argminx∈H f(x).
(iii) There exists δ > 0 such that ∂f(B(x; δ)) is bounded, where B(x; δ) represents a closed

ball with center x and radius δ.

3. Stochastic gradient algorithm for smooth convex optimization

This section provides convergence properties of the following algorithm for solving Prob-
lem 2.1 when f (i) (i ∈ I) is Fréchet differentiable.
Algorithm 1 is obtained by blending the stochastic gradient method [6, Subchapter

10.2], [30, 35, 37, 44] (i.e., xn+1 = xn − λnG
(wn)(xn)) with the Halpern fixed point

algorithm [18, 46]. The Halpern fixed point algorithm is defined by x0 ∈ H and xn+1 =
αnx0 + (1 − αn)T

(i)(xn) (n ∈ N) and converges strongly to a fixed point of T (i) when
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Algorithm 1 Stochastic gradient algorithm for Problem 2.1

Require: n ∈ N, (αn)n∈N, (λn)n∈N ⊂ (0,∞).
1: n← 0, x0 ∈ H
2: loop
3: yn := T(wn)

(
xn − λnG

(wn)(xn)
)

4: xn+1 := αnx0 + (1− αn)yn
5: n← n+ 1
6: end loop

(αn)n∈N ⊂ (0, 1) satisfies limn→∞ αn = 0 and
∑∞

n=0 αn = ∞. For Algorithm 1 to not

only converge to a fixed point of T (i) but also to optimize f (i), Algorithm 1 needs to use
an (αn)n∈N that satisfies stronger conditions than limn→∞ αn = 0 and

∑∞
n=0 αn = ∞

(see Assumption 3.1 for the conditions of (αn)n∈N and (λn)n∈N).

3.1 Assumptions for convergence analysis of Algorithm 1

Let us consider Problem 2.1 under (A1), (A2), and (A3) defined as follows.

(A3) f (i) : H → R (i ∈ I) is Fréchet differentiable, and∇f (i) : H → H is Lipschitz continuous
with constant L(i).

The following assumption is made.

Assumption 3.1 Let σ ≥ 1. The step-size sequences (αn)n∈N ⊂ (0, 1) and (λn)n∈N ⊂
(0, 1), which are monotone decreasing and converge to 0, satisfy the following conditions:

(C1)

∞∑
n=0

αn =∞, (C2) lim
n→∞

1

αn+1

∣∣∣∣ 1

λn+1
− 1

λn

∣∣∣∣ = 0, (C3) lim
n→∞

1

λn+1

∣∣∣∣1− αn

αn+1

∣∣∣∣ = 0,

(C4) lim
n→∞

αn

λn
= 0, (C5)

αn

αn+1
,

λn

λn+1
≤ σ (n ∈ N).

Examples of (αn)n∈N and (λn)n∈N satisfying Assumption 3.1 are λn := 1/(n+1)a and
αn := 1/(n+ 1)b (n ∈ N), where a ∈ (0, 1/2) and b ∈ (a, 1− a).
The collection of random variables is defined for all n ∈ N\{0} by

Fn := σ(w0, w1, . . . , wn−1, y0, y1, . . . , yn−1, x0, x1, . . . , xn). (1)

Hence, given Fn defined by (1), the collection y0, y1, . . . , yn−1 and x0, x1, . . . , xn generated
by Algorithm 1 is determined.
The following is assumed for analyzing Algorithm 1.

Assumption 3.2 The sequence (wn)n∈N satisfies the following conditions:

(i) For all n ∈ N, there exists m(n) ∈ N such that m̄ := lim supn→∞m(n) < ∞ and
wn = wn+m(n) almost surely.

(ii) [45, Section 4 (see also Assumptions 4–7)] There exists β > 0 such that, for all i ∈ I
and for all n ∈ N, β∥xn − T (i)(xn)∥2 ≤ E[∥xn − T(wn)(xn)∥2|Fn] almost surely.

Moreover, one of the following conditions holds.

(iii) [45, Section 5, Assumption 8] E[f (wn)(x)|Fn] = f(x) for all x ∈ H and for all n ∈ N

5
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almost surely.

(iv) [45, Section 5, Assumption 9] (1/m)
∑(t+1)m−1

l=tm E[f (wl)(x)|Ftm] = f(x) for all x ∈ H
and for all t ∈ N almost surely, and (αn)n∈N and (λn)n∈N are constant within each
cycle; i.e., αtm = αtm+1 = · · · = α(t+1)m−1 and λtm = λtm+1 = · · · = λ(t+1)m−1.

A particularly interesting example of Sub-assumptions 3.2(i) and (ii) is that, for
all t ∈ N, (T(wn))n∈N, where n = tI, tI + 1, . . . , (t + 1)I − 1, is a permutation of
{T (1), T (2), . . . , T (I)} (see [45, Subsection 4.3, Assumption 6] for the case in which T(wn)

is a metric projection onto a simple, closed convex set).1 This enables one to consider
the case in which the nonexpansive mappings are sampled in a cyclic manner (random
shuffling or deterministic cycling). See Conditions (I), (II), and (IV) in Section 5 for other
examples of (wn)n∈N satisfying Sub-assumptions 3.2(i) and (ii).
Consider Problem 2.1 when T := T (i) (i ∈ I) satisfying Sub-assumption 3.2(ii), i.e.,

minimize f(x) := E
[
f (w)(x)

]
subject to x ∈ Fix(T ). (2)

Problem (2) includes convex stochastic optimization problems in classifier ensemble
[19, 50, 51]. However, the existing approaches in [19, 50, 51] are based on determin-
istic convex optimization and have not yet led to a complete solution of the classifier
ensemble problem. Meanwhile, Theorem 3.1 guarantees that Algorithm 1 with T := T (i)

(i ∈ I),

xn+1 := αnx0 + (1− αn)T
(
xn − λnG

(wn)(xn)
)

(n ∈ N), (3)

can solve Problem (2) including the classifier ensemble problem (see Subsection 3.2 for
convergence analysis of Algorithm (3)).
Sub-assumption 3.2(iii) implies that the sample component functions are conditionally

unbiased [45, Subsection 5.1, Assumption 8] while Sub-assumption 3.2(iv) means that
the functions are cyclically sampled [45, Subsection 5.2, Assumption 9]. For simplicity,
let us consider the case in which (T (i), f (i)) is sampled in a deterministic cyclic order
(e.g., w0 = wtI = I, wtI+i = i (t ∈ N, i ∈ I)). Then, Sub-assumption 3.2(iv) means
that f(x) = (1/I)

∑
i∈I f

(i)(x) (x ∈ H). Problem 2.1 in such a deterministic case has
been previously considered [22–24, 26, 27]. In contrast to this deterministic case, Sub-
assumptions 3.2(i), (ii), and (iv) enable one to consider, for example, the stochastic

Problem 2.1 with f(x) = (1/I)
∑(t+1)I−1

l=tI E[f (wl)(x)|FtI ] (x ∈ H, t ∈ N) for the case in

which, for all t ∈ N and for a fixed i0 ∈ I, (T(wn), f (wn)) (n = tI, tI + 1, . . . , (t+ 1)I − 1,
w0 = wkI = i0 (k ∈ N)) is sampled in a random cyclic order that differs depending on t.
Section 5 provides numerical comparisons for the behaviors of Algorithm 1 with (wn)n∈N
satisfying Assumption 3.2 (see (I)–(IV) in Section 5).
The convergence of Algorithm 1 depends on the following assumption.

Assumption 3.3 The sequence (yn)n∈N is almost surely bounded.

Assumption 3.3 and the definition of (xn)n∈N ensure that (xn)n∈N is almost surely
bounded. This guarantees that there exist Ω̄ ∈ F with P(Ω̄) = 1 and a weak sequential
cluster point of (xn(ω))n∈N (ω ∈ Ω̄) in Algorithm 1; i.e., there exists a weak convergent

1Since all T (i) will be visited at least once within a cycle of I iterations, Sub-assumption 3.2(i) holds. From the
nonexpansivity condition of a metric projection, the conclusions in [45, Subsection 4.3] show that the sequence
(wn)n∈N satisfies Sub-assumption 3.2(ii) (see also Section 5).
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subsequence (xni
(ω))i∈N of (xn(ω))n∈N (ω ∈ Ω̄). Hence, Assumption 3.3 is needed to

analyze the weak convergence of Algorithm 1. Suppose that a bounded, closed convex
set C ⊂ H can be chosen in advance such that the metric projection onto C ⊃ X,
denoted by PC , is easily computed within a finite number of arithmetic operations [2,
Subchapter 28] (e.g., C is a closed ball with a large enough radius). Then, yn (n ∈ N) in
Algorithm 1 (step 3 in Algorithm 1) can be replaced with

yn := PC

[
T(wn)

(
xn − λnG

(wn)(xn)
)]

, (4)

which means that Assumption 3.3 holds. The same discussion in Subsection 3.2 ensures
that any weak sequential cluster point of the sequence (xn)n∈N generated by Algorithm
1 with (4) belongs to the solution set of Problem 2.1 without assuming Assumption 3.3.

3.2 Convergence analysis of Algorithm 1

The convergence of Algorithm 1 can be analyzed as follows.

Theorem 3.1 Suppose that Assumptions (A1)-(A3) and 3.1-3.3 hold, and let (xn)n∈N
be the sequence generated by Algorithm 1. Then, any weak sequential cluster point of
(xn)n∈N almost surely belongs to the solution set of Problem 2.1.

The proof of Theorem 3.1 is divided into five steps (Lemmas 3.1, 3.2, 3.3, 3.4, and the
proof of Theorem 3.1). First, the following lemma is proven.

Lemma 3.1 Suppose that Assumptions (A1)-(A3), 3.1, 3.2(i), and 3.3 hold. Then, al-
most surely

lim
n→∞

E
[
∥xn+m+1 − xn+1∥

λn+m

∣∣∣∣Fn

]
= 0.

Proof. Assumption 3.3 means the almost sure boundedness of (xn)n∈N. Accordingly, the
Lipschitz continuity of ∇f (i) (i ∈ I) (see (A3)) leads to the almost sure boundedness
of (∇f (i)(xn))n∈N (i ∈ I); i.e., M1 := maxi∈I{supn∈N ∥∇f (i)(xn)∥} < ∞ almost surely.
From the monotone decreasing condition of (λn)n∈N, there exists n0 ∈ N such that, for
all n ≥ n0, λn ≤ L := 2/maxi∈I L

(i). Hence, (A2), (A3), and Proposition 2.1 imply that
Id− λn∇f (i) (i ∈ I, n ≥ n0) is nonexpansive. Sub-assumption 3.2(i) ensures that, for all
n ≥ n0, there exists m(n) ∈ N such that lim supn→∞m(n) < ∞, T(wn+m) = T(wn), and
f (wn+m) = f (wn) almost surely. Accordingly, (A1) and the triangle inequality ensure that,
for all n ≥ n0, almost surely

∥yn+m − yn∥ =
∥∥∥T(wn)

(
xn+m − λn+mG(wn)(xn+m)

)
− T(wn)

(
xn − λnG

(wn)(xn)
)∥∥∥

≤
∥∥∥(xn+m − λn+mG(wn)(xn+m)

)
−
(
xn − λnG

(wn)(xn)
)∥∥∥

≤
∥∥∥(xn+m − λn+mG(wn)(xn+m)

)
−
(
xn − λn+mG(wn)(xn)

)∥∥∥
+ |λn+m − λn|

∥∥∥G(wn)(xn)
∥∥∥ ,

7
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which, together with the nonexpansivity of Id− λn+mG(wn), implies that

∥yn+m − yn∥ ≤ ∥xn+m − xn∥+M1 |λn+m − λn| .

Since the definition of xn (n ∈ N) and the triangle inequality mean that, for all n ≥ n0,

∥xn+m+1 − xn+1∥ = ∥(αn+m − αn) (x0 − yn) + (1− αn+m) (yn+m − yn)∥
≤ (1− αn+m) ∥yn+m − yn∥+ |αn+m − αn| ∥x0 − yn∥ ,

meaning that, for all n ≥ n0, almost surely

∥xn+m+1 − xn+1∥ ≤ (1− αn+m) {∥xn+m − xn∥+M1 |λn+m − λn|}
+ |αn+m − αn| ∥x0 − yn∥
≤ (1− αn+m) ∥xn+m − xn∥+M1 |λn+m − λn|
+M2 |αn+m − αn| ,

(5)

where almost surely M2 := supn∈N ∥yn − x0∥ < ∞. Therefore, for all n ≥ n0, almost
surely

∥xn+m+1 − xn+1∥
λn+m

≤ (1− αn+m)
∥xn+m − xn∥

λn+m
+M1

|λn+m − λn|
λn+m

+M2
|αn+m − αn|

λn+m

=(1− αn+m)
∥xn+m − xn∥

λn+m−1
+ (1− αn+m)

{
∥xn+m − xn∥

λn+m
− ∥xn+m − xn∥

λn+m−1

}
+M1

|λn+m − λn|
λn+m

+M2
|αn+m − αn|

λn+m

≤ (1− αn+m)
∥xn+m − xn∥

λn+m−1
+M3

∣∣∣∣ 1

λn+m
− 1

λn+m−1

∣∣∣∣+M1
|λn+m − λn|

λn+m

+M2
|αn+m − αn|

λn+m
,

where almost surely M3 := supn∈N ∥xn+m−xn∥ <∞. Accordingly, for all n ≥ n0, almost
surely

∥xn+m+1 − xn+1∥
λn+m

≤ (1− αn+m)
∥xn+m − xn∥

λn+m−1
+ Lαn+m

M1

αn+m

∣∣∣∣ 1λn
− 1

λn+m

∣∣∣∣ (6)

+ αn+m
M3

αn+m

∣∣∣∣ 1

λn+m
− 1

λn+m−1

∣∣∣∣+ αn+m
M2

λn+m

∣∣∣∣1− αn

αn+m

∣∣∣∣ ,
where the second term on the right comes from λn ≤ L (n ≥ n0) and

|λn+m − λn|
λn+m

= L
|λn+m − λn|

Lλn+m
≤ L
|λn+m − λn|
λnλn+m

= L

∣∣∣∣ 1λn
− 1

λn+m

∣∣∣∣ .
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Condition (C5) and the triangle inequality mean that, for all n ≥ n0 and for all l ≥ 1,

1

αn+l+1

∣∣∣∣ 1λn
− 1

λn+l+1

∣∣∣∣ ≤ αn+l

αn+l+1

1

αn+l

∣∣∣∣ 1λn
− 1

λn+l

∣∣∣∣+ 1

αn+l+1

∣∣∣∣ 1

λn+l
− 1

λn+l+1

∣∣∣∣
≤ σ

1

αn+l

∣∣∣∣ 1λn
− 1

λn+l

∣∣∣∣+ 1

αn+l+1

∣∣∣∣ 1

λn+l
− 1

λn+l+1

∣∣∣∣ ,
1

λn+l+1

∣∣∣∣1− αn

αn+l+1

∣∣∣∣ ≤ αn+l

αn+l+1

λn+l

λn+l+1

1

λn+l

∣∣∣∣1− αn

αn+l

∣∣∣∣+ 1

λn+l+1

∣∣∣∣1− αn+l

αn+l+1

∣∣∣∣
≤ σ2 1

λn+l

∣∣∣∣1− αn

αn+l

∣∣∣∣+ 1

λn+l+1

∣∣∣∣1− αn+l

αn+l+1

∣∣∣∣ .
Conditions (C2) and (C3) thus mean that, for all l ≥ 1,

lim
n→∞

1

αn+l

∣∣∣∣ 1λn
− 1

λn+l

∣∣∣∣ = 0 and lim
n→∞

1

λn+l

∣∣∣∣1− αn

αn+l

∣∣∣∣ = 0. (7)

Hence, (C2) and (7) guarantee that, for all ϵ > 0, there exists n1 ∈ N such that, for all
n ≥ n1,

M1L

αn+m

∣∣∣∣ 1λn
− 1

λn+m

∣∣∣∣ ≤ ϵ

3
,

M3

αn+m

∣∣∣∣ 1

λn+m
− 1

λn+m−1

∣∣∣∣ ≤ ϵ

3
,

M2

λn+m

∣∣∣∣1− αn

αn+m

∣∣∣∣ ≤ ϵ

3
.

Therefore, (6) means that, for all n ≥ n2 := max{n0, n1}, almost surely

∥xn+m+1 − xn+1∥
λn+m

≤ (1− αn+m)
∥xn+m − xn∥

λn+m−1
+ ϵαn+m. (8)

Further, induction guarantees that, for all n ≥ n2, almost surely∥∥xn+1+m(n) − xn+1

∥∥
λn+m(n)

≤
(
1− αn+m(n)

){ (
1− αn−1+m(n−1)

) ∥∥xn−1+m(n−1) − xn−1

∥∥
λn−2+m(n−1)

+ ϵ
(
1−

(
1− αn−1+m(n−1)

))}
+ ϵαn+m(n)

=
(
1− αn+m(n)

) (
1− αn−1+m(n−1)

) ∥∥xn−1+m(n−1) − xn−1

∥∥
λn−2+m(n−1)

+ ϵ
{
1−

(
1− αn+m(n)

) (
1− αn−1+m(n−1)

)}
≤

n∏
k=n2

(
1− αk+m(k)

) ∥∥xn2+m(n2) − xn2

∥∥
λn2−1+m(n2)

+ ϵ

{
1−

n∏
k=n2

(
1− αk+m(k)

)}
.

By taking the expectation in this inequality conditioned on Fn (n ≥ n2) defined in (1),

9
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we have for all n ≥ n2

E

[∥∥xn+m(n)+1 − xn+1

∥∥
λn+m(n)

∣∣∣∣∣Fn

]
≤

n∏
k=n2

(
1− αk+m(k)

)
E

[∥∥xn2+m(n2) − xn2

∥∥
λn2+m(n2)−1

∣∣∣∣∣Fn

]

+ ϵ

{
1−

n∏
k=n2

(
1− αk+m(k)

)}
(9)

almost surely. Moreover, Sub-assumption 3.2(i) means the existence of m̂ ∈ N satisfying
max{m(k) : k = n, n − 1, . . . , n2} ≤ m̂. Accordingly, Condition (C1) and the monotone
decreasing condition of (αn)n∈N lead to the finding that 0 ≤ lim supn→∞

∏n
k=n2

(1 −
αk+m(k)) ≤ lim supn→∞

∏n
k=n2

(1− αk+m̂) = 0. Therefore, (9) means that, almost surely

lim sup
n→∞

E

[∥∥xn+m(n)+1 − xn+1

∥∥
λn+m(n)

∣∣∣∣∣Fn

]
≤ ϵ,

which, together with the arbitrary condition of ϵ, means that Lemma 3.1 holds. ■

Lemma 3.1 leads to the following.

Lemma 3.2 Suppose that the assumptions in Lemma 3.1 hold. Then, almost surely

lim
n→∞

E
[
∥xn − yn∥2

∣∣∣Fn

]
= 0 and lim

n→∞
E
[∥∥∥xn − T(wn)(xn)

∥∥∥2 ∣∣∣∣Fn

]
= 0.

Proof. Fix x ∈ X ⊂ Fix(T (i)) (i ∈ I) and n ∈ N arbitrarily. Assumption (A1) ensures
that, for all k ∈ N, ∥yk − x∥2 ≤ ∥(xk − x)− λkG

(wk)(xk)∥2 − ∥(xk − yk)− λkG
(wk)(xk)∥2.

Hence, from ∥x− y∥2 = ∥x∥2 − 2⟨x, y⟩+ ∥y∥2 (x, y ∈ H),

∥yk − x∥2 ≤ ∥xk − x∥2 + 2λk

⟨
x− yk,G

(wk)(xk)
⟩
− ∥xk − yk∥2 .

The definition of xk (k ∈ N) and the convexity of ∥ · ∥2 thus imply that, for all k ∈ N,

∥xk+1 − x∥2 ≤ αk ∥x0 − x∥2 + ∥xk − x∥2 + 2(1− αk)λk

⟨
x− yk,G

(wk)(xk)
⟩

− (1− αk) ∥xk − yk∥2 .

Since the above inequality holds for k = n + m(n), n + m(n) − 1, . . . , n + 1, it can be
deduced that

∥xn+m+1 − x∥2 ≤ ∥xn+1 − x∥2 + ∥x0 − x∥2
n+m∑
k=n+1

αk −
n+m∑
k=n+1

(1− αk) ∥xk − yk∥2

+ 2

n+m∑
k=n+1

λk

∣∣∣⟨x− yk,G
(wk)(xk)

⟩∣∣∣ ,
which, together with M4 := supn∈N 2|⟨x − yn,G

(wn)(xn)⟩| < ∞ almost surely, and the

10
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triangle inequality, means that, almost surely

(1− αn+1) ∥xn+1 − yn+1∥2 ≤ ∥x0 − x∥2
n+m∑
k=n+1

αk +M4

n+m∑
k=n+1

λk

+ λn+m (∥xn+1 − x∥+ ∥xn+m+1 − x∥) ∥xn+1 − xn+m+1∥
λn+m

.

(10)

Taking the expectation in this inequality conditioned on Fn+1 defined in (1) leads to the
finding that, almost surely

(1− αn+1)E
[
∥xn+1 − yn+1∥2

∣∣∣Fn+1

]
≤ ∥x0 − x∥2

n+m∑
k=n+1

αk +M4

n+m∑
k=n+1

λk

+ λn+mE
[
(∥xn+1 − x∥+ ∥xn+m+1 − x∥) ∥xn+1 − xn+m+1∥

λn+m

∣∣∣∣Fn+1

]
.

(11)

Hence, from the definition of Fn (n ∈ N), Assumption 3.3, Lemma 3.1, and limn→∞ αn =
limn→∞ λn = 0, we have

lim
n→∞

E
[
∥xn − yn∥2

∣∣∣Fn

]
= 0 (12)

almost surely. Further, since (A1) means that, for all n ∈ N,∥∥∥yn − T(wn)(xn)
∥∥∥ =

∥∥∥T(wn)
(
xn − λnG

(wn)(xn)
)
− T(wn)(xn)

∥∥∥ ≤ λn

∥∥∥G(wn)(xn)
∥∥∥ ,

we find that, for all n ∈ N,∥∥∥xn − T(wn)(xn)
∥∥∥2 ≤ 2 ∥xn − yn∥2 + 2

∥∥∥yn − T(wn)(xn)
∥∥∥2

≤ 2 ∥xn − yn∥2 + 2λ2
n

∥∥∥G(wn)(xn)
∥∥∥2 , (13)

where the first inequality comes from ∥x+ y∥2 ≤ 2∥x∥2 +2∥y∥2 (x, y ∈ H). Accordingly,
(12), Assumption 3.3, and the convergence of (λn)n∈N to 0 guarantee that, almost surely
limn→∞ E[∥xn − T(wn)(xn)∥2|Fn] = 0. This completes the proof. ■

The following lemma demonstrates that any weak sequential cluster point of (xn)n∈N
in Algorithm 1 is almost surely in X.

Lemma 3.3 Suppose that Sub-assumption 3.2(ii) and the assumptions in Lemma 3.1
hold. Then, for all i ∈ I, almost surely

lim
n→∞

∥∥∥xn − T (i)(xn)
∥∥∥ = 0 and lim

n→∞

∥∥∥xn − T (i)
(
xn − λn∇f (i)(xn)

)∥∥∥ = 0.

11
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Proof. Sub-assumption 3.2(ii) and Lemma 3.2 guarantee that, for all j ∈ I, almost surely

β lim sup
n→∞

∥∥∥xn − T (j)(xn)
∥∥∥2 ≤ lim

n→∞
E
[∥∥∥xn − T(wn)(xn)

∥∥∥2 ∣∣∣∣Fn

]
= 0.

This means that limn→∞ ∥xn − T (j)(xn)∥ (j ∈ I) almost surely equals 0. The triangle
inequality and (A1) ensure that, for all i ∈ I and for all n ∈ N,∥∥∥xn − T (i)

(
xn − λn∇f (i)(xn)

)∥∥∥ ≤ ∥∥∥xn − T (i)(xn)
∥∥∥+ λn

∥∥∥∇f (i)(xn)
∥∥∥ ,

which, together with Assumption 3.3, limn→∞ λn = 0 almost surely, and limn→∞ ∥xn −
T (i)(xn)∥ = 0 almost surely, means that limn→∞ ∥xn − T (i)(xn − λn∇f (i)(xn))∥ (j ∈ I)
almost surely equals 0. This completes the proof. ■

The following can also be proved.

Lemma 3.4 Suppose that the assumptions in Theorem 3.1 hold. Then, almost surely

lim sup
n→∞

f(xn) ≤ f⋆ := min
x∈X

f(x).

Proof. Fix x⋆ ∈ X⋆ := {x⋆ ∈ X : f(x⋆) = f⋆} and n ∈ N arbitrarily. From (A1), for
all k ∈ N, ∥yk − x⋆∥2 ≤ ∥(xk − x⋆) − λkG

(wk)(xk)∥2, which, together with ∥x − y∥2 =
∥x∥2 − 2⟨x, y⟩ + ∥y∥2 (x, y ∈ H) and the definition of ∂f , means that, for all k ∈ N,
almost surely

∥yk − x⋆∥2 ≤ ∥xk − x⋆∥2 + 2λk

(
f (wk)(x⋆)− f (wk)(xk)

)
+M2

1λ
2
k.

Hence, the convexity of ∥ · ∥2 means that, for all k ∈ N, almost surely

∥xk+1 − x⋆∥2

≤ αk ∥x0 − x⋆∥2 + ∥xk − x⋆∥2 + 2(1− αk)λk

(
f (wk)(x⋆)− f (wk)(xk)

)
+M2

1λ
2
k.

Since the above inequality holds for k = n+m(n), n+m(n)− 1, . . . , n+1, almost surely

2

λn+m

n+m∑
k=n+1

(1− αk)λk

(
f (wk)(xk)− f (wk)(x⋆)

)
≤M5

∥xn+m+1 − xn+1∥
λn+m

+
∥x0 − x⋆∥2

λn+m

n+m∑
k=n+1

αk +
M2

1

λn+m

n+m∑
k=n+1

λ2
k,

(14)

where almost surely M5 := supn∈N(∥xn+1 − x⋆∥+ ∥xn+m+1 − x⋆∥) <∞.
Now, let us assume that Sub-assumption 3.2(iii) holds. Then, for all x ∈ H, al-

most surely E[f (wn+1)(x)|Fn] = E[E[f (wn+1)(x)|Fn+1]|Fn] = E[f(x)|Fn] = f(x); i.e.,
E[f (wk)(x)|Fn] almost surely equals f(x) for all k ≥ n and for all x ∈ H. Hence, by

12
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taking the expectation in (14) conditioned on Fn, we have

2

λn+m

n+m∑
k=n+1

(1− αk)λk (f(xk)− f⋆)

≤M5E
[
∥xn+m+1 − xn+1∥

λn+m

∣∣∣∣Fn

]
+
∥x0 − x⋆∥2

λn+m

n+m∑
k=n+1

αk +
M2

1

λn+m

n+m∑
k=n+1

λ2
k

(15)

almost surely. Since (C5) and the monotone decreasing conditions of (αn)n∈N and (λn)n∈N
satisfy

∥x0 − x⋆∥2

λn+m

n+m∑
k=n+1

αk ≤ m ∥x0 − x⋆∥2 αn+1

λn+m
≤ m(n) (m(n)− 1)σ ∥x0 − x⋆∥2 αn+1

λn+1
,

M2
1

λn+m

n+m∑
k=n+1

λ2
k ≤ mM2

1λn+1
λn+1

λn+m
≤ m(n) (m(n)− 1)σM2

1λn+1, (16)

Sub-assumption 3.2(i), (C4), and limn→∞ λn = 0 mean that
limn→∞(∥x0 − x∥2 /λn+m)

∑n+m
k=n+1 αk ≤ 0 and limn→∞(M2

1 /λn+m)
∑n+m

k=n+1 λ
2
k ≤ 0.

Accordingly, Lemma 3.1 guarantees that, almost surely

lim sup
n→∞

2

λn+m

m∑
k=1

(1− αn+k)λn+k (f(xn+k)− f⋆) ≤ 0.

Now, let us assume that the assertion in Lemma 3.4 does not hold; i.e., for all Ω̃ ∈ F ,
P(Ω̃) = 1 and there exists ω ∈ Ω̃ such that lim supn→∞ f(xn(ω))− f⋆ > 0. Accordingly,
there exist γ > 0 and n3 ∈ N such that f(xn(ω))− f⋆ ≥ γ for all n ≥ n3. The monotone
decreasing conditions of (αn)n∈N and (λn)n∈N and limn→∞ αn = 0 thus guarantee that

0 ≥ lim sup
n→∞

2

λn+m

m∑
k=1

(1− αn+k)λn+k (f(xn+k(ω))− f⋆)

≥ γ lim sup
n→∞

2λn+m

λn+m
m(n)(1− αn+1) ≥ 2γ > 0,

which is a contradiction. Therefore, almost surely lim supn→∞ f(xn)− f⋆ ≤ 0.
Next, let us assume that Sub-assumption 3.2(iv) holds. Inequality (14) thus leads to

the finding that, for all n ∈ N, almost surely

2(1− αn+m)λn+m

λn+m

n+m∑
k=n+1

(
f (wk)(xk)− f (wk)(x⋆)

)
≤M5

∥xn+m+1 − xn+1∥
λn+m

+
∥x0 − x⋆∥2mαn+m

λn+m
+

M2
1mλ2

n+m

λn+m
.

Since the definition of ∂f (wk) means that f (wk)(xn) − f (wk)(xk) ≤ ⟨xn − xk,G
(wk)(xn)⟩

13
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(k = n+ 1, n+ 2, . . . , n+m), almost surely

2(1− αn+m)

n+m∑
k=n+1

(
f (wk)(xn)− f (wk)(x⋆)

)
≤M5

∥xn+m+1 − xn+1∥
λn+m

+
∥x0 − x⋆∥2mαn+m

λn+m
+

M2
1mλ2

n+m

λn+m

+ 2M1(1− αn+m)

n+m∑
k=n+1

∥xn − xk∥ .

(17)

Further, from ∥xl+1−xl∥ ≤ ∥xl+1−yl∥+∥yl−xl∥ and ∥xl+1−yl∥ = αl∥x0−yl∥ (l ∈ N),
Assumption 3.3 and Lemma 3.3 ensure that liml→∞ ∥xl+1 − xl∥ almost surely equals 0.
Hence, the triangle inequality guarantees that, for some j ∈ N, liml→∞ ∥xl−xl+j∥ almost
surely equals 0. Taking the expectation in (17) thus ensures that, for all ϵ > 0, there
exists n4 ∈ N such that, for all n ≥ n4, almost surely

2(1− αn+m) (f(xn)− f⋆)

≤M5E
[
∥xn+m+1 − xn+1∥

mλn+m

∣∣∣∣Fn

]
+
∥x0 − x⋆∥2 αn+m

λn+m
+M2

1λn+m + 2M1(1− αn+m)ϵ,

where the left side comes from the condition that almost surely f(x) =

(1/m)
∑(t+1)m−1

l=tm E[f (wl)(x)|Ftm] with tm = n+ 1 and the definition of Fn. Hence, from
Sub-assumption 3.2(i), Lemma 3.1, (C4), and limn→∞ λn = limn→∞ αn = 0, almost
surely

2 lim sup
n→∞

(f(xn)− f⋆) ≤ 2M1ϵ.

Therefore, the arbitrary condition of ϵ guarantees that Lemma 3.4 holds. ■

Now we are in the position to prove Theorem 3.1.

Proof. Lemma 3.3 ensures the existence of Ω̄ ∈ F such that P(Ω̄) = 1 and
limn→∞ ∥xn(ω)− T (i)(xn(ω))∥ = 0 for all ω ∈ Ω̄ and for all i ∈ I. Moreover, Lemma 3.4

means that there exists Ω̂ ∈ F such that P(Ω̂) = 1 and lim supn→∞ f(xn(ω)) ≤ f⋆ for all

ω ∈ Ω̂. Now, let ω ∈ Ω̄∩ Ω̂ and let x∗ ∈ W(xn(ω))n∈N. Assumption 3.3 and P(Ω̄∩ Ω̂) = 1
guarantee the existence of a weak sequential cluster point of (xn(ω))n∈N. Then, there
exists (xnl

(ω))l∈N ⊂ (xn(ω))n∈N such that it converges weakly to x∗ ∈ H. Here, let us fix
i ∈ I arbitrarily and assume that x∗ /∈ Fix(T (i)). From Opial’s lemma [39, Lemma 3.1],

lim inf
l→∞

∥xnl
(ω)− x∗∥ < lim inf

l→∞

∥∥∥xnl
(ω)− T (i)(x∗)

∥∥∥ ,
which, together with ω ∈ Ω̄ and (A1), means that

lim inf
l→∞

∥xnl
(ω)− x∗∥ < lim inf

l→∞

∥∥∥T (i)(xnl
(ω))− T (i)(x∗)

∥∥∥ ≤ lim inf
l→∞

∥xnl
(ω)− x∗∥ .

14
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This is a contradiction. Therefore, x∗ ∈ Fix(T (i)) for all i ∈ I; i.e., x∗ ∈ X. Furthermore,
the weakly lower semicontinuity of f [2, Theorem 9.1] leads to the finding that

f(x∗) ≤ lim inf
l→∞

f (xnl
(ω)) ≤ lim sup

n→∞
f (xn(ω)) ≤ f⋆.

That is, x∗ ∈ X⋆. This completes the proof. ■

3.3 Convergence rate analysis of Algorithm 1

The following proposition establishes the rate of convergence for Algorithm 1.

Proposition 3.1 Suppose that the assumptions in Theorem 3.1 hold and that (xn)n∈N
is the sequence generated by Algorithm 1. Then, there exist Ni ∈ R (i = 1, 2) such that,
for all i ∈ I and for all n ∈ N, almost surely∥∥∥xn − T (i)(xn)

∥∥∥ ≤√N1αn +N2λn.

Moreover, under Sub-assumption 3.2(iii), if there exists k0 ∈ N such that f(xn) ≥ f⋆

almost surely for all n ≥ k0, then there exist k1 ∈ N and Ni ∈ R (i = 3, 4, 5) such that,
for all n ≥ max{k0, k1}, almost surely

1

m

n+m∑
k=n+1

f(xk)− f⋆ ≤ N3
o(λn+m)

λn+m
+N4λn +N5

αn

λn
. (18)

Under Sub-assumption 3.2(iv), there exist k2 ∈ N and Ni ∈ R (i = 6, 7, 8, 9, 10) such
that, for all n ≥ k2, almost surely

f(xn)− f⋆ ≤ N6
o(λn+m)

λn+m
+N7λn +N8

αn

λn
+
√

N9αn +N10λn. (19)

Here, let us compare the stochastic first-order method with random constraint projec-
tion [45] with Algorithm 1. In [45], the problem

minimize f(x) := E
[
f (v)(x)

]
subject to x ∈ C :=

M∩
i=1

C(i) (20)

was discussed [45, (1)–(3)], where f (v) : RN → R is a convex function of x involving a
random variable v, and C(i) ⊂ RN (i = 1, 2, . . . ,M) is a nonempty, closed convex set onto
which the metric projection P (i) can be efficiently computed. The following stochastic
first-order method [45, Algorithm 1, (9)] was presented for solving problem (20): given
xk ∈ RN ,

zk := xk − αkG
(vk)(x̄k),

xk+1 := zk − βk

(
zk − P(wk)(zk)

)
, with x̄k = xk or x̄k = xk+1,

(21)

where P(w) stands for the stochastic metric projection onto C(w), and (αk)k∈N, (βk)k∈N ⊂
(0,∞). Under certain assumptions, Algorithm (21) converges almost surely to a random

15
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point in the solution set of problem (20) [45, Theorem 1]. Theorem 2 in [45] implies that,
under certain assumptions, Algorithm (21) with αk = 1/

√
k and βk := β > 0 (k ∈ N)

satisfies

E

[
f

(
1

k

k∑
t=1

PC(xt)

)]
= f∗ +O

(
1√
k

)
, E

d(1

k

k∑
t=1

xt, C

)2
 = O

(
log(k + 1)

k

)
,

where f∗ is the optimal value of problem (20) and d(x,C) := infy∈C ∥x− y∥ (x ∈ RN ).

Meanwhile, Algorithm 1 can be applied to problem (20) even when C(i) is not always
simple in the sense that P (i) cannot be easily computed (see Section 5 for an example of
problem (20) when C(i) is not simple). Theorem 3.1 guarantees that any weak sequential
cluster point of (xn)n∈N generated by Algorithm 1 almost surely belongs to the solution
set of Problem 2.1 including problem (20). Proposition 3.1 implies that Algorithm 1 with
λn := 1/na and αn := 1/nb (n ≥ 1), where a ∈ (0, 1/2) and b ∈ (a, 1 − a), satisfies, for
all i ∈ I, ∥∥∥xn − T (i)(xn)

∥∥∥ = O

(
1√
na

)
. (22)

Moreover, (18) implies that, under the assumptions in Proposition 3.1 and the condition
o(λn) = 1/nc, where c > a,

1

m

n+m∑
k=n+1

f(xk)− f⋆ = O

(
1

nmin{a,b−a,c−a}

)
, (23)

while (19) implies that

f(xn)− f⋆ = O

(
1

nmin{a/2,b−a,c−a}

)
. (24)

Proof. From (11), the monotone decreasing conditions of (αn)n∈N and (λn)n∈N with
limn→∞ αn = 0, and the almost sure boundedness of (xn)n∈N, there existNi ∈ R (i = 1, 2)
such that, for all n ∈ N, almost surely E[∥xn − yn∥2|Fn] ≤ N1αn + N2λn. Accordingly,
(13) ensures that, for all n ∈ N, almost surely

E
[∥∥∥xn − T(wn)(xn)

∥∥∥2 ∣∣∣∣Fn

]
≤ 2 (N1αn +N2λn) + 2M2

1λ
2
n.

Sub-assumption 3.2(ii) guarantees the existence of N3 ∈ R such that, for i ∈ I and for all
n ∈ N, ∥xn − T (i)(xn)∥2 ≤ N3E[∥xn − T(wn)(xn)∥2|Fn] holds almost surely. This means
that, for all i ∈ I and for all n ∈ N, almost surely∥∥∥xn − T (i)(xn)

∥∥∥2 ≤ 2N3 (N1αn +N2λn) + 2N3M
2
1λn.

Lemma 3.1 and the monotone decreasing condition of (λn)n∈N with limn→∞ λn = 0

16
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guarantee that, for all n ∈ N, almost surely

E

[
∥xn+m+1 − xn+1∥

λn+m

∣∣∣∣∣Fn

]
=

E [∥xn+m+1 − xn+1∥ |Fn]

λn+m
=

o(λn+m)

λn+m
. (25)

Let us assume that Sub-assumption 3.2(iii) holds. From (15) and (25), for all n ∈ N,
almost surely

2

λn+m

n+m∑
k=n+1

(1− αk)λk (f(xk)− f⋆) ≤M5
o(λn+m)

λn+m
+
∥x0 − x⋆∥2

λn+m

n+m∑
k=n+1

αk +
M2

1

λn+m

n+m∑
k=n+1

λ2
k.

Hence, (16) guarantees that there exist N4, N5 ∈ R such that, for all n ∈ N, almost surely

2

λn+m

n+m∑
k=n+1

(1− αk)λk (f(xk)− f⋆) ≤M5
o(λn+m)

λn+m
+N4

αn

λn
+N5λn.

Since (αn)n∈N converges to 0, there exists n5 ∈ N such that 1− αn ≥ 1/2 for all n ≥ n5.
From the monotone decreasing condition of (λn)n∈N and the existence of n6 ∈ N such
that almost surely f(xn)− f⋆ ≥ 0 for all n ≥ n6, we have for all n ≥ k0 := max{n5, n6},

1

m

n+m∑
k=n+1

f(xk)− f⋆ ≤ M5

m

o(λn+m)

λn+m
+

N4

m

αn

λn
+

N5

m
λn

almost surely.
Let us assume that Sub-assumption 3.2(iv) holds. Then, (17) guarantees that, for all

n ∈ N, almost surely

2(1− αn+m)

n+m∑
k=n+1

(
f (wk)(xn)− f (wk)(x⋆)

)
≤M5

∥xn+m+1 − xn+1∥
λn+m

+N4
αn

λn
+N5λn + 2M1(1− αn+m)

n+m∑
k=n+1

∥xn − xk∥ .

From (10), ∥xn+1 − yn∥ = αn∥x0 − yn∥ (n ∈ N), and the triangle inequality, there exist
n̄1 ∈ N and N̄i ∈ R (i = 1, 2, 3) such that, for all n ≥ n̄1, almost surely

∥xn − xn+1∥ ≤ ∥xn − yn∥+ ∥yn − xn+1∥

≤
√

N̄1αn + N̄2λn + N̄3αn,

which, together with the triangle inequality and the monotone decreasing conditions of

17
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(αn)n∈N and (λn)n∈N, means that, for all n ≥ n̄1, almost surely

n+m∑
k=n+1

∥xn − xk∥ ≤
m−1∑
j=0

(m− j)∥xn+j − xn+j+1∥

≤
m−1∑
j=0

(m− j)

(√
N̄1αn+j + N̄2λn+j + N̄3αn+j

)
≤ m(m+ 1)

2

(√
N̄1αn + N̄2λn + N̄3αn

)
.

Since (αn)n∈N converges to 0, there exist a ∈ (0, 1) and n̄2 ∈ N such that a ≤ 2(1− αn)
for all n ≥ n̄2. From (25), for all n > max{n2, n̄1, n̄2}, almost surely

m (f(xn)− f⋆) ≤ M5

a

o(λn+m)

λn+m
+

N4

a

αn

λn
+

N5

a
λn

+
m(m+ 1)M1

2

(√
N̄1αn + N̄2λn + N̄3αn

)
,

which, together with (C4) (i.e., there exists M ∈ R such that αn ≤Mλn for all n ∈ N),
completes the proof. ■

The following remark is made regarding Proposition 4.1.

Remark 3.1 From a discussion similar to the ones for obtaining (6) and (9), there exist
M̄i ∈ R (i = 1, 2) such that, for all n > n2, almost surely

E

[∥∥xn+m(n)+1 − xn+1

∥∥
λn+m(n)

∣∣∣∣∣Fn

]
≤ M̄1

n∏
k=n2

(
1− αk+m(k)

)
+ M̄2N(n), (26)

where N(n) := max{(1/αk+m(k))|(1/λk) − (1/λk+m(k))|, (1/αk+m(k))|(1/λk+m(k)) −
(1/λk+m(k)−1)|, (1/λk+m(k))|1 − αk/αk+m(k)| : k = n, n − 1, . . . , n2}. Accordingly, (25)
can be replaced with (26).

4. Stochastic proximal point algorithm for nonsmooth convex optimization

This section presents the convergence analysis of the following proximal-type algorithm
for solving Problem 2.1.

Algorithm 2 Stochastic proximal point algorithm for solving Problem 2.1

Require: n ∈ N, (αn)n∈N, (γn)n∈N ⊂ (0,∞).
1: n← 0, x0 ∈ H
2: loop
3: yn := T(wn)

(
Proxγnf (wn)(xn)

)
4: xn+1 := αnx0 + (1− αn)yn
5: n← n+ 1
6: end loop

18
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Algorithms 1 and 2 are based on the Halpern fixed point algorithm [18, 46]. In contrast
to Algorithm 1, Algorithm 2 uses the approach of proximal point algorithms [2, Chapter
27], [3, 5, 31, 32, 40, 45] that optimize nonsmooth, convex functions over the whole space.

4.1 Assumptions for convergence analysis of Algorithm 2

Let us consider Problem 2.1 under (A1), (A2), and (A4) defined as follows.

(A4) Proxγf (i) (γ > 0, i ∈ I) can be efficiently computed.

Tables 10.1 and 10.2 in [9] provide several examples of convex functions for which prox-
imity operators can be computed within a finite number of arithmetic operations.
The conditions of the step-size sequences in Algorithm 2 are as follows.

Assumption 4.1 Let σ ≥ 1. The step-size sequences (αn)n∈N ⊂ (0, 1) and (γn)n∈N ⊂
(0, 1), which are monotone decreasing and converge to 0, satisfy the following conditions:

(C1)

∞∑
n=0

αn =∞, (C2) lim
n→∞

1

αn+1

∣∣∣∣ 1

γn+1
− 1

γn

∣∣∣∣ = 0, (C3) lim
n→∞

1

γn+1

∣∣∣∣1− αn

αn+1

∣∣∣∣ = 0,

(C4) lim
n→∞

αn

γn
= 0, (C5) lim

n→∞

1

αn+1

|γn+1 − γn|
γ2n+1

= 0, (C6)
αn

αn+1
,

λn

λn+1
≤ σ (n ∈ N).

Examples of (αn)n∈N and (γn)n∈N satisfying Assumption 4.1 are γn := 1/(n+ 1)a and
αn := 1/(n+ 1)b (n ∈ N), where a ∈ (0, 1/2), b ∈ (a, 1− a), and a+ b < 1.
The convergence of Algorithm 2 depends on the following assumption.

Assumption 4.2 The sequence (wn)n∈N satisfies Assumption 3.2, where λn is replaced
with γn. The sequence (yn)n∈N is almost surely bounded.

A similar discussion to the one for defining (4) implies that, if there exists a simple,
bounded, closed convex set C ⊃ X, then yn (n ∈ N) in Algorithm 2 can be replaced with

yn := PC

[
T(wn)

(
Proxγnf (wn)(xn)

)]
, (27)

which implies the boundedness of (yn)n∈N.

4.2 Convergence analysis of Algorithm 2

Theorem 4.1 Suppose that Assumptions (A1), (A2), (A4), 4.1, and 4.2 hold, and let
(xn)n∈N be the sequence generated by Algorithm 2. Then, any weak sequential cluster
point of (xn)n∈N almost surely belongs to the solution set of Problem 2.1.

The proof starts with the following lemma.

Lemma 4.1 Suppose that the assumptions in Theorem 4.1 hold. Then, almost surely

lim
n→∞

E
[
∥xn+m+1 − xn+1∥

γn+m

∣∣∣∣Fn

]
= 0.

19
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Proof. Sub-assumption 3.2(i) ensures that, for all n ∈ N, there exists m(n) ∈ N such
that lim supn→∞m(n) < ∞, T(wn+m) = T(wn), and f (wn+m) = f (wn) almost surely. Ac-
cordingly, (A1) and the triangle inequality ensure that, for all n ≥ n0, almost surely

∥yn+m − yn∥ ≤
∥∥Proxγn+mf (wn)(xn+m)− Proxγn+mf (wn)(xn)

∥∥
+
∥∥Proxγn+mf (wn)(xn)− Proxγnf (wn)(xn)

∥∥ ,
which, together with Proposition 2.2(ii), means that

∥yn+m − yn∥ ≤ ∥xn+m − xn∥+
∥∥Proxγn+mf (wn)(xn)− Proxγnf (wn)(xn)

∥∥ .
Put zn := Proxγnf (wn)(xn) and z̄n := Proxγn+mf (wn)(xn) (n ∈ N). Proposition 2.2(i) thus

means that (xn− zn)/γn ∈ ∂f (wn)(zn) and (xn− z̄n)/γn+m ∈ ∂f (wn)(z̄n) (n ∈ N). Hence,
the monotonicity of ∂f (wn) implies that, for all n ∈ N, ⟨zn − z̄n, (xn − zn)/γn − (xn −
z̄n)/γn+m⟩ ≥ 0, which means that

1

γnγn+m

{
⟨zn − z̄n, (γn+m − γn)xn⟩+ ⟨zn − z̄n,−γn+m(zn − z̄n)⟩

+ ⟨zn − z̄n, (γn − γn+m)z̄n⟩
}
≥ 0.

Accordingly, for all n ∈ N, ∥zn − z̄n∥ ≤ (|γn+m − γn|/γn+m)(∥xn∥+ ∥z̄n∥). Thus, for all
n ∈ N, almost surely

∥yn+m − yn∥ ≤ ∥xn+m − xn∥+
|γn+m − γn|

γn+m
(∥xn∥+ ∥z̄n∥) .

A discussion similar to the one for obtaining (5) guarantees that, for all n ∈ N, almost
surely

∥xn+m+1 − xn+1∥ ≤ (1− αn+m) ∥xn+m − xn∥+
|γn+m − γn|

γn+m
(∥xn∥+ ∥z̄n∥)

+ |αn+m − αn| ∥x0 − yn∥ .

Therefore, the same discussion as for (6) implies that, for all n ∈ N, almost surely

∥xn+m+1 − xn+1∥
γn+m

≤ (1− αn+m)
∥xn+m − xn∥

γn+m−1
+ αn+m

1

γn+m

∣∣∣∣1− αn

αn+m

∣∣∣∣ ∥x0 − yn∥

+ αn+m
1

αn+m

∣∣∣∣ 1

γn+m
− 1

γn+m−1

∣∣∣∣ ∥xn+m − xn∥

+ αn+m
1

αn+m

|γn+m − γn|
γ2n+m

(∥xn∥+ ∥z̄n∥) .

Therefore, the proof of Lemma 3.1, Sub-assumption 3.2(i), and Assumptions 4.1 and 4.2
lead to the assertion in Lemma 4.1. This completes the proof. ■

Lemma 4.2 Suppose that the assumptions in Theorem 4.1 hold and zn := Proxγnf (wn)(xn)
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for all n ∈ N. Then, almost surely

lim
n→∞

E
[
∥xn − zn∥2

∣∣∣Fn

]
= 0 and lim

n→∞
E
[∥∥∥xn − T(wn)(xn)

∥∥∥2 ∣∣∣∣Fn

]
= 0.

Proof. Choose x ∈ X and n ∈ N arbitrarily and define zk := Proxγkf (wk)(xk) (k ∈ N).
Proposition 2.2(i) thus ensures that, for all k ∈ N, ⟨x − zk, xk − zk⟩ ≤ γk(f

(wk)(x) −
f (wk)(zk)), which, together with ⟨x, y⟩ = (1/2)(∥x∥2+∥y∥2−∥x−y∥2) (x, y ∈ H), means
that

∥zk − x∥2 ≤ ∥xk − x∥2 − ∥zk − xk∥2 + 2γk

(
f (wk)(x)− f (wk)(zk)

)
.

Since the convexity of ∥ · ∥2 and (A1) mean that, for all k ∈ N, ∥xk+1 − x∥2 ≤ αk∥x0 −
x∥2 + ∥zk − x∥2 − (1− αk)∥zk − T(wk)(zk)∥2, we also have, for all k ∈ N,

∥xk+1 − x∥2 ≤ αk ∥x0 − x∥2 + ∥xk − x∥2 − ∥zk − xk∥2 + 2γk

(
f (wk)(x)− f (wk)(zk)

)
− (1− αk)

∥∥∥zk − T(wk)(zk)
∥∥∥2 . (28)

Furthermore, the definition of ∂f (i) (i ∈ I) and Proposition 2.2(iii) imply that there
exists K1 ∈ R such that

∥xk+1 − x∥2 ≤ αk ∥x0 − x∥2 + ∥xk − x∥2 − ∥zk − xk∥2 + 2K1γk ∥x− zk∥

− (1− αk)
∥∥∥zk − T(wk)(zk)

∥∥∥2 .
Accordingly,

∥zn+1 − xn+1∥2 ≤ ∥x0 − x∥2
n+m∑
k=n+1

αk + 2K1

n+m∑
k=n+1

γk ∥x− zk∥

+ γn+m (∥xn+1 − x∥+ ∥xn+m+1 − x∥) ∥xn+1 − xn+m+1∥
γn+m

, (29)

(1− αn+1)
∥∥∥zn+1 − T(wn+1)(zn+1)

∥∥∥2 ≤ ∥x0 − x∥2
n+m∑
k=n+1

αk + 2K1

n+m∑
k=n+1

γk ∥x− zk∥

+ γn+m (∥xn+1 − x∥+ ∥xn+m+1 − x∥) ∥xn+1 − xn+m+1∥
γn+m

. (30)

Therefore, from a discussion similar to the one for obtaining (12), Assumptions 4.1
and 4.2, and Lemma 4.1 lead to limn→∞ E[∥zn − xn∥2|Fn] = 0 almost surely and
limn→∞ E[∥zn − T(wn)(zn)∥2|Fn] = 0 almost surely. Since (A1) and ∥x+ y∥2 ≤ 2∥x∥2 +
2∥y∥2 (x, y ∈ H) guarantee that∥∥∥xn − T(wn)(xn)

∥∥∥2 ≤ 2 ∥xn − zn∥2 + 2
∥∥∥zn − T(wn)(xn)

∥∥∥2
≤ 6 ∥xn − zn∥2 + 4

∥∥∥zn − T(wn)(zn)
∥∥∥2 , (31)

21



December 31, 2017 Optimization Methods & Software GOMS-2017-0013R1

we have limn→∞ E[∥xn−T(wn)(xn)∥2|Fn] = 0 almost surely. This completes the proof. ■

Lemma 4.2 leads to the following.

Lemma 4.3 Suppose that the assumptions in Theorem 4.1 hold. Then, for all i ∈ I,
almost surely

lim
n→∞

∥∥∥xn − T (i)(xn)
∥∥∥ = 0 and lim

n→∞
∥xn − zn∥ = 0.

Proof. The same discussion as for proving Lemma 3.3 guarantees that limn→∞ ∥xn −
T (i)(xn)∥ = 0 (i ∈ I) almost surely. Lemma 4.1 ensures that (∥xn+m+1−xn+1∥/γn+m)n∈N
almost surely is bounded. Hence, (29) and limn→∞ αn = limn→∞ γn = 0 guarantee that
limn→∞ ∥xn − zn∥ almost surely equals 0. This completes the proof. ■

Lemma 4.3 leads to the following.

Lemma 4.4 Suppose that the assumptions in Theorem 4.1 hold. Then, almost surely

lim sup
n→∞

f(xn) ≤ f⋆ := min
x∈X

f(x).

Moreover, any weak sequential cluster point of (xn)n∈N almost surely belongs to X⋆ :=
{x⋆ ∈ X : f(x⋆) = f⋆}.

Proof. Choose x⋆ ∈ X⋆ and n ∈ N arbitrarily. Inequality (28) guarantees that, for all
k ∈ N,

∥xk+1 − x⋆∥2 ≤ αk ∥x0 − x⋆∥2 + ∥xk − x⋆∥2 + 2γk

(
f (wk)(x⋆)− f (wk)(xk)

)
+ 2γk

(
f (wk)(xk)− f (wk)(zk)

)
,

which, together with the nonempty condition of ∂f (wk)(xk) and the triangle inequality,
implies that, for all k ∈ N, there exists ūk ∈ ∂f (wk)(xk) such that

∥xk+1 − x⋆∥2 ≤ αk ∥x0 − x⋆∥2 + ∥xk − x⋆∥2 + 2γk

(
f (wk)(x⋆)− f (wk)(xk)

)
+ 2γk ∥ūk∥ ∥xk − zk∥ .

Accordingly,

∥xn+m+1 − x⋆∥2 ≤ ∥xn+1 − x⋆∥2 + 2

n+m∑
k=n+1

γk

(
f (wk)(x⋆)− f (wk)(xk)

)
+ ∥x0 − x⋆∥2

n+m∑
k=n+1

αk + 2

n+m∑
k=n+1

γk ∥ūk∥ ∥xk − zk∥ .
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A discussion similar to the one for obtaining (14) implies that

2

γn+m

n+m∑
k=n+1

γk

(
f (wk)(xk)− f (wk)(x⋆)

)
≤ (∥xn+1 − x⋆∥+ ∥xn+m+1 − x⋆∥) ∥xn+m+1 − xn+1∥

γn+m
+
∥x0 − x⋆∥2

γn+m

n+m∑
k=n+1

αk

+
2

γn+m

n+m∑
k=n+1

γk ∥ūk∥ ∥xk − zk∥ .

(32)

Hence, the same discussion as for the proof of Lemma 3.4, together with Lemma 4.3
and Assumptions 3.2 and 4.1, leads to the finding that lim supn→∞ f(xn) ≤ f⋆ almost
surely. Furthermore, the same discussion as for the proof of Theorem 3.1, together with
Assumption 4.2 and Lemmas 4.3 and 4.4, guarantees that any weak sequential cluster
point of (xn)n∈N almost surely belongs to X⋆. This means that Theorem 4.1 holds. ■

4.3 Convergence rate analysis of Algorithm 2

The following proposition establishes the rate of convergence for Algorithm 2.

Proposition 4.1 Suppose that the assumptions in Theorem 4.1 hold and that (xn)n∈N
is the sequence generated by Algorithm 2. Then, there exist Ki ∈ R (i = 1, 2) such that,
for all n ∈ N, almost surely∥∥∥xn − T (i)(xn)

∥∥∥ ≤√K1αn +K2γn.

Moreover, under Sub-assumption 3.2(iii), if there exists k0 ∈ N such that almost surely
f(xn) ≥ f⋆ for all n ≥ k0, there exist k1 ∈ N and Ki ∈ R (i = 3, 4, 5, 6) such that, for
all n ≥ max{k0, k1}, almost surely

1

m

n+m∑
k=n+1

f(xk)− f⋆ ≤ K3
o(γn+m)

γn+m
+K4

αn

γn
+
√

K5αn +K6γn. (33)

Under Sub-assumption 3.2(iv), there exist Ki ∈ R (i = 7, 8, 9, 10) such that, for all n ∈ N,
almost surely

f(xn)− f⋆ ≤ K7
o(γn+m)

γn+m
+K8

αn

γn
+
√

K9αn +K10γn. (34)

Let us compare Algorithm 1 with Algorithm 2. Algorithm 1 can be applied to only
smooth convex stochastic optimization whereas Algorithm 2 can be applied to nonsmooth
convex stochastic optimization. Theorem 4.1 guarantees that any weak sequential cluster
point of the sequence generated by Algorithm 2 almost surely belongs to the solution set
of Problem 2.1 when f (i) (i ∈ I) is smooth. Proposition 4.1 implies that Algorithm 2
with γn := 1/na and αn := 1/nb (n ≥ 1), where a ∈ (0, 1/2), b ∈ (a, 1−a), and a+ b < 1,
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satisfies, for all i ∈ I, ∥∥∥xn − T (i)(xn)
∥∥∥ = O

(
1√
na

)
,

which is the same as the rate of convergence of Algorithm 1 with λn := 1/na and
αn := 1/nb (n ≥ 1) for ∥xn − T (i)(xn)∥ (see (22)). Moreover, (33) and (34) imply that,
under the assumptions in Proposition 4.1 and the condition o(γn) = 1/nc, where c > a,

1

m

n+m∑
k=n+1

f(xk)− f⋆ = O

(
1

nmin{a/2,b−a,c−a}

)
, f(xn)− f⋆ = O

(
1

nmin{a/2,b−a,c−a}

)
.

Therefore, under the condition that λn = γn := 1/na and αn := 1/nb (n ≥ 1), the rate of
convergence of Algorithm 1 (see (23) and (24)) is almost the same as that of Algorithm
2.

Proof. Since (29) and (30) hold, the almost sure boundedness of (xn)n∈N and the mono-
tone decreasing conditions of (αn)n∈N and (γn)n∈N with limn→∞ αn = 0 mean the exis-
tence of Ki ∈ R (i = 2, 3) such that, for all n ∈ N, almost surely

E
[
∥zn − xn∥2

∣∣∣Fn

]
≤ K2αn +K3γn, E

[∥∥∥zn − T(wn)(zn)
∥∥∥2 ∣∣∣Fn

]
≤ K2αn +K3γn,

which, together with (31) and the existence of K4 ∈ R such that, for all i ∈ I and for all
n ∈ N, almost surely ∥xn−T (i)(xn)∥2 ≤ K4E[∥xn−T(wn)(xn)∥2|Fn] (see Sub-assumption
3.2(ii)), means that, for all i ∈ I and for all n ∈ N, almost surely∥∥∥xn − T (i)(xn)

∥∥∥2 ≤ 10K4 (K2αn +K3γn) .

The same discussion as for obtaining (25) means that almost surely

E

[
∥xn+m+1 − xn+1∥

γn+m

∣∣∣∣∣Fn

]
=

o(γn+m)

γn+m
. (35)

Let us assume that Sub-assumption 3.2(iii) holds. Lemma 4.1, the almost sure bound-
edness of (xn)n∈N, and (29) imply that, for all n ∈ N, almost surely ∥xn − zn∥ ≤√
K2αn +K3γn. Taking the expectation in (32) conditioned on Fn thus guarantees that

there exist Ki ∈ R (i = 7, 8, 9) such that, for all n ∈ N, almost surely

2

γn+m

n+m∑
k=n+1

γk (f(xk)− f⋆) ≤ K7
o(γn+m)

γn+m
+

K8

γn+m

n+m∑
k=n+1

αk +
2K9

γn+m

n+m∑
k=n+1

γk
√

K2αk +K3γk,

where K9 := maxi∈I sup{∥u(i)n ∥ : u(i)n ∈ ∂f (i)(xn), n ∈ N} < ∞ comes from the almost
sure boundedness of (xn)n∈N and Proposition 2.2(iii). Accordingly, from the existence of
m0 ∈ N such that almost surely f(xn)− f⋆ ≥ 0 for all n ≥ m0, (16), and the monotone
decreasing conditions of (αn)n∈N and (γn)n∈N, there exist Ki ∈ R (i = 10, 11) such that,
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for all n ≥ m0, almost surely

1

m

n+m∑
k=n+1

f(xk)− f⋆ ≤ K7

m

o(γn+m)

γn+m
+

K10

m

αn

γn
+K11

√
K2αn +K3γn.

Next, let us assume that Sub-assumption 3.2(iv) holds. From (32) and the definition
of ∂f (wk), for all n ∈ N, almost surely

2

n+m∑
k=n+1

(
f (wk)(xn)− f (wk)(x⋆)

)
≤ (∥xn+1 − x⋆∥+ ∥xn+m+1 − x⋆∥) ∥xn+m+1 − xn+1∥

γn+m
+
∥x0 − x⋆∥2mαn+m

γn+m

+ 2K9

n+m∑
k=n+1

∥xk − zk∥+ 2K9

n+m∑
k=n+1

∥xn − xk∥ .

(36)

From (29) and (30), the triangle inequality means that, for all n ∈ N, almost surely

∥xn+1 − xn∥ ≤ ∥xn+1 − yn∥+
∥∥∥T(wn)(zn)− zn

∥∥∥+ ∥zn − xn∥

≤ αn ∥x0 − yn∥+ 2
√

K2αn +K3γn,

which, together with the triangle inequality and the monotone decreasing conditions of
(αn)n∈N and (γn)n∈N, means that, for all n ∈ N, almost surely

n+m∑
k=n+1

∥xn − xk∥ ≤
m−1∑
j=0

(m− j) ∥xn+j − xn+j+1∥

≤
m−1∑
j=0

(m− j)
(
K11αn+j + 2

√
K2αn+j +K3γn+j

)
≤ m(m+ 1)

2

(
K11αn + 2

√
K2αn +K3γn

)
,

where almost surely K11 := sup{∥x0− yn∥ : n ∈ N} <∞. Taking the expectation in (36)
conditioned on Fn thus guarantees that, for all n ∈ N, almost surely

m (f(xn)− f⋆) ≤ K7
o(γn+m)

γn+m
+K10

αn

γn

+mK8

√
K2αn +K3γn +

m(m+ 1)

2
K8

(
K11αn + 2

√
K2αn +K3γn

)
,

which, together with (C4), completes the proof. ■

Remark 4.1 A discussion similar to the one for obtaining (26) ensures that there exist
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m0 ∈ N and K̄i ∈ R (i = 1, 2) such that, for all n > m0, almost surely

E

[∥∥xn+m(n)+1 − xn+1

∥∥
γn+m(n)

∣∣∣∣∣Fn

]
≤ K̄1

n∏
k=m0

(
1− αk+m(k)

)
+ K̄2N(n), (37)

where N(n) := max{(1/γk+m(k))|1 − αk/αk+m(k)|, (1/αk+m(k))|(1/γk+m(k)) −
(1/γk+m(k)−1)|, (1/αk+m(k))|γk+m(k) − γk|/γ2k+m(k) : k = n, n − 1, . . . ,m0}. Accord-

ingly, (35) can be replaced with (37).

5. Numerical results

This section considers Problem 2.1 when f (i) : Rd → R and T (i) : Rd → Rd (i ∈ I) are
defined for all x := (x1, x2, . . . , xd) ∈ Rd by

f (i)(x) :=
1

2

⟨
x,A(i)x

⟩
+
⟨
b(i), x

⟩
or
∑
j∈D

ω
(i)
j

∣∣∣xj − a
(i)
j

∣∣∣ ,
T (i)(x) :=

1

2

[
x+ PC

(
1

K

∑
k∈K

PC
(i)
k
(x)

)]
, (38)

where A(i) ∈ Rd×d is a diagonal matrix with diagonal components λ
(i)
j ≥ 0, b(i) ∈ Rd,

ω
(i)
j > 0, a

(i)
j ∈ R, r(i)k > 0, c

(i)
k ∈ Rd, C

(i)
k := {x ∈ Rd : ∥x− c

(i)
k ∥ ≤ r

(i)
k } (i ∈ I, k ∈ K :=

{1, 2, . . . ,K}, j ∈ D := {1, 2, . . . , d}), and C := {x ∈ Rd : ∥x∥ ≤ 1}.
Since the metric projection onto each of C and C

(i)
k (i ∈ I, k ∈ K) can be computed

within a finite number of arithmetic operations, T (i) (i ∈ I) defined by (38) can be
computed efficiently. Moreover, T (i) (i ∈ I) satisfies the firm nonexpansivity condition

(see (A1)), and Fix(T (i)) coincides with a subset of C with the elements closest to C
(i)
k s

in terms of the mean square norm [48, Proposition 4.2]. This subset, denoted by C
(i)
Φ :=

{x ∈ C : Φ(i)(x) := (1/K)
∑

k∈K(minz∈C(i)
k
∥x − z∥)2 = miny∈C Φ(i)(y)} (= Fix(T (i))),

is called the generalized convex feasible set [8, 48], which is well defined even when C ∩∩
k∈K C

(i)
k = ∅ (see [8, 21, 28, 48] for applications of the generalized convex feasible set).

The boundedness of C guarantees that Fix(T (i)) = C
(i)
Φ ̸= ∅ [48, Remark 4.3(a)].

The experimental evaluations of the two proposed algorithms were done using a Mac
Pro with a 3-GHz 8-Core Intel Xeon E5 processor and 32-GB 1866-MHz DDR3 memory.
The algorithms were written in Java (version 9) with d := 210 = 1024, I := 16, and

K := 3. The values of λ
(i)
j ∈ [0, d], b(i) ∈ [−1, 1]d, ω(i)

j ∈ (0, 1], a
(i)
j ∈ [−1, 1], r(i)k ∈

(0, 1], and c
(i)
k ∈ [−1/

√
d, 1/
√
d)d were randomly generated using the Mersenne Twister

pseudorandom number generator (provided by Apache Commons Math 3.6). Algorithm
1 (resp. Algorithm 2) was used with (4) (resp. (27)), which implies the boundedness
of (yn)n∈N (see Assumptions 3.3 and 4.2). The step-size sequences were λn = γn :=
10−3/(n+ 1)a and αn := 10−3/(n+ 1)b, where (a, b) is (A) (1/4, 1/2) or (B) (1/8, 3/4),
which satisfy Assumptions 3.1 and 4.1.2

2Existing fixed point optimization algorithms [24, 26] with small step sizes (e.g., γn := 10−2/(n+1)a, 10−3/(n+
1)a) have faster convergence. Hence, the experiment used step sizes λn = γn := 10−3/(n + 1)a and αn :=
10−3/(n+ 1)b.
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To see how the choice of (wn)n∈N affects the convergence rate of the two algorithms,
Algorithms 1 and 2 were used with one of the following conditions.

(I) The samples were generated nearly independently; i.e., for all i ∈ I, there existed
ρi ∈ (0, 1] such that, almost surely infn∈N P(wn = i|Fn) ≥ ρi/I.

(II) The samples were selected to be nonexpansive mappings of which the fixed point sets
were the most distant from the current iterates; i.e., wn ∈ argmaxi∈I ∥xn − T (i)(xn)∥2
for all n ∈ N.

(III) The samples were generated in accordance with a random permutation of the indexes
within a cycle; i.e., for all t ∈ N, (T(wn))n∈N, where n = tI, tI +1, . . . , (t+1)I − 1, was
a permutation of {T (1), T (2), . . . , T (I)}.

(IV) The samples were generated through state transitions of a Markov chain; i.e., (wn)n∈N
was generated using an irreducible and aperiodic Markov chain with states 1, 2, . . . , I.

Conditions (I)–(IV) were defined on the basis of Assumptions 4–7 in [45]. The conclu-
sions in [45] show that the sequence (wn)n∈N in each condition satisfies Sub-assumptions
3.2(i) and (ii). In the experiment, (wn)n∈N in (IV) was generated using a positive Markov
matrix with randomly chosen elements.
One hundred samplings, each starting from a different randomly chosen initial point,

were performed, and the results were averaged. Two performance measures were used.
For each n ∈ N,

Dn :=
1

100

100∑
s=1

∑
i∈I

∥∥∥xn(s)− T (i) (xn(s))
∥∥∥ and Fn :=

1

100

100∑
s=1

E
[
f (w) (xn(s))

]
,

where (xn(s))n∈N is the sequence generated from initial point x(s) (s = 1, 2, . . . , 100) for
each of the two algorithms. The value of Dn represents the mean value of the sums of
the distances between xn(s) and T (i)(xn(s)). Hence, if (Dn)n∈N converges to 0, (xn)n∈N

converges to some point in
∩

i∈I Fix(T
(i)) =

∩
i∈I C

(i)
Φ . Fn is the average of E[f (w)(xn(s))]

(s = 1, 2, . . . , 100), and the values of Fn generated by Algorithms 1 and 2 with Conditions
(I)–(IV) differ since the samples are coming from different distributions in (I)–(IV). The
stopping condition was n = 1000.
First, let us consider the problem when f (i)(x) := (1/2)⟨x,A(i)x⟩ + ⟨b(i), x⟩ (i ∈ I)

(i.e., f (i) is smooth and convex), which can be solved using Algorithm 1. Table 1 shows
the number of iterations n and elapsed time when Algorithm 1 with one of (I)–(IV) and
one of (A) and (B) satisfied Dn ≤ 10−3 and |Fn − Fn−1| ≤ 10−5. All the algorithms
converged to a point in

∩
i∈I Fix(T

(i)) in the early stages. Fn when Algorithm 1 satisfied
|Fn − Fn−1| ≤ 10−5 was different from F1000 because the behavior of Algorithm 1 was
unstable in the early stages. Checking showed that Algorithm 1 satisfied Dn ≈ 0 for
n ≥ 10 and that its behavior was stable for n ≥ 900. When one of (I)–(IV) was fixed,
F1000 generated by Algorithm 1(A) was smaller than F1000 generated by Algorithm 1(B).
Accordingly, Algorithm 1(A) performed better than Algorithm 1(B).

Next, let us consider the case in which f (i)(x) :=
∑

j∈D ω
(i)
j |xj − a

(i)
j | (i ∈ I) (i.e.,

f (i) is nonsmooth and convex), which can be solved using Algorithm 2. Table 2 shows
that all the algorithms optimized Fn in the early stages and then searched for a point
in
∩

i∈I Fix(T
(i)), in contrast to Algorithm 1 (see Table 1). Checking showed that the

behavior of Algorithm 2 was stable. Moreover, when one of (I)–(IV) was fixed, Algo-
rithm 2(B) satisfied Dn ≤ 10−2 more quickly than Algorithm 2(A), and F1000 generated
by Algorithm 2(B) was smaller than that generated by Algorithm 2(A). Accordingly,
Algorithm 2(B) performed better than Algorithm 2(A).
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Table 1. Behavior of Dn and Fn for Algorithm 1

Dn ≤ 10−3 |Fn − Fn−1| ≤ 10−5 n = 1000
n time [s] Dn n time [s] Fn time [s] Fn

Alg.1(I)(A) 6 0.000071 0.000392 132 0.001263 0.022259 0.009604 −0.011421
Alg.1(I)(B) 6 0.000072 0.000000 301 0.002930 0.010067 0.009704 0.002931
Alg.1(II)(A) 6 0.001134 0.000000 250 0.037588 0.024567 0.147227 0.006503
Alg.1(II)(B) 5 0.000963 0.000100 99 0.015022 0.038290 0.147379 0.019506
Alg.1(III)(A) 5 0.000061 0.000000 78 0.000754 0.033988 0.009607 −0.005376
Alg.1(III)(B) 4 0.000051 0.000000 110 0.001063 0.019045 0.009731 0.003758
Alg.1(IV)(A) 5 0.000062 0.000065 423 0.004195 0.016480 0.009871 0.007351
Alg.1(IV)(B) 5 0.000062 0.000000 484 0.004830 0.025469 0.009889 0.020530

Table 2. Behavior of Dn and Fn for Algorithm 2

Dn ≤ 10−2 |Fn − Fn−1| ≤ 10−5 n = 1000
n time [s] Dn n time [s] Fn time [s] Fn

Alg.2(I)(A) > 1000 — — 14 0.000191 0.206366 0.010437 0.202815
Alg.2(I)(B) 522 0.005282 0.009996 14 0.000193 0.206323 0.009920 0.194252
Alg.2(II)(A) 770 0.120310 0.009993 9 0.001693 0.193260 0.155903 0.191289
Alg.2(II)(B) 46 0.007322 0.009871 9 0.001651 0.193248 0.148430 0.187172
Alg.2(III)(A) 771 0.008040 0.009961 14 0.000194 0.193133 0.010388 0.191453
Alg.2(III)(B) 96 0.001040 0.009769 14 0.000190 0.193123 0.009999 0.187654
Alg.2(IV)(A) 976 0.010334 0.009998 7 0.000106 0.193286 0.010596 0.191582
Alg.2(IV)(B) 121 0.001304 0.009790 7 0.000109 0.193281 0.009994 0.188013

6. Conclusion

Two stochastic optimization algorithms were proposed for solving the problem of min-
imizing the expected value of convex functions over the intersection of fixed point sets
of nonexpansive mappings in a real Hilbert space. One algorithm blends a stochastic
gradient method with the Halpern fixed point algorithm while the other is based on a
stochastic proximal point algorithm and the Halpern fixed point algorithm. Consideration
of a case in which the step-size sequences are diminishing demonstrated that any weak
sequential cluster point of the sequence generated by each of the two algorithms almost
surely belongs to the solution set of the problem under certain assumptions. Convergence
rate analysis of the two algorithms illustrated their efficiency. A discussion of concrete
convex optimization over fixed point sets and the numerical results demonstrated their
effectiveness.
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