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Abstract. This paper considers the problem of finding a fixed point of a non-
expansive mapping on a real Hilbert space and modifies the Krasnosel’skĭı-Mann
algorithm by using a three-term conjugate gradient-like direction that is used to
solve constrained optimization problems quickly. We prove that, under certain
assumptions, the proposed algorithm converges to a fixed point of a nonexpansive
mapping in the sense of the weak topology of a Hilbert space. We numerically
compare the algorithm with the existing fixed point algorithms. The numerical
results show that it reduces the running time and iterations needed to find a fixed
point compared with those algorithms.

1. Introduction

This paper discuss the following fixed point problem [1, Chapter 4], [5, Chapter
3], [6, Chapter 1], [16, Chapter 3]:

Problem 1.1. LetH be a real Hilbert space with inner product ⟨·, ·⟩ and its induced
norm ∥ · ∥, and let T : H → H be nonexpansive; i.e., ∥Tx − Ty∥ ≤ ∥x − y∥ for all
x, y ∈ H. Then

find x∗ ∈ F(T ) := {x∗ ∈ H : Tx∗ = x∗} ,
where one assumes F(T ) is nonempty.

It is known that the Krasnosel’skĭı-Mann algorithm [1, Subchapter 5.2], [2, Sub-
chapter 1.2], [13, 14] is a simple and useful fixed point algorithm for solving Problem
1.1. The algorithm is defined for all n ∈ N by

xn+1 := αnxn + (1− αn)Txn,(1.1)

where x0 ∈ H is chosen arbitrarily and {αn} ⊂ (0, 1) satisfies
∑∞

n=0 αn(1 − αn) =
∞. It is guaranteed that Algorithm (1.1) weakly converges to some point in F(T )
[1, Theorem 5.14]. Unfortunately, the algorithm converges slowly [4, Propositions
10 and 11]. Accordingly, modifications [7, 10] have been developed in order to
accelerate Algorithm (1.1).

Let us consider the convergence of the Krasnosel’skĭı-Mann algorithm (1.1) from
the viewpoint of an unconstrained smooth convex optimization problem: given a
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Fréchet differentiable, convex function f : H → R with the Lipschitz continuous
gradient ∇f ,

minimize f(x) subject to x ∈ H.(1.2)

Here, let us define a mapping Tf : H → H by Tf := Id− λ∇f , where Id stands for
the identity mapping on H, L is the Lipschitz constant of ∇f , and λ ∈ [0, 2/L].
Then, Tf satisfies the nonexpansivity condition and F (Tf ) = argminx∈H f (x) [8,
Proposition 2.3]. The sequence {xn} generated by Algorithm (1.1) with Tf is

xn+1 = xn + (1− αn)(Tfxn − xn)

= xn − λ(1− αn)∇f(xn),
(1.3)

which means that Algorithm (1.1) with Tf is the steepest descent method for uncon-
strained smooth convex optimization and that it does not converge quickly. Hence,
modified Krasnosel’skĭı-Mann algorithms [7, 10] were developed to accelerate the
search for fixed points of a nonexpansive mapping.

Hishinuma and Iiduka [7] presented the following algorithm.

dn := (Txn − xn) + βndn−1,

xn+1 := xn + (1− αn)dn.
(1.4)

Algorithm (1.4) can be obtained by replacing the steepest descent direction dn :=
Tfxn − xn = −λ∇f(xn) in (1.3) with the conjugate gradient-like direction [9, 12]
dn = Tfxn − xn + βndn−1 = −λ∇f(xn) + βndn−1, where βn ≥ 0. We can see that
Algorithm (1.4) with βn := 0 (n ∈ N) coincides with Algorithm (1.1). Algorithm
(1.4) weakly converges to a fixed point of T if

∑∞
n=0 βn < ∞ and if {Txn − xn} is

bounded [7, Theorem 3.3]. Iiduka [10] proposed line search fixed point algorithms
that can determine a more adequate step size than one satisfying

∑∞
n=0 αn(1−αn) =

∞ at each iteration n so that the value of ∥xn − Txn∥ decreases dramatically. The
algorithms [10, Algorithm 2.1] use the conventional nonlinear conjugate gradient
directions [15, Subchapter 5.2], such as the Hestenes-Stiefel, Fletcher-Reeves, Polak-
Ribière-Polyak, and Dai-Yuan formulas, in contrast to the previous algorithm [7].

The main objective of this paper is to accelerate Algorithm (1.4). To reach this
goal, we present an algorithm that can be obtained by replacing the conjugate
gradient-like direction in (1.4) with the following three-term conjugate gradient-like
direction:

dn+1 := (Txn − xn) + βndn + γnωn,(1.5)

where γn ≥ 0 and ωn ∈ H (n ∈ N). The three-term conjugate gradient-like direction
was proposed in [9] to accelerate the previous fixed point optimization algorithms
and the numerical results in [9, Section 4] showed that the algorithm in [9] converges
to optimal solutions to concrete smooth convex optimization problems faster than
the previous ones.

We prove that, under certain assumptions, the proposed algorithm with (1.5)
weakly converges to a fixed point in F(T ). Furthermore, we numerically compare
it with Algorithms (1.1) and (1.4) and show that it performs better than them.
This paper is organized as follows. Section 2 devises the acceleration algorithm for
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solving Problem 1.1 and proves the weak convergence of the algorithm. Section 3
provides numerical examples. Section 4 concludes the paper.

2. Acceleration of the Krasnosel’skĭı-Mann algorithm

Suppose that T : H → H is nonexpansive with F(T ) ̸= ∅. The following is the
proposed algorithm for solving Problem 1.1.

Algorithm 2.1.

Step 0: Choose α > 0 and x0, ω0 ∈ H arbitrarily, and set {αn} ⊂ (0, 1),
{βn} ⊂ [0,∞), and {γn} ⊂ [0,∞). Compute d0 := (Tx0 − x0)/α.

Step 1: Compute dn+1 ∈ H as

dn+1 :=
1

α
(Txn − xn) + βndn + γnωn.

Compute xn+1 ∈ H as{
yn := xn + αdn+1,

xn+1 := αnxn + (1− αn) yn.

Put n := n+ 1, and go to Step 1.

The following is a convergence analysis of Algorithm 2.1.

Theorem 2.2. Suppose that the sequences {αn}, {βn}, and {γn} satisfy

(C1)

∞∑
n=0

αn(1− αn) = ∞, (C2)

∞∑
n=0

βn < ∞, (C3)

∞∑
n=0

γn < ∞.

Moreover, assume that

(C4) {Txn − xn} is bounded and (C5) {ωn} is bounded.

Then the sequence {xn} generated by Algorithm 2.1 weakly converges to a fixed point
of T .

2.1. Proof of Theorem 2.2. We first prove the boundedness of {dn}, {xn}, and
{yn}.

Lemma 2.3. Suppose that the assumptions in Theorem 2.2 hold. Then,

(i) {dn} is bounded;
(ii) limn→∞ ∥xn − u∥ exists for all u ∈ F(T ). In particular, {xn} is bounded;
(iii) {yn} is bounded.

Proof. (i) Conditions (C2) and (C3) ensure that limn→∞ βn = 0 and limn→∞ γn = 0.
Then there exists n0 ∈ N such that βn ≤ 1/3 and γn ≤ 1/3 for all n ≥ n0. Put
M1 := max{∥dn0∥, (3/α) supn∈N ∥Txn−xn∥}. Condition (C4) implies thatM1 < ∞.
Moreover, put M2 := max{M1, supn∈N ∥ωn∥}. Condition (C5) and M1 imply that
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M2 < ∞. We assume that ∥dn∥ ≤ M2 for some n ≥ n0. From the triangle inequality,
we find that

∥dn+1∥ =

∥∥∥∥ 1α (Txn − xn) + βndn + γnωn

∥∥∥∥
≤ 1

α
∥Txn − xn∥+ βn∥dn∥+ γn∥ωn∥

≤ M2.

Induction shows that ∥dn∥ ≤ M2 for all n ≥ n0; i.e., {dn} is bounded.
(ii) The definitions of yn and dn (n ∈ N) imply that

yn = xn + α

{
1

α
(Txn − xn) + βndn + γnωn

}
= Txn + α (βndn + γnωn) .

(2.1)

The triangle inequality and (2.1) mean that, for all u ∈ F (T ) and for all n ≥ n0,

∥xn+1 − u∥ = ∥αnxn + (1− αn) {Txn + α (βndn + γnωn)} − u∥
= ∥αn (xn − u) + (1− αn) {Txn − u+ α (βndn + γnωn) ∥
≤ αn∥xn − u∥+ (1− αn) ∥Txn − u∥+ α (1− αn)βn∥dn∥
+ α (1− αn) γn∥ωn∥,

which, together with the nonexpansivity of T , 1−αn < 1 (n ∈ N), ∥dn∥ ≤ M2, and
∥ωn∥ ≤ M2, implies that, for all n ≥ n0,

∥xn+1 − u∥ ≤ ∥xn − u∥+ αM2 (βn + γn) .

Conditions (C2) and (C3) thus guarantee that limn→∞ ∥xn − u∥ exists for all u ∈
F (T ). This means {xn} is bounded.

(iii) The definition of {yn} (n ∈ N) and the boundedness of {xn} and {dn} imply
that {yn} is also bounded. □

Next, we prove the following lemma.

Lemma 2.4. Suppose that the assumptions in Theorem 2.2 hold. Then,

(i) limn→∞ ∥Txn − xn∥ = 0;
(ii) There exists a subsequence {xni} of {xn} which weakly converges to a fixed

point of T .

Proof. (i) Choose u ∈ F(T ) arbitrarily. From the equality, ∥αx + (1 − α)y∥2 =
α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2 (α ∈ [0, 1], x, y ∈ H), we have that, for all
n ∈ N,

∥xn+1 − u∥2 = ∥αnxn + (1− αn) yn − u∥2

= αn∥xn − u∥2 + (1− αn) ∥yn − u∥2 − αn (1− αn) ∥xn − yn∥2.
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From (2.1), the nonexpansivity of T , and the inequality, ∥x+y∥2 ≤ ∥x∥2+2⟨x+y, y⟩
(x, y ∈ H), we find that, for all n ∈ N,

∥yn − u∥2 = ∥ (Txn − u) + α (βndn + γnωn) ∥2

≤ ∥Txn − u∥2 + 2αβn⟨yn − u, dn⟩+ 2αγn⟨yn − u, ωn⟩
≤ ∥xn − u∥2 +M3βn +M4γn,

where M3 := supn∈N 2α|⟨yn − u, dn⟩| < ∞ and M4 := supn∈N 2α|⟨yn − u, ωn⟩| < ∞.
Hence, from ∥xn − yn∥ = α∥dn+1∥ (n ∈ N), we find that, for all n ∈ N,

∥xn+1 − u∥2 ≤ ∥xn − u∥2 +M3βn +M4γn − α2αn (1− αn) ∥dn+1∥2.

Therefore, for all n ∈ N,

α2αn (1− αn) ∥dn+1∥2 ≤ ∥xn − u∥2 − ∥xn+1 − u∥2 +M3βn +M4γn.

Summing up these inequalities from n = 0 to n = N ∈ N yields

α2
N∑

n=0

αn (1− αn) ∥dn+1∥2 ≤ ∥x0 − u∥2 − ∥xN+1 − u∥2 +M3

N∑
n=0

βn +M4

N∑
n=0

γn

≤ ∥x0 − u∥2 +M3

∞∑
n=0

βn +M4

∞∑
n=0

γn.

Accordingly, (C2) and (C3) guarantee that

α2
∞∑
n=0

αn (1− αn) ∥dn+1∥2 < ∞.

Hence, (C1) means that

lim inf
n→∞

∥dn+1∥ = 0.(2.2)

From the definition of dn+1 (n ∈ N), we have that, for all n ≥ n0,

1

α
∥Txn − xn∥ ≤ ∥dn+1∥+ βn∥dn∥+ γn∥ωn∥ ≤ ∥dn+1∥+M2 (βn + γn) ,

which, together with (2.2) and limn→∞ (βn + γn) = 0 implies that

1

α
lim inf
n→∞

∥Txn − xn∥ ≤ lim inf
n→∞

{∥dn+1∥+M2 (βn + γn)}

= lim inf
n→∞

∥dn+1∥+M2 lim
n→∞

(βn + γn)

= 0.

Thus, we find that

lim inf
n→∞

∥Txn − xn∥ = 0.(2.3)
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From (2.1), the nonexpansivity of T , and the triangle inequality, we have that, for
all n ∈ N,

∥Txn+1 − xn+1∥ = ∥Txn+1 − αnxn − (1− αn) {Txn + α (βndn + γnωn)}∥
≤ αn∥Txn+1 − xn∥+ (1− αn) ∥xn+1 − xn∥
+ α (1− αn)βn∥dn∥+ α (1− αn) γn∥ωn∥

which, together with ∥dn∥ ≤ M2, ∥ωn∥ ≤ M2 (n ≥ n0), and the triangle inequality,
implies that, for all n ≥ n0,

∥Txn+1 − xn+1∥ ≤ αn∥Txn+1 − xn∥+ (1− αn) ∥xn+1 − xn∥
+ α (1− αn)M2 (βn + γn)

≤ αn∥Txn+1 − xn+1∥+ ∥xn+1 − xn∥
+ α (1− αn)M2 (βn + γn) .

Hence, we find that, for all n ≥ n0,

(1− αn) ∥Txn+1 − xn+1∥
≤ ∥xn+1 − xn∥+ α (1− αn)M2 (βn + γn)

= ∥αnxn + (1− αn) {Txn + α (βndn + γnωn)} − xn∥+ α (1− αn)M2 (βn + γn)

= (1− αn) ∥Txn − xn + α (βndn + γnωn) ∥+ α (1− αn)M2 (βn + γn)

≤ (1− αn) ∥Txn − xn∥+ 2α (1− αn)M2 (βn + γn) ,

which means that, for all n ≥ n0,

∥Txn+1 − xn+1∥ ≤ ∥Txn − xn∥+ 2αM2 (βn + γn) .(2.4)

Therefore, (C2) and (C3) guarantee the existence of limn→∞ ∥Txn−xn∥. Equation
(2.3) leads us to

lim
n→∞

∥Txn − xn∥ = lim inf
n→∞

∥Txn − xn∥ = 0.(2.5)

(ii) Since {xn} is bounded, there exists {xni} ⊂ {xn} which weakly converges to
z ∈ H. Assume that z ̸∈ F(T ), i.e., z ̸= Tz. Then Opial’s condition, (2.5), and the
nonexpansivity of T ensure that

lim inf
i→∞

∥xni − z∥ < lim inf
i→∞

∥xni − Tz∥

= lim inf
i→∞

∥xni − Txni + Txni − Tz∥

= lim inf
i→∞

∥Txni − Tz∥

≤ lim inf
i→∞

∥xni − z∥.

This is a contradiction. Hence, z ∈ F(T ). This completes the proof. □

Now, we are in the position to prove Theorem 2.2.

Proof. Let {xnj} be another subsequence of {xn}. The boundedness of {xn} implies
that {xnj} weakly converges to w ∈ F(T ). A similar discussion as in the proof of
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Lemma 2 (ii) leads us to w ∈ F(T ). Assume that z ̸= w. Then, Lemma 1 (ii) and
Opial’s condition mean that

lim
n→∞

∥xn − z∥ = lim
i→∞

∥xni − z∥ < lim
i→∞

∥xni − w∥

= lim
n→∞

∥xn − w∥ = lim
j→∞

∥xnj − w∥

< lim
j→∞

∥xnj − z∥ = lim
n→∞

∥xn − z∥.

This is a contradiction. Hence, z = w. This guarantees that {xn} weakly converges
to a fixed point of T . This completes the proof.

□

3. Numerical Examples

We applied Algorithm 2.1 and the existing algorithms, (1.1) and (1.4), to the
following problem [3, 9, 11, 17].

Problem 3.1. Suppose that C0 ⊂ RN is a nonempty, bounded, closed convex set
and Ci ⊂ RN (i = 1, 2, . . . ,m) is a nonempty, closed convex set and Φ (x) is the
mean square value of the distances from x ∈ RN to Ci (i = 1, 2, . . . ,m), i.e.,

Φ (x) :=
1

m

m∑
i=1

d (x,Ci)
2 =

1

m

m∑
i=1

(
min
y∈Ci

∥x− y∥
)2

(x ∈ Rn) .

Then,

find x∗ ∈ CΦ :=

{
x∗ ∈ C0 : Φ (x∗) = min

y∈C0

Φ(y)

}
.

The set CΦ is called the generalized convex feasible set and is a subset of C0

whose elements are closest to Cis in the sense of the mean square norm. The set CΦ

is well-defined even if ∩m
i=0Ci = ∅. This is because it is the set of all minimizers of Φ

over C0. The boundedness and closedness of C0 guarantee CΦ ̸= ∅. Moreover, the
condition CΦ = ∩m

i=0Ci holds when ∩m
i=0Ci ̸= ϕ, which means CΦ is a generalization

of ∩m
i=0Ci.

Here, we define a mapping T : RN → RN by

T := P0

(
1

m

m∑
i=1

Pi

)
,(3.1)

where Pi := PCi (i = 0, 1, ...,m) stands for the metric projection onto Ci. Accord-
ingly, Proposition 4.2 in [17] ensures that T defined by (3.1) is nonexpansive and

F(T ) = CΦ.

Therefore, Problem 3.1 coincides with Problem 1.1 with T defined as in (3.1).
The experiment used an Apple Macbook Air with a 1.3GHz Intel Core i5 CPU

and 4GB DDR3 memory. Algorithms (1.1), (1.4), and 2.1 were written in C and
complied by using gcc version 4.2.1. The operating system of the computer was
Mac OSX version 10.8.5. We set α := 1, αn := 1/2 (n ∈ N), βn := 1/(n + 1)1.001
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(n ∈ N), and γn := βn (n ∈ N). In the experiment, we chose Ci (i = 0, 1, 2, ...,m) to
be a closed ball with center ci ∈ RN and radius ri > 0. Thus, Pi (i = 0, 1, . . . ,m)
can be computed with

Pi(x) := x+
∥ci − x∥ − ri
∥ci − x∥

(ci − x) if ∥ci − x∥ > ri,

or Pi(x) := x if ∥ci − x∥ ≤ ri.

3.1. Case of ∩m
i=0Ci ̸= ∅. We set N := 107, m := 2, C0 := {x ∈ RN : ∥x∥ ≤

800}, C1 := {x ∈ RN : ∥x − (0.3, 0.3, . . . , 0.3)⊤∥ ≤ 800}, C2 := {x ∈ RN : ∥x −
(−0.2,−0.2, . . . ,−0.2)⊤∥ ≤ 800}, in order to consider the case of ∩2

i=0Ci ̸= ∅. We
used a nonexpansive mapping T defined as in (3.1).

 1
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 0  10  20  30  40  50

||x
n-

T
xn

||

number of iterations

Algorithm (1.1)
Algorithm (1.4)

Proposed

Figure 1. ∥xn − Txn∥ for Algorithms (1.1), (1.4), and 2.1, where
N := 107 and ∩2

i=0Ci ̸= ∅

Figure 1 and Table 1 show ∥xn − Txn∥ for the three algorithms over the course
of 50 iterations. We can see the that ∥xn − Txn∥ of the proposed algorithm was
shorter than those of the other algorithms. During the early iterations, the proposed
algorithm converged faster than the other algorithms to a point in ∩m

i=0Ci.
Figure 2 and Table 2 show the number of iterations taken by the algorithms to

satisfy ∥xn − Txn∥ < 10−2. The proposed algorithm took 396 iterations, the fewest
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Table 1. ∥x50 − Tx50∥ for Algorithms (1.1), (1.4), and 2.1, where
N := 107 and ∩2

i=0Ci ̸= ∅

Algorithm ∥x50 − Tx50∥
Algorithm (1.1) 4.44171745
Algorithm (1.4) 3.83869077

Algorithm 2.1 (Proposed) 1.37881135
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 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  50  100  150  200  250  300  350  400  450

||x
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Figure 2. Number of iterations to reach ∥xn − Txn∥ < 10−2

Table 2. Number of iterations to reach ∥xn − Txn∥ < 10−2

Algorithm ∥xn − Txn∥ Iterations

Algorithm (1.1) 0.00998186 437
Algorithm (1.4) 0.00989580 432

Algorithm 2.1 (Proposed) 0.00996951 396

number. Algorithm (1.1) and Algorithm (1.4) had almost the same results. Thus,
we can see that the proposed algorithm was faster the others.
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Figure 3. Number of seconds until ∥xn − Txn∥ < 10−2

Table 3. Number of seconds until ∥xn − Txn∥ < 10−2

Algorithm ∥xn − Txn∥ Seconds

Algorithm (1.1) 0.0099819 425.162338
Algorithm (1.4) 0.0098958 419.604415

Algorithm 2.1 (Proposed) 0.0099695 384.775158

Figure 3 and Table 3 compare the times taken by the algorithms to satisfy ∥xn−
Txn∥ < 10−2. It is clear that the proposed algorithm converged faster than the
others to a point in ∩m

i=0Ci.
We can conclude from the above that the proposed algorithm 2.1 performed

better than Algorithm (1.1) or Algorithm (1.4).

3.2. Case of ∩m
i=0Ci = ∅. We set N := 107, m := 2, C0 := {x ∈ RN : ∥x∥ ≤

100}, C1 := {x ∈ RN : ∥x − (5.0, 5.0, . . . , 5.0)⊤∥ ≤ 100}, C2 := {x ∈ RN : ∥x −
(−3.0,−3.0, . . . ,−3.0)⊤∥ ≤ 100} in order to consider the case of ∩2

i=0Ci = ∅. We
used a nonexpansive mapping T defined as in (3.1).

Figure 4 and Table 4 show ∥xn − Txn∥ for the three algorithms over the course
of 50 iterations. ∥xn − Txn∥ of the proposed algorithm was shorter than those of
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Figure 4. ∥xn − Txn∥ for Algorithms (1.1), (1.4), and 2.1, where
N := 107 and ∩2

i=0Ci = ∅

Table 4. ∥x50 − Tx50∥ for Algorithms (1.1), (1.4), and 2.1, where
N := 107 and ∩2

i=0Ci = ∅

Algorithm ∥x50 − Tx50∥
Algorithm (1.1) 0.000000001638652
Algorithm (1.4) 0.000000000009824

Algorithm 2.1 (Proposed) 0.000000000000899

Algorithm (1.1) and Algorithm (1.4). During the early iterations, the proposed
algorithm converged slightly faster than the other algorithms to a point in CΦ.

Table 5. Number of iterations taken to reach ∥xn − Txn∥ < 10−6

Algorithm ∥xn − Txn∥ Iterations

Algorithm (1.1) 0.00000084 41
Algorithm (1.4) 0.00000072 35

Algorithm 2.1 (Proposed) 0.00000049 33
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Figure 5. Number of iterations to reach ∥xn − Txn∥ < 10−6

Figure 5 and Table 5 show the number of iterations required by the algorithms
to satisfy ∥xn − Txn∥ < 10−6. Although the proposed algorithm took the fewest
iterations, 33, the results of the three algorithms were comparable.

Table 6. Number of seconds until ∥xn − Txn∥ < 10−2

Algorithm ∥xn − Txn∥ Seconds

Algorithm (1.1) 0.0000008 41.425032
Algorithm (1.4) 0.0000007 35.325500

Algorithm 2.1 (Proposed) 0.0000005 33.539761

Figure 6 and Table 6 show the time required by the algorithms to satisfy ∥xn −
Txn∥ < 10−6. The proposed algorithm converged slightly faster than the others to
a point in CΦ.

We can conclude from these experiments that the proposed algorithm 2.1 out-
performed Algorithm (1.1) and Algorithm (1.4).
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Figure 6. Number of seconds until ∥xn − Txn∥ < 10−6

4. Conclusion

This paper presented an algorithm to accelerate the Krasnosel’skĭı-Mann algo-
rithm for finding a fixed point of a nonexpansive mapping on a real Hilbert space
and its convergence analysis. This convergence analysis guarantees that the pro-
posed algorithm weakly converges to a fixed point of a nonexpansive mapping under
certain assumptions. We also showed that the proposed algorithm outperformed the
existing algorithms in experiments.
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