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Abstract

This paper proposes a stochastic approximation method for solving a convex
stochastic optimization problem over the fixed point set of a quasinonexpansive
mapping. The proposed method is based on existing adaptive learning rate
optimization algorithms that use certain diagonal positive-definite matrices for
training deep neural networks. This paper includes convergence analyses and
convergence rate analyses for the proposed method under specific assumptions.
Results show that any accumulation point of the sequence generated by the
method with diminishing step-sizes almost surely belongs to the solution set of a
stochastic optimization problem in deep learning. Additionally, we apply the
learning methods based on the existing and proposed methods to classifier
ensemble problems and conduct a numerical performance comparison showing
that the proposed learning methods achieve high accuracies faster than the
existing learning method.
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1 Introduction

Convex stochastic optimization problems in which the objective function is the
expectation of convex functions are considered important due to their occurrence
in practical applications, such as machine learning and deep learning.

The classical method for solving these problems is the stochastic approximation
(SA) method [1, (5.4.1)], [2, Algorithm 8.1], [3], which is applicable when unbiased
estimates of (sub)gradients of an objective function are available. Modified versions
of the SA method, such as the mirror descent SA method [4, Sections 3 and 4],
[5, Subsection 2.3] and the accelerated SA method [6, Subsection 3.1], have been
reported as useful methods for solving these problems. Meanwhile, some stochastic
optimization algorithms have been proposed with the rapid development of deep
learning. For example, AdaGrad [7, Figures 1 and 2] is an algorithm based on the
mirror descent SA method, and Adam [8, Algorithm 1], [2, Algorithm 8.7] and
AMSGrad [9, Algorithm 2] are well known as powerful tools for solving convex
stochastic optimization problems in deep neural networks. These algorithms use

the inverses of diagonal positive-definite matrices at each iteration to adapt the
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learning rates of all model parameters. Hence, these algorithms are called adaptive
learning rate optimization algorithms.

The abovementioned methods commonly assume that metric projection onto a
given constraint set is computationally possible. However, although the metric pro-
jection onto a simple convex set such an affine subspace, half-space, or hyperslab can
be easily computed, the projection onto a complicated set, such as the intersections
of simple convex sets, the set of minimizers of a convex function, or the solution set
of a monotone variational inequality, cannot be easily computed. Accordingly, it is
difficult to apply the abovementioned methods to stochastic optimization problems
with complicated constraints.

In order to solve a stochastic optimization problem over a complicated constraint
set, we define a computable quasinonexpansive mapping whose fixed point set co-
incides with the constraint set, which is possible for the abovementioned compli-
cated convex sets (see Subsection 3.1 and Example 4.1 for examples of computable
quasinonexpansive mappings). Accordingly, the present paper deals with a convex
stochastic optimization problem over the fized point set of a computable quasinon-
erpansive mapping.

Since useful fixed point algorithms have already been reported [10, Chapter 5],
[11, Chapters 2-9], [12, 13, 14, 15, 16], we can find fixed points of quasinonex-
pansive mappings, which are feasible points of the convex stochastic optimization
problem. By combining the SA method with an existing fixed point algorithm, we
could obtain algorithms [17, Algorithms 1 and 2] for solving convex stochastic op-
timization problems that can be applied to classifier ensemble problems [18, 19]
(Example 4.1(ii)), which arise in the field of machine learning. However, the exist-
ing algorithms converge slowly [17] due to being stochastic first-order methods. In
this paper, we propose an algorithm (Algorithm 1) for solving a convex stochastic
optimization problem (Problem 3.1) that performs better than the algorithms in
[17, Algorithms 1 and 2]. The algorithm proposed herein is based on useful adap-
tive learning rate optimization algorithms, such as Adam and AMSGrad, that use
certain diagonal positive-definite matrices.l! The first contribution of the present
study is an analysis of the convergence of the proposed algorithm (Theorem 5.1).
This analysis finds that, if sufficiently small constant step-sizes are used, then the
proposed algorithm approximates a solution to the problem (Theorem 5.2). More-
over, for sequences of diminishing step-sizes, the convergence rates of the proposed
algorithm can be specified (Theorem 5.3 and Corollary 5.1).

We compare the proposed algorithm with the existing adaptive learning rate op-
timization algorithms for a constrained convex stochastic optimization problem in
deep learning (Example 4.1(i)). Although the existing adaptive learning rate opti-
mization algorithms achieve low regret, they cannot solve the problem. The second
contribution of the present study is to show that, unlike the existing adaptive learn-
ing rate optimization algorithms, the proposed algorithm can solve the problem
(Corollaries 5.2 and 5.3) (see Subsection 5.2 for details). The third contribution is
that we show that the proposed algorithm can solve classifier ensemble problems
and that the learning methods based on the proposed algorithm perform better
numerically than the existing learning method based on the existing algorithms in

See (6) and (9) for the definitions of Adam and AMSGrad.
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[17]. In particular, the numerical results indicate that the learning methods based
on the proposed algorithm with constant step-sizes or step-sizes computed by the
Armijo line search algorithm can solve classifier ensemble problems faster than the
existing learning method based on the algorithms in [17]. As a result, the proposed
learning methods achieve high accuracies faster than the existing learning method.

2 Mathematical Preliminaries

2.1 Definitions and Propositions

Let N be the set of all positive integers. Let R be an N-dimensional Euclidean
space with inner product (-, -) with associated norm | - ||, and let RY := {(z;)¥, €
RV:z; >0 (i =1,2,...,N)}. Let X' denote the transpose of matrix X, let I
denote the identity matrix, and let Id denote the identity mapping on RY. Let
S¥ be the set of N x N symmetric matrices, i.e., SV = {X € RVN: X = xT1.
Let Sf 4 denote the set of symmetric positive-definite matrices, i.e., Sf L =1{X¢€
SN: X » O}. Given H € S¥, the H-inner product of R" and the H-norm can be
defined for all z,y € RN by (v,y) g := (z, Hy) and ||z|% := (v, Hz). Let diag(z;)
be an N x N diagonal matrix with diagonal components z; € R (i = 1,2,..., N)
and let DV be the set of N x N diagonal matrices, i.e., DV = {X € RV*N: X =
diag(z;), z; €eR (i=1,2,...,N)}.

Let E[X] denote the expectation of random variable X . The history of the process
£0,&1, - .- up to time n is denoted by &, = (§0,&1, - -+, &n). Let E[X|&,)] denote the
conditional expectation of X given &) = (§0,&1,...,&n). Unless stated otherwise,
all relations between random variables are supported to hold almost surely.

The subdifferential [10, Definition 16.1], [20, Section 23] of a convex function
f: RN = R is defined for all z € RV by

Of () :=={ueR": f(y) > f(z) + (y —z,u) (y e RY)}.
A point u € 9f(x) is called the subgradient of f at x € RY.

Proposition 2.1 [21, Theorem 4.1.3], [10, Propositions 16.14(ii), (iii)] Let
f:RY — R be convex. Then, f is continuous and Of(x) # O for every x € RV,
Moreover, for every x € RN, there exists § > 0 such that 0f(B(x;6)) is bounded,
where B(x;9) is the closed ball with center x and radius 9.

When a mapping Q: RY — R¥ is considered under the H-norm || - || g, we denote
it as Qi : RY — RN. We define Q := Q;. A mapping @: RY — RY is said to be
quasinonezpansive [10, Definition 4.1(iii)] if

1Q(z) =yl < llz -yl

for all z € RN and all y € Fix(Q), where Fix(Q) is the fized point set of Q defined by
Fix(Q) := {z € RV : = Q(z)}. When a quasinonexpansive mapping has one fixed
point, its fixed point set is closed and convex [22, Proposition 2.6]. @ is called a firmly
quasinonexpansive mapping [23, Section 3] if | Q(z) —y||*+ || (Id— Q) (2)|? < ||z —y]|?
for all z € RY and all y € Fix(Q). Q is firmly quasinonexpansive if and only if R :=
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2@Q —1d is quasinonexpansive [10, Proposition 4.2]. This means that (1/2)(Id+ R) is
firmly quasinonexpansive when R is quasinonexpansive. Given H € Sf 4, we define

(2]

the subgradient projection!? relative to a convex function f: RY — R by

CIT—L (e i f(x
Qulz) = ||H*1c;(x)||§qH G(z) if f(z) >0, 0

T otherwise,

where G(x) is any point in 9f(z) (z € RY) and lev<of := {z € RN : f(x) < 0} # 0.
The following proposition holds.

Proposition 2.2 Let H € §f+ and let f: RN — R be convex. Then, Qfm: RN —
RY defined by (1) satisfies the following:

(i) Qf == Qy,1 is firmly quasinonezpansive and Fix(Qr) =lev<of;

(i) Qpu is firmly quasinonexpansive under the H-norm with Fix(Qfm) =

Fix(Qy).

Proof (i) This follows from Proposition 2.3 in [22].

(if) We first show that lev<of = Fix(Qy g). From (1), we have that lev<of C
Fix(Qy,m). Let z € Fix(Qy,n) and assume that = ¢ lev<f. Then, the definition of
the H-inner product and G(x) € 9f(z) mean that, for all y € lev<o f,

<y - m,H_lG(x)>H = <y - LU,G(LU» S f(y) - f(.’t) S _f(x) < 07 (2)

which implies that H~'G(z) # 0. From (1) and = € Fix(Qy,z), we also have that
(f(@)/|H'G@)|3%)H'G(z) = v — Q¢ u(z) = 0, which, together with f(z) >
0, gives H 'G(x) = 0, which is a contradiction. Hence, we have that lev<of D
Fix(Q¢,m), ie., leveof = Fix(Qy m). Accordingly, (i) ensures that Fix(Qs m) =
lev<of = Fix(Qy). For all z € RV \lev<o f and all y € lev<o f,

1Q . (x) = yll3,

2f(x)

TG ¢ o H 6@, + f(x)

=z —ylH + TH I T
" B H G ()|l

which, together with (2), implies that Q m is firmly quasinonexpansive under the

H-norm. O

Q: RY — R is said to be Lipschitz continuous (L-Lipschitz continuous) if there
exists L > 0 such that |Q(z) — Q(y)|| < L|lz — y|| for all z,y € RY. Q: RN — RY
is said to be nonexpansive [10, Definition 4.1(ii)] if @ is 1-Lipschitz continuous, i.e.,
1Q(z) — Q)| < ||z —y|| for all z,y € RY. Any nonexpansive mapping satisfies the
quasinonexpansivity condition. The metric projection [10, Subchapter 4.2, Chapter
28] onto a nonempty, closed convex set C' (C RY), denoted by Pc, is defined for all
z € RY by Po(z) € C and ||z — Po(2)| = d(z,C) := infycc ||z — y||. Po is firmly

21See [23, Lemma 3.1], [22, Proposition 2.3], [24, Subchapter 4.3] for the definition
and properties of the subgradient projection when u = 1.
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nonexpansive, i.c., | Po(x) — Po(y)|[2+[|(1d - Po)(x) — (14— Pe) (9) 2 < flo—y]? for
all z,y € RV, with Fix(Pz) = C [10, Proposition 4.8, (4.8)]. The metric projection
onto C under the H-norm is denoted by Pc r. When C' is an affine subspace, half-
space, or hyperslab, the projection onto C' can be computed within a finite number
of arithmetic operations [10, Chapter 28].

3 Convex Stochastic Optimization Problem over Fixed Point Set

This paper considers the following problem.

Problem 3.1 Assume that

(AO) (Hp)nen is the sequence in SY, NDY;

(A1) Qu,: RY — RN s quasinonexpansive under the H,-norm and X :=
Nnen Fix(Qn,,) (C C) is nonempty, where C C RY is a nonempty, closed
conver set onto which the projection can be easily computed;

(A2) f: RN — R defined for all v € RN by f(x) := E[F(x,£)] is well defined
and convex, where & is a random vector whose probability distribution P is
supported on a set = C RM and F: RN x 2 — R.

Then,

find xz* € X* := {:17* eX: f(z*)=f":= ing(f(z)},
€
where one assumes that X* is nonempty.

Examples of Qn, satisfying (A0) and (Al) are described in Subsection 3.1 and

Example 4.1.

The following are sufficient conditions [5, (A1), (A2), (2.5)] for being able to solve

Problem 3.1.

(C1) There is an independent and identically distributed sample &y, &1, . .. of real-
izations of the random vector &;

(C2) There is an oracle which, for a given input point (z,£¢) € RV x Z, returns a
stochastic subgradient G(z, ¢) such that g(z) := E[G(z, £)] is well defined and
is a subgradient of f at z, i.e., g(z) € 9f(x);

(C3) There exists a positive number M such that, for all z € C, E[||G(z, £)||?] < M?.

Suppose that F(-,§) (£ € Z) is convex and consider the oracle which returns

a stochastic subgradient G(z,&) € 0,F(x,¢) for a given (x,£) € RN x Z. Then,

f() =E[F(-,&)] is well defined and convex, and df(z) = E[0, F(x,&)] [25, Theorem

7.51], [5, p.1575)].

3.1 Related problems and their algorithms

Here, let us consider the following convex stochastic optimization problem [5, (1.1)]:
minimize f(z) = E[F(z,&)] subject to x € C, (3)

where C' € RY is nonempty, bounded, closed, and convex. The classical method
for problem (3) under (C1)—(C3) is the stochastic approzimation (SA) method [1,
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(5.4.1)], [2, Algorithm 8.1], [3] defined as follows: given o € RY and (A,)nen C
(0, +00),

Tnt1 = Po (xn — A G(2n, &) (n€N). (4)

The SA method requires the metric projection onto C, and hence can be applied
only to cases where C is simple in the sense that Po can be efficiently computed
(e.g., C is a closed ball, half-space, or hyperslab [10, Chapter 28]). When C' is not
simple, the SA method requires solving the following subproblem at each iteration
n:

Find x,41 € C such that {z,41} = argmin||(z, — A\G(zn,&n)) — vl -
yeC

The mirror descent SA method [4, Sections 3 and 4], [5, Subsection 2.3] is useful
for solving problem (3) and has been analyzed for the case of step-sizes that are
constant or diminishing. For example, the mirror descent SA method [5, (2.32),

(2.38), and (2.47)] with a constant step-size policy generates the following sequence
(Z7)nen: given zg € X° := {z € RN : dw(z) # 0},

n+1

Tpt+1 = argmin{<77LG(xn>£n)a Z = xn> + V($n72)}7 i?+1 = Z 2L
zeC

i —
n+1 ’
t=1 Zi:l Yi

()

where w: C' — R is differentiable and convex, V: X° x C' — R, is defined for all
(x,2) € X° x C by V(z,2) := w(z) — [w(x) + (Vw(x),z — )], and 1, (t € N) is a
constant step-size. When w(-) = (1/2)|| - ||?, #n41 in (5) coincides with ,, 41 in (4).
Under certain assumptions, the method (5) satisfies E[f(z}) — f*] = O(1/+/n) [5,
(2.48)] (see [5, (2.57)] for the rate of convergence of the mirror descent SA method
with a diminishing step-size policy).

As the field of deep learning has developed, it has produced some useful stochastic
optimization algorithms, such as AdaGrad [7, Figures 1 and 2], [2, Algorithm 8.4],
RMSProp [2, Algorithm 8.5], and Adam [8, Algorithm 1], [2, Algorithm 8.7], for
solving problem (3). The AdaGrad algorithm is based on the mirror decent SA
method (5) (see also [7, (4)]), and the RMSProp algorithm is a variant of AdaGrad.
The Adam algorithm is based on a combination of RMSProp and the momentum
method [26, (9)], as follows: given @, m¢_1,v;_1 € RV,

my := Bime—1 + (1 — B1) Vo F (24, &),
vy 1= Povp_1 + (1 — B2) Vo F(4, &) © Vo F(a, &),

my N Ut
———1, Ut ‘&m ———— 7
t4+1° t+1°

1- 1 1- 2

me =

N (6)

1 N
dy = —diog | ——— | iy = — [ 2]
Ut + € Vg + € i1

Tpq1 = Po [y + Medy], Le., {xp1} = argrréin (s + Aede) — 9|
ye
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where 5; >0 (i =1,2), € > 0, (Ay)nen C (0,1) is diminishing step-size, and A ® B

denotes the Hadamard product of matrices A and B. If we define matrix H; as
Hy i diag (v/ori +¢) (7)

then the Adam algorithm (6) can be expressed as

1
Ty — )\tdlag <A> mt
Vg + €

Unfortunately, there exists an explicit example of a simple convex optimization

Tpt+1 = PC = PC [l’t — )\th_l’ﬁ’Lt] . (8)

setting where Adam does not converge to the optimal solution [9, Theorem 2]. To
guarantee convergence and preserve the practical benefits of Adam, AMSGrad [9,

Algorithm 2] was proposed as follows: for (514)ten C (0, 4+00),

my = Prame—1 + (1 — B1e) Vo F (2, &),
v = Povp_1 + (1 — o) Vo F (24, &) © Vo F(x4, &),

Oy = (04) = (max{V4—1,4,v1,i}),
H 1= diag (/70 ) 9)

. -1
dt = _Ht my,

Tiq1 = Pon, [ve + Mde], ie., {211} = argrgin [(xs + Aedg) — yHH‘ .
ye

The existing SA methods (4), (5), (6), and (9) (see also [6, 27], [2, Section 8.5],
and [5, Subsection 2.3]) require minimizing a certain convex function over C at each
iteration. Therefore, when C' has a complicated form (e.g., C is expressed as the
set of all minimizers of a convex function over a closed convex set, the solution set
of a monotone variational inequality, or the intersection of closed convex sets), it
is difficult to compute the point x,,11 generated by any of (4), (5), (6), and (9) at
each iteration.

Meanwhile, the fized point theory [10, 28, 29, 30] enables us to define a computable
quasinonexpansive mapping of which the fixed point set is equal to the complicated
set. For example, let lev<qof; (¢ = 1,2,...,I) be the level set of a convex function
fi: RY — R and let X be the intersection of lev<o fi, i.e.,

1 1
i=1

i=1

Let n € N be fixed arbitrarily and let H,, € SY', (see (A0)). Let Q, u, : RY — RV
(i=1,2,...,I) be the subgradient projection defined by (1) with f := f; and H :=
H,. Accordingly, Proposition 2.2 implies that Qy, n, is firmly quasinonexpansive
under the H,-norm and Fix(Q¢, n,) = lev<of; (1 =1,2,...,I). Under the condition
that the subgradients of f; can be efficiently computed (see, e.g., [10, Chapter 16]

for examples of convex functions with computable subgradients), Qy, n, also can
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be computed. Here, let us define Qp,, : RY — R as
T
Qn, = ZWiin,Hna (11)
i=1

where (w;)I_, C (0,+00) satisfies Zfil w; = 1. Then Qu, is quasinonexpansive
under the H,-norm [10, Exercise 4.11]. Moreover, we have that

1 1 1
X =()leveof; = ﬂ Fix (Qr,) = () [ ) Fix(Qz.m,) = [ Fix(Qn,), (12)

=1 1=1neN neN

where the second equality comes from Proposition 2.2(i) (i.e., Fix(Qy,) = lev<of;
(1=1,2,...,1I)), the third equality comes from Proposition 2.2(ii) (i.e., Fix(Qy,) =
Fix(Qy, n, ) for alln € N), and the fourth equality comes from [10, Proposition 4.34].
Therefore, (10), (11), and (12) imply that we can define a computable mapping Qn,,
satisfying (A1) of which the fixed point set is equal to the intersection of level sets.
In the case where C' is simple in the sense that Pc = P¢ ; can be easily computed,
I - O and Q := P¢ obviously satisfy (AO) and (Al) with Fix(P¢) = C =: X.
Accordingly, Problem 3.1 with @ := P¢ coincides with problem (3), which implies
that Problem 3.1 is a generalization of problem (3).

Fixed point algorithms exist for searching for a fixed point of a nonexpansive
mapping [10, Chapter 5], [11, Chapters 2-9], [12, 13, 14, 15, 16]. The sequence
(Zn)nen is generated by the Halpern fixed point algorithm [11, Subchapter 6.5],
[12, 16] as follows: for all n € N,

Tpy1 = anZo + (1 — an)Q(7n), (13)

where 2o € RV, (an)nen C (0, 1) satisfies lim,, s oo @, = 0 and E:i% oy = +00,
and Q: RY — R¥ is nonexpansive with Fix(Q) # (. The sequence (2, )nen in (13)
converges to the minimizer of the specific convex function fo(z) := (1/2)||x — xo]|?
(r € RY) over Fix(Q) (see, e.g., [11, Theorem 6.19]). From Vfy(x) = = — g
(z € RY), the Halpern algorithm (13) can be expressed as follows (see [31, 32] for
algorithms optimizing a general convex function):

Tnt1 = Q(mn) — O (Q(xn) - xO) = Q(xn) —anV fo (Q(mn)) . (14)

The following algorithm obtained by combining the SA method (4) with (14) for
solving Problem 3.1 follows naturally from the above discussion: for all n € N,

Tpt1 = Po [Qa(Tn) — MG(Qa(Tn), §n)l, (15)

where Q,, := ald + (1 — @)@ («a € (0,1)). A convergence analysis of this algorithm
for different step-size rules was performed in [17]. For example, algorithm (15) with
a diminishing step-size was shown to converge in probability to a solution to Prob-
lem 3.1 with X = Fix(Q) [17, Theorem II1.2]. The advantage of algorithm (15)
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is that it allows convex stochastic optimization problems with complicated con-
straints to be solved (see also (12)). From the fact stated in [17, Problem II.1] that
the classifier ensemble problem [18, 19], which is a central issue in machine learning,
can be formulated as a convex stochastic optimization problem with complicated
constraints, the classifier ensemble problem can be regarded as an example of Prob-
lem 3.1. This result implies that algorithm (15) can solve the classifier ensemble
problem. However, this algorithm suffers from slow convergence, as shown in [17].
Specifically, although the learning methods based on algorithm (15) have higher
accuracies than the previously proposed learning methods, they have longer the
elapsed times. Accordingly, we should consider developing stochastic optimization
techniques to accelerate algorithm (15). This paper proposes an algorithm (Algo-
rithm 1) based on useful stochastic gradient descent algorithms, such as Adam [8,
Algorithm 1] and AMSGrad [9, Algorithm 2], for solving Problem 3.1, as a replace-

ment for the existing stochastic first-order method [17].

4 Proposed Algorithm

Algorithm 1 Stochastic approximation method for solving Problem 3.1

1:n<—0,a;0,m716]RN,Ho€S N
2: loop
: Mn = 6nmn71 +(1 _Bn)G(fEnygn)
4 Hp,esy, nDN

5. Find dy, € RY that solves H,d = —m,,
6: Yn = QHn(iUn + )\ndn)

7: Tni1 := Pou, [an®n + (1 — an)yn]
8.

9:

Require: (an)nen, (Bn)nen, (An)n%]N C (01(11), C (D X): nonempty, closed, convex
D
++

hw

: n<+<n+1
end loop

Before giving some examples, we first prove the following lemma listing the basic

properties of Algorithm 1.

Lemma 4.1 Suppose that H,, € S¥, (n € N), (A1), (A2), (C1), and (C2) hold
and consider the sequence (zp)nen defined for all n € N by Algorithm 1. Then, for
allzx € X and alln € N,

E [z — 2,
<E [lon - allf, | +20 = an)a{ (1 = BE[f(2) - f(@n)]
+ BuE (@ — 2 1) |+ (1= an)A2E [[ldal}, ]

2 2
— E llonss = 2allf, | = (1= @0)E [l@nss = vl ]

Moreover, under (C3), E[||m,||?] < M? := max{||m_1||?, M2} holds for all n € N.
If

(A3) hy :=sup{max;—12 . N R = N} is finite, where H,, := diag(hn i),

n,i

then E[||d,,||3 ] < h2M? holds for all n € N.

.....

Page 9 of 33



liduka

Proof Let x € X C C and n € N be fixed arbitrarily. The definition of z, 11 and
the firm nonexpansivity of Pc y, guarantee that, almost surely,

2
[eni1 — 2y,

2 2
< @y + (1 — an)ys] — zlly, = lzns1 — [anan + (1 - an)yn]HHn )

which, together with ||ax + (1 — a)y||? = af|z|* + (1 — @) ||y]|> — (1 — )|z — y]?
(r,y € RY a € R), implies that

2 2 2 2
[Tnt1 — mHHn < ap ||z — zHHn + (1= an) [lyn — x”Hn —ap [|Tnt1 — mn”Hn

— (1= an) | Zns1 — yalliy, -
(16)

The definition of y,, and (Al) ensure that, almost surely,

2 2
lyn — lfy < (@ —2) + Audallf
= |lw — zllfy, + 27 (@0 — 2, dp)yy. + A2 [|da -

The definitions of d,, and m,, in turn ensure that

<xn - xadn>Hn = <l‘ - xnamn>

= Bn <SC - xnamn—1> + (1 - /Bn) <17 — Tn, G(mnagn» .

Hence, (16) implies that, almost surely,

n

lnss =@l < onllen =2l + (1= an){ lon = 2, + 220 (@0 - 2,du)y
+ A2l } = llones = 2l = (1= ) llznss =yl

= llon = @, + 201 = ) A {Bu (@ = T, m1) (17)

(1= Ba) (@ = 20, G, &) | + (1= )2 [

2 2
—ap [Ty — xn”Hn — (1= an)l|vnt1 — ynHHn :

n

2
H7l

Moreover, the condition z,, = x,(£j,—1]) (n € N) and (C1) guarantee that

E [<$ — Tn, G(J?n, £n)>] =K [E [<Qf — Tn; G(an, 5n)> |£[n71]]]
=K Kx —xp, E [G(ﬂim fn)‘g[n—l]] >]
E[(z — zn, g(xn))],

which, together with (C2), implies that
E[{z — zn,G(zn, &) S E[f(z) — f(zn)] .

Therefore, taking the expectation of (17) gives the first assertion of Lemma 4.1.
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The definition of m,, and (C3), together with the convexity of || - ||?, guarantee
that, for all n € N,

E[lmall*] < BuE [lma-1]*] + (1 = B0)E [[1G(@n, &)1
< BB |l I + (1 = B)M2
Induction thus ensures that, for all n € N,

E [||mn||2} < N? = max{um,ln? ,MQ} < fo0. (18)

Given n € N, H,, = O ensures that there exists a unique matrix H,, = O such that
H, = Hi 33, Theorem 7.2.6]. Since [|z[| = |[[H,z|* holds for all z € R, the
definition of d,, implies that, for all n € N,

J==]

where HH;IH = ||diag(h71/2)|| = max;—12, . N h;’l/z (n € N). From (18) and h, :=

n,t FEIRE

sup{max;=12.. N h;)l/2: n € N} < +oo (by (A3)), we have that, for all n € N,

E (4l ] = 2 | e,

| ]

E[lldally, | < n2ar.
This completes the proof. O

The convergence analyses of Algorithm 1 in Section 5 depend on the following
assumption:
(A4) [5, p.1574], 9, p.2] C (D X) is bounded.

Let us consider the case where H,, and v,, are defined for all n € N by

Up 1= Pop_1 + (1 - B)G(mnvfn) © G(xmfn)a

O = (Dni) = (max {Dp—1.4,Vn.i}), (19)

H,, := diag (\/ﬁ) ,

where 8 € (0,1) and v_1 = 97 = 0 € RV (see also (9)), and discuss the re-
lationship between (A3) and (A4). Assumption (A4) implies that (z,)neny C C
generated by Algorithm 1 is almost surely bounded. In the standard case of
G(xn,&n) € 0,F(zn, &), Proposition 2.1 and (A4) imply that (G(zn,&n))nen is
almost surely bounded, i.e., My := sup, ¢y ||G(2n, &) © G(2n,&)|| < +o00. Since
the triangle inequality and (19) guarantee that, almost surely, |v,|| < B|lvn-1] +
(1 = BNG(xn, &) @ G(n, &n)|l, induction shows that, for all n € N, almost surely,
lvn]] < My < +o0o. Accordingly, (19) leads to the almost sure boundedness of
(On)nen. Hence, h, := sup{max;—12, ..~ \/m n € N} < 400, which implies that
(A3) holds. The above discussion shows that (A4) implies (A3) when H,, and v,
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are as follows (see also (6) and (7)):
Up = an,1 + (]- - B)G(‘rnvgn) ® G(xnvfn)a

. . Un,i A
O = (Dpi) = <max{1_6’n+1,vn—1,z}> ) (20)
H,, :— diag (\/@m) .

We provide some examples of Problem 3.1 with (A0)—(A4) that can be solved by
Algorithm 1 under (C1)—(C3).

Example 4.1 (i) Deep learning problem [9, p.2]: At each time step ¢, stochastic
optimization algorithms used in training deep networks pick a point z; € X with
the parameters of the model to be learned, where X C R¥ is the simple, nonempty,
bounded, closed convex feasible set of points, and then incur loss fi(x;), where
fi: RY — R is a convex loss function represented as the loss of the model with the
chosen parameters in the next minibatch. Accordingly, the stochastic optimization
problem in deep networks can be formulated as follows:

T
minimize th(x) subject to x € X = Fix(Px) = ﬂ Fix (Px ., ), (21)
t=1 neN

where T is the total number of rounds in the learning process and (H)nen C
SY¥, NDY defined by each of (19) and (20) satisfies (A0). Qu, := Pxn, (n € N)
satisfies (A1), and f(-) = E[fe(-)] := (1/T) S1_; f:(-) satisfies (A2). Setting C := X
ensures (A4), which implies (A3). Algorithm 1 for solving problem (21) is as follows:

Tpt1 = Ty + (1 — ) Px 1, (1:" — /\anlen) ) (22)

(ii) Classifier ensemble problem [18, Subsection 2.2.2], [19, Subsection 3.2.2] (see
also [17, Problem II.1]): For a training set S = {(2m,lm) ., C RY x R, where
Zm = (27)N_| and 2" is the measure corresponding to the mth sample in the

sample set and the nth classifier in an ensemble. The classifier ensemble problem
with sparsity learning is the following:

minimize f(z) = E [1(<z,x> - 1)2]

2 (23)
subject to z € X :=RY n{z e RY: ||z|y < t:},
where || - ||; denotes the ¢1-norm and ¢ is the sparsity control parameter. Suppose

that H,, is as each of (19) and (20), which satisfies (A0), and define a mapping
QHn: RN — RN by

Qn,, = Py p, Plaer: |zl <t1} H- (24)

Since the projections PRQ’H” and Pi,ern . |z|,<t:},H, can be easily computed [34,
Lemma 1.1], Qn, defined by (24) can be also computed. Moreover, Qy, defined
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by (24) is nonexpansive with X = [, . Fix(Qn,); i.e., (Al) holds. Since {z €
N jz|ly < t1} is bounded, we can set a simple, bounded set C' such that X C C;
i.e., (A4) holds. Moreover, f in problem (23) satisfies (A2).
The classifier ensemble problem with both sparsity and diversity learning is as
follows:

minimize f(z) = E [;«z,x) — l)Q]

subject to z € X := {z e RY: [|lzf|y < t1} N {z € RY: faiv(z) > ta},

(25)

where to is the diversity control parameter, fgi, () := Z%Zl{dzm], z) — (2m, )%}
(r € RY), and [2,,] := ((2,)2)X, € RY. From the discussion regarding (10), (11),

m

and (12), a mapping

Qn,, = W1 Pry , T w2Q )ty Hy + W3 e ()2 Hes (26)

with (Hp)nen € SY, NDY defined by each of (19) and (20), is quasinonexpansive

under the H,,-norm satlsfymg X =,en Fix(Qn, ); ie., (A1) holds. The discussion

in the previous paragraph implies that (A0), (A2), a d (A4) again hold.
Algorithm 1 for solving each of problems (23) and (25) is represented as follows:

Tn+1 = PC,Hn [anxn + (1 - O‘n)C?Hn (xn - )\nH;lmn)] . (27)

In contrast to Adam (6) and AMSGrad (9) that can solve a convex stochastic
optimization problem with a simple constraint (3) (see also problem (21)), algorithm
(27) can be applied to a convex stochastic optimization problem with complicated
constraints, such as problems (23) and (25).

(i) Network utility maximization problem [35, (6), (7)] (see also [36, Problem
I1.1]): The network resource allocation problem is to determine the source rates that
maximize the utility aggregated over all sources over the link capacity constraints
and source constraints. This problem can be formulated as the following network

utility maximization problem:

maximize Zus(aﬁs) subject to x = (z5)ses € X := ﬂ N ﬂ Cs, (28)
s€S lec s€S

where x; denotes the transmission rate of source s € S, uy is a concave utility
function of source s, S(I) denotes the set of sources that use link I € £, Cj is the
capacity constraint set of link [ having capacity ¢; € Ry defined by C; := {x =
(zs)ses: Zses(l) zs < ¢}, and Cs is the constraint set of source s having the
maximum allowed rate My defined by Cy := {z = (z;)ses: xs € [0, M]}. Since C)
and C; are half-spaces, the projections Pc, n, and Pc, n, are easily computed, !
where (H,,)nen C SY . NDY is defined by each of (19) and (20). For example, we can

BlI'The projection Pey, onto a half-space ¢ := { € RV : (a,2) < b} = Fix(Pc) = Fix(Pou,)
under the H,-norm, where o« # 0 and b € R, can be defined for all = ¢ RN by Poy,, (z) ==
z+ (b= (a,2)n,)/llallf,]a (x & C) OF Pou,(2) =z (z €C).
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define a nonexpansive mapping Qu, := [[,c, Pcin, [lses Po. H, satisfying X =
Mnen Fix(Qn, ). The boundedness of (), g Cs allows us to set a simple, bounded
set C' satisfying C' D (,c5 Cs D X. Algorithm (27) with G(zy,&,) € 0(—ue, )(2n)
can be applied to problem (28).

5 Convergence Analyses and Comparisons
5.1 Convergence analyses of Algorithm 1

For convergence analyses of Algorithm 1, we prove the following theorem.

Theorem 5.1 Suppose that (A0)-(A4) and (C1)-(C3) hold and that (oup)nen,
(Br)nen, (An)nen, and (Yn)nen defined by vy, == (1 —an)(1—Bn)An (n € N) satisfy

0 < liminf o, < limsupa, <1, limsupf, <1, and vp4+1 < vn (n €N)

n—+00 n—+o00 n—+o0o
(29)
and that H,, = diag(h, ;) satisfies [4]
hnt1: > hni (neNji=1,2,...,N). (30)

Then, Algorithm 1 is such that the following are satisfied for alln > 1:

Ef(Za) = 7] <

M h2M2 &
R S S

=1

where &, = (1/n)Yr_, xx, M and h, are defined as in Lemma 4.1, D :
max;—12,.. nSup{(zrs1i — )% k € N} < +00, (an)nen C [c,a] C (O
(Bn)nen € (0,0) € (0,1), @ == 1—a, b :=1—b, ¢ :=1—c¢, and M :
sup{E[f(z) — f(zn)]: n € N} < +o0. If

(A1) Qn,: RN — RY is nonexpansive under the H,-norm,

then, for alln > 1,

1),

ikZE [l — Qu, oI,
=1
1 1\ [Dp_[&
§4(&+C) {nE D
e

i=1
Proof Let x € X be fixed arbitrarily. Lemma 4.1 guarantees that, for all kK € N,

26M & 2eM /DN <
+— D (=B + — kz_lﬁk)\k}

k=1

E[f(@) — £@)) < 5 {B [lon = oI}, ] B o - ol ]}

B Ak 2
— S el ]

“Condition (30) is satisfied when H,, is defined by either (19) or (20).

+ E[(x — g, mp—1)] +
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Summing the above inequality ensures that, for all n > 1,

k=1
1 &1
2 2
< m Z % {E [”Ik — $||H,J —E {ka-u — ac||Hk]}
— (31)
Tn
RN B 1 & )
+ — El{zx —xzp, mp_1)] +— )\E[d }7
n ; 1— ﬂk [< k k 1>] 2% kz=:1 k || k}HHk
B e

where (29) implies that a b > 0 exists such that, for all n € N, 8, < b < 1 and
b:=1—b. The definition of T, and E[||z,41 — || 1/ > 0 imply that

Elle—alf,] o [E[lee—alf,]  E[loc—alf,_,

I <——————=+ > - - (32)

m 2 Tk V-1

I'n

Given k € N, Hi > O ensures that there exists a unique matrix Hy > O such that
Hi = ﬁi 33, Theorem 7.2.6]. Since ||z||j, = |[Hpx||* holds for all z € RV, we have
that, for all £ € N,

5 { [Fetar = l* _ [Fe-s(ee =) H | (33)

b2 Tk Ve-1

Ir,=E

Since Hy, (k € N) is diagonal, we can express Hy as Hy = diag(hs,;), where hy; > 0
(ke N,i=1,2,...,N). Accordingly, for all k € N and all z := (z;), € RV,

N
Hy = diag (hy,) and [[Fia]|” = 3 hyia?. (34)
=1

Hence, (33) ensures that, for all n € N,

k=21i=1

Lp=E ii <hkl - hku) (ki — i)
" Tk Ve—1 . A

From v < y,—1 (k> 1) (see (29)) and (30), we have that hx ;/vx —hr—1,:/7k—1 > 0
(k>1,i=1,2,...,N). Moreover, (A4) implies that D := max;=1 2, n sup{(@,,; —
x;)?: n € N} < 4+00. Accordingly, for all n € N,

I, < DE

n N
P hre—1\| _ hng  hig
22 (% Vh-1 )] = DE lz ( T M )] '

k=2 1i=1 i=1
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Hence, (32), together with E[[|z; — 2§ 1/m < DE[XN | hy /7], implies that, for
alln € N,

N
hi
Z Y1

i=1

I', < DE + DE

()] -2

i—1 Tn 71 Tn

N
Z hn,z‘| ’

i=1

which, together with the existence of an @ > 0 such that, for alln € N, a, <a <1
(by (29)) and @ := 1 — a, implies that

Fn g

D
—E
ab

n

N
> hnl : (35)

The Cauchy-Schwarz inequality, together with D := max;—1 2 . nsup{(zn; —
z;)?:n € N} < 4oo and E[|m,|]] € M := y/max{[|[m_|2, M2} (n € N) (by
Lemma 4.1), guarantees that, for all n € N,

n /DN n
B, <Y T ?kﬁ Elllz = x|l [ma—ll] € —=— > BiE [lmi—1ll]
k=1 k b=
N N (36)
< MVDN s~
k=1

Since E[[[dn |1 ] < h2M? (n € N) holds (by Lemma 4.1), we have that, for all n € N,

Ap =3 ME {Hdknﬁk} < 12NN A (37)
k=1 k=1
Therefore, (31), (35), (36), and (37), together with the convexity of f, imply that,
for all n € N,
N ~ n ~ n
D M~ DN h2M?
E i’n — X S = E h’nl + —— + - N-
) = Fl = [2_; 1 bn ,;Bk an;k
Lemma, 4.1 ensures that, for all n € N,
S 2
a> B [lloers - wli, |
k=1
< S {B e - 213, ] B [lanen — 2l |} + 50— @) 3R [Idl?,
k=1 k=1
Xn
n
+2) (1= ar)M {(1 = BB [f(z) — f(azx)] + BrE [(x — 2k, mi_1)]} .
k=1

A discussion similar to the one for obtaining (35) implies that

N
Z hn,i] .

i=1

N

Z(hn,i - hl,i)] = DE

i=1

N
X, < DE [Z hii| + DE

i=1
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The continuity of f (see (A2)) and (A4) mean that M := sup{E[f(z) — f(x,)]: n €
N} < 400. Accordingly, an argument similar to the one for obtaining (36) and (37)

guarantees that, for all n € N,

I 5
n g E {”xk-&-l - kaHJ
k=1

N rn
D 2M 2M\/
< —FE |+ = — - —
S B bl + S (- an) (= B)h + T (1 ) BrAn
=1 k=1 k=1
h2M?
~ Z(l — ag)A;
an 1

From (29), there exists ¢ > 0 such that, for all n € N, ¢ < a,. Setting ¢:=1 —¢, it

follows that, for all n € N,

1< 2
gZE (s n — il

2¢M 2¢MVDN &
th ~ Z(l =B+ T Y B (38)
=1 _
ch2M2 =
w2
A discussion similar to the one for obtaining (38) ensures that, for all n € N
1 n
- ZE [||$k+1 — il
2cM 26M VDN
< —]E P 1—-Bp) g + —— A 39
Z 1;( Bre) A + ——~ > Brdk (39)
ch2M2 "
2N

Suppose that (A1)’ holds. Then, we have that, for all k¥ € N, almost surely |y —
Qui (@e)n, = 1Qn. (zk + Aedi) — Qny (@)1, < Alldk[ln,, which, together with
llz —ylI? < 2||z]|®> + 2||y||? (x,y € RY), implies that

ok — Qu (@lI3, | < 28 [llzn — wnlif, ] + 2B [llge — Que (@I, |

< 28 [Jlax — ullf, | + 22 [Idil, |
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Accordingly, (38) and (39) guarantee that, for all n € N,

1 n
" E e = Quy @01, |

4 & 9 4 & 5 2 — 9
< =SB [lloe —wietllfy ] + = YOE [lwner —unllh, ] + = D0 ME [l
k=1 k=1

k=1
N o ) ~ n
1 1 D 2¢M 2¢M~DN
<4l =4+- — ; — _—
< <d+ c) {nE th + > (1= B + - Zﬁk)\k}
i=1 k=1 k=1
11\ h2M? N,
+{4<&+C)c+2} - SO
k=1
which completes the proof. O

5.1.1 Constant step-size rule

The following theorem indicates that sufficiently small constant step-sizes 3, := 3

and A\, := X allow a solution to the problem to be approximated.

Theorem 5.2 Suppose that the assumptions in Theorem 5.1 hold and also assume

that, for alli=1,2,..., N, there exists a positive number B; such that'!
sup{E[h,;]: n € N} < B,. (40)

Then Algorithm 1 with «, := «, By := 8, and A, := X (n € N) satisfies that

lim inf £ [len — zns1lliy,] < %a {M(l —B) + MVDNS + hggﬁA} A, (41)
N N h2M2
BgiI;gE [||xn+17yn‘|a,,] §2{M(1ﬂ)+MVDNﬂ+ *2 )‘})‘7 (42)
MvDN h2 M
lim inf E[f(2,) — f*] < 5 6+2(1*_ﬁ)/\, (43)
N . 1 M~v/DN h2M?
B - 110 (5) + 7005 gt (14)
where T, := (1/n) Y ;_, a2 and & := 1 — a. Under (A1)’, we have
1 n
=3 B [z - Qu el
= (45)

n

1 41 - - .
<0 () + {2M(1 —B)+2MVDNS+ 2hiM2A}A +2R2M2N2,
[0

BlCondition (40) is satisfied when H,, is defined by either (19) or (20).
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Proof We first show that, for all € > 0,

- 9 2a | - - h2M?
lminf E [||z, — 2p41llf, ] < — M1 - 8)+ MVDNB +
n—+o0o " o 2
+ De + e
If (46) does not hold, then there exists ¢y > 0 such that
. 2 2a | - . h2M?
llginfE[||xn—mn+1||Hn] > — M1 —-p3)+MVDNp +
+ Deg + €g.

Let z € X and xp, := E[||lz, — x| ] for all n € N. Lemma 4.1, together with the

proofs of (36) and (37), implies that, for all n € N,

Xt < X+ Xot — E 2011 = 2l | ~0E [[@ns1 = 2l

Xn

. B hQMQ
+2a\ {M(l —B)+ MVDNp + *2 )\} .

From (34) and (A4), for all n € N,

N

Z(thrl,i — hpi)(Tnt1, — 551)2] < DE
i=1

X, =E

i=1

Accordingly, (30) and (40) ensure that there exists ng € N such that, for all n > n,

X5 < Daey.
Hence, (48) implies that, for all n > no,

Xn+1 < Xn + Daeg — aE {Hwil - xnllan]

. B h2M2
+2a\ {M(l —B)+ MVDNp + *2 )\} .

From (47), there exists ny € N such that, for all n > ny,

2a

E [Hxn - Tnt1l B

A} A
(46)

)\} A
(47)

N
Z(hn+1,i - hn,z)] .

2 v Y thQ €0
bl > M1 =p)+ MVDNB + Ap A+ Dey+ —.
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Therefore, for all n > ny := max{ng, n1},

QEQ

R B hQMQ
Xn+1SXn+Dozeo—Q&A{M(I—B)—FM\/DNﬁ—F z )\}—Daeo—

2 2

. B hQMQ
+2a\ {M(l —fB)+ MVDNB + *2 )\}

Qe
Xy
Qe
< Xng — 70(n+ 1- TLQ),

which is a contradiction since the right-hand side of the above inequality approaches
minus infinity as n increases. Hence, (46) holds for all €, which implies that (41)
holds. A discussion similar to the one for showing (46) leads to (42). We next show
that, for all € > 0,

M+vDN h2 M2 D
Iminf B f (@) = s T30+ 50 -5 * ma feﬁ)x e (50)

If (50) does not hold for all € > 0, then there exist ¢g > 0 and n3 € N such that,

for all n > ngs,

G NVDN BN Daw |«
Elfen) =F1> 35+ 305 T ma—pn " 2

Lemma 4.1, together with (48) and (49), ensures that, for all n > ny,

Xn+1 < Xn + Daeg — 26(1 — B)AE [f(zn) — f*]+ {QMV DNp+ thQ)\} a.

Accordingly, for all n > n4 := max{ng,ns},

XnJrl
5 M+DN R2M? Dae ¢
<xn+Daeo—2a(l—B))\{ - ﬁ+2(1_6)>\+2&(1_%)/\+;}

+ {QM\/DNﬂ + hf]\?ﬁ)\} ax
= Xn — d(l — ﬂ))\ﬁo
< Xny — (1 = BAeg(n + 1 — ny),

which is a contradiction. Since (50) holds for all € > 0, we have (43). Conditions
(44) and (45) follow from Theorem 5.1, which completes the proof. O

5.1.2 Diminishing step-size rule
Lemma 4.1 and Theorem 5.1 give us the following theorem as a convergence analysis

of Algorithm 1 with a diminishing step-size.
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Theorem 5.3 Suppose that the assumptions in Theorem 5.1 and (40) hold. Let
(Br)nen and (Ap)nen satisfy the following:

+oo +oo
_ 2
nll}r_{loo Bn =0, Z An = +00, ZO)\n < 400, and Z:Oﬁn)\n < +00. (51)
Then Algorithm 1 satisfies that
i E ([~ 7oglly, ] = 0, Hminf E s — pally, ] =0, (52)
lim inf E [f(z,) — f*] < 0. (53)
Moreover, if (A1)’ holds, then we have
lﬁg_‘l_gE [”mn Qn,, (n)] Hn] =0.
Let (Bn)nen and (An)nen satisfy the following:
. 1
ngr}rloo W 0, nEIJIrlOO - Z A =0, and hm Zﬁk 0. (54)

Then the sequence (In)nen defined by Z, == (1/n) Y ,_, xj satisfies

limsupE [f(Z,) — f*] <0

n—-+4+oo

with

DN B \/ h2M? &
Ef(Zn) - f] < 2%7;)1\71 M Zﬁk-l- MZ)\k

Moreover, if (A1)’ holds, then we have
i A5 - onionli] -
with
1 ¢ 2
n;EWrQMmMJ

1 1\ DX, B 2N & 26M /DN &
<4(=+- i=1 1= B + — 2 A
< (a+0){ - +— Z( Br) Ak + - ;ﬂk k}

k=1

1 1 h2M? &
4({Z+=)e+2 § 2
+{ (d+c)c+} AL
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Proof We first show (52). Lemma 4.1, together with (36), (37), and (48), implies
that, for all n € N,

B | |21 — 2l
" < xXn() = Xnt1(x) + DE

N
Z (hn+1,i - hn,z)‘|
=1

+ 2M A, + 2M VDN B\, + h2M?)2

(1 - an)E ||$n+1 - y”Han

(55)

where xn(z) := E[l|lz, — 2| ] for all z € X and all n € N. Consider (Case 1):
For all z € X, there exists mg € N such that, for all n € N, n > mg implies
Xn+1(2) < xn(x). This case guarantees the existence of lim, o Xxn(x) for all
x € X. From (30) and (40), we have that lim, E[Zﬁil(hnﬂ,i — hn)] = 0.
Moreover, (51) ensures that lim, o Bn = lim, 100 Ay = 0. Accordingly, (55)
and 0 < liminf, | o o, < limsup,,_,, o, o, <1 (by (29)) imply that

ngr_{_looE [lzns1 — xHHH,,L] =0 and nEI_EOOE lzns1 = ynl

] =0. (56)

Consider (Case 2): There exists zg € X, for all m € N, there exists n € N such that
n > m and Xnt1(20) > Xn(zo). In this case, there exists (2y,)ien C (Tn)nen such
that, for all i € N, xp,4+1(x0) > Xn;(x0). From (55), we have that, for all i € N,

o) | R S
2" P <DE > (hng1y =l )

Hn, j=1

(1= an)E |[|[Zn;+1 = Yn,
+ 2M A, + 2M VDN By Ay, + h2M2N2

A discussion similar to the one for showing (56) guarantees that

. lim K {Hmnﬂrl — In;
1—+00

H"i] =0 and zlginmE {||xni+1 — Yn, Hnii| =0. (57)

Therefore, we have (52). If (A1)’ holds, then Lemma 4.1 implies that, for all n € N,

E [”yn - QH,,L (-rn)”Hn] S h*M)\n,

which implies that limy, oo E[||lyn — Qn, (zn)|ln,] = 0. In (Case 1), (56) and
the triangle inequality mean that lim, 4o E[||zn, — Ynlln,] = 0. Accordingly,
the triangle inequality and lim, 4o E[||lyn — Qu, (2n)|ln,] = 0 imply that
limy, s oo E[l|zn, — Qn,, (zn)||n,] = 0. In (Case 2), (57) and the triangle inequal-
ity mean that lim; o E[l|zn, — yn,[In,,] = 0. Accordingly, the triangle inequal-
ity and limi s oo Ellyn, — Qno, (@n)l,] = 0 imply that lim, oo Blz, —
QH,, (Tn,)lIn,, ] = 0. Thus, we have that

liminf E [||z, — QHn(xn)”Hn] =0.

n—-+oo
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Next, we show (53). Lemma 4.1, together with (36) and (37), ensures that, for all
z* € X* and all k£ € N,

2(1 — o) (1 — Be) MeE [f (k) — f7]

N
<Xi = Xbp1 + DE | (higri — hei) | +2MVDN B + h2M2)E,
=1

where x} 1= xn(2*) for all z* € X* and all n € N. Summing the above inequality
from k = 0 to k = n gives that, for all n € N,

23 (1 —ag)(1 = Be) ME [f(2x) — f7]
k=0

N
§ hn+1¢
i=1

< xp + DE

+2MVDN Y Bid + WM X,
k=0 k=0

which, together with (40) and (51), implies that

—+oo

D (1= aw)(1 = Be)ME [f(zk) — £7] < +o.

k=0

If (53) does not hold, then there exist ¢ > 0 and m; € N such that, for all & > m,
E[f(zx) — f*] > . Hence, we have that

+o0 too
400 = CZ(l — ak)(l — ﬁk))\k < Z(l — ak)(l — Bk))\k]E [f(xk) — f*] < 400,

k=0 k=0
where the first equation comes from limsup,, ,, . an < 1, :Lri% Ap = 400, and
Z::E) BrAn < 400 (by (29) and (51)). Since we have a contradiction, (53) holds.
Theorem 5.1, together with (40) and (54), ensures that limsup,, , , . E[f(Z,)—f*] <
0 and limy, 100 (1/n) 323 Ell|2x — Qu, (2%) ||, ] = 0 with the convergence rate in
Theorem 5.3. O

Theorem 5.3 leads to the following corollary.

Corollary 5.1 Suppose that the assumptions in Theorem 5.8 and (A1)’ hold
and consider Algorithm 1 with A, := 1/n" (n € [1/2,1]) and (Bn)nen such that
+ B, < +o00. Undern € (1/2,1], we have that

lminfE [f(z,) — f*] <0, liginfE lzn — @Qn, (zn)|n,] = 0.

n——4oo

Under n € [1/2,1), we have that

limsupE[f(2,) ~ /1] <0. lim_ + > B [lloy — Qu, ()], ] = 0
k=1

n——+o00 n—+oo n
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with rate of convergence

2l - 1120 () 3 2Bl -0 ().

Proof The step-size A, := 1/n" (n € (1/2,1]) and (Bn)nen such that Z:z n <

+oo satisfy (51). Accordingly, Theorem 5.3 with (A1)’ implies that lim inf,,, 4 oo E[f(zy)—
f*] <0, and liminf,, 4 o E[||lz,, — Qn, (xn)|n,] = 0. The step-size A\, := 1/n"

(n €[1/2,1)) satisfies

. . 1
lim — = lim =0
n— oo n)\n n——+oo n1*77

Moreover, we have that

1 n 1 n 1 ™ dt 1 nl—n n 1 1
75 A2<*§:A <21 at _1 B < 1
nk—lk_nk_1k_n{ +/1 tn} n{l—ﬁ l—ﬂ}_l—ﬂnn

(58)

Hence, lim,o00(1/n) Y 0_; A = limyy0o(1/n) > 1_; A7 = 0. The condition
Iﬁ 5, < +oo implies that lim,, oo (1/1) Y p_; B = 0and lim,, oo (1/1) D1y Bedi =
0. Hence, (54) is satisfied. Accordingly, from Theorem 5.3 with (A1)’ and (58), we

have the convergence rate of Algorithm 1 in Corollary 5.1. O

5.2 Comparisons of Algorithm 1 with the existing adaptive learning rate optimization
algorithms

The main objective of the existing adaptive learning rate optimization algorithms

is to minimize Zle fi(z) subject to z € X, where T is the total number of rounds

in the learning process, f;: RV — R (t =1,2,...,T) is a differentiable, convex loss

function, and X C R¥ is bounded, closed, and convex (see also problem (21) in

Example 4.1(i)). We would like to achieve low regret on the sequence (f;(x:))Eq,

measured as

T T T T
R(T):=)_ flw) —min Y _ fu(w) = fulw) =Y fula"),

where z* € X is a minimizer of Zthl fi(x) over X, and (z;)7_; C X is the sequence
generated by a learning algorithm. Although Theorem 4.1 in [8] indicates that
Adam [8, Algorithm 1], [2, Algorithm 8.7] (algorithm (6)) is such that there exists a
positive real number D such that R(T)/T < D/v/T, the proof of Theorem 4.1 in [8]
is incomplete [9, Theorem 1]. AMSGrad [9, Algorithm 2] (algorithm (9)) is such that
the following result holds [9, Theorem 4, Corollary 1]: Suppose that 31, := S A
(B, A € (0,1)), v := B1/v/B2 < 1, and A := a/v/t (o > 0). Then, there exist
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positive real numbers D; (i = 1,2,3) such that

R(T) 1« 1, .,
T = ;ft(xﬁ_fgft(l’)

~ ~ N
DiN D ay1+InT
< — ArDa o T =3 ZHQLT,z‘
ofiVT 2001 = NPT G171 — ) VI =BT (o

=l

)

where By == 1= By, g == VoF(2,,&), % and [lgrrill = /- 92, < DsVT.

Hence, with AMSGrad, there exists a positive real number D such that

T T
ngjﬂ):;ﬂ;ft(ﬂft)_;;ft(w*)gb\/@' (59)

We apply Algorithm 1 with A, :=1/n" (n € [1/2,1)) (see also algorithm (22)) to
Problem 3.1 for the special case where f(-) = E[fe(-)] :== (1/T) X1—, fi(), Qn, =
Px u, (n €N), H, is defined by either (19) or (20), and C' = X (see also problem
(21)). Then, Theorem 5.2 has the following corollary.

Corollary 5.2 Consider problem (21) and suppose that the assumptions in The-
orem 5.1 hold. Then, algorithm (22) satisfies that

I AN I ) 2
EQE&EElT;ﬁ(%)‘T;ﬁ“ >] =5 gt

T T MvDN h2 M2
limsupE [; th (Tn) — ;th(x*)] < 1\/;6 + 2(1*, 3) A
n—+4o0o =1 t=1

where &, := (1/n) Y p_, 2 and (xn)nen C X is the sequence in algorithm (22).

In contrast to Adam and AMSGrad with diminishing step-sizes, Corollary 5.2
indicates that algorithm (22) with constant step-sizes may approximate a solution
of problem (21).

Corollary 5.1 implies the following corollary.

Corollary 5.3 Suppose that the assumptions in Corollary 5.1 hold and A, :=
1/n" (n € [1/2,1]) and (Bn)nen is such that Z:Z , < +oo. Under n € (1/2,1],
algorithm (22) satisfies that

T T
liminfE |y fi(zn) = Y fi(a®)| =0.
t=1 t=1

n—-+oo

Moreover, under n € [1/2,1), any accumulation point of (Z,, := (1/n) > 7¢_; Tk)nen
almost surely belongs to the solution set of problem (21), and algorithm (22) achieves

©1Since AMSGrad is applied to constrained convex optimization, in general,
limr s 4 oo [lg1:7,ill # O and llgrz,sll < DsvT hold [8, Corollary 4.2].
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the following rate of convergence:

o(it)

Proof For problem (21), Corollary 5.3 implies that 0 < liminf, o E[f(zn)—f*] <
0 and 0 < limsup,,_,, o E[f(Z,) — f*] <0, where f := (1/T) Zthl f+. The second
inequality guarantees that lim, oo E[f(Z,) — f*] = 0. Let £ € X be an arbitrary

T T
E i) - 3 file")

accumulation point of (Z,)nen C X. Since there exists (Z,,)ien C (Zn)nen such
that (Z,,)ien converges almost surely to & € X, the continuity of f ensures that
0 = lim; 400 E[f(Zn,) — f*] = E[f(Z) — f*], i.e., & € X*. The rate of convergence
of (Z,)nen is obtained from Corollary 5.1. O

It is not guaranteed that z7 defined by AMSGrad with \; := a/+/t optimizes

Zthl f+ over X since (59) depends on a given parameter T, i.e.,

R(T) 1+InT
7~<0<v1v>~

Meanwhile, Corollary 5.3 implies that any accumulation point of (Z,)nen defined
by algorithm (22) with A, := 1/4/n almost surely belongs to the set of minimizers

of 23:1 ft over X and (Z,,)nen achieves an O(1/4/n) convergence rate, i.e.,
1
=0|—].
(%)

In this section, we consider the classifier ensemble problem [18, Subsection 2.2.2],
[19, Subsection 3.2.2], [17, Problem II.1] (see problems (23) and (25) in Example 4.1
(ii)) and compare the performances of the learning methods based on the following
algorithms which used commonly 8 = 0.99 [9, Section 5] and o, = 1/2 (n € N).
SG: Stochastic gradient algorithm (15) with A\, € [1073/(n + 1),1/(n + 1)] com-
puted by the Armijo line search algorithm [17, Algorithms 2 and 3, LS].

C1: Algorithm 1 with (19) and 3, = A, = 1071
C2: Algorithm 1 with (19) and 8, = \,, = 1073.
C3: Algorithm 1 with (20) and 3, = A, = 1071
C4: Algorithm 1 with (20) and 8, = \,, = 1073.

(19),

(19),

)

T

PR ACHED N 1t

t=1

E

5.3 Numerical Comparisons

D1: Algorithm 1 with (19), 8, = 0.9/2", and \,, = 1071 //n + 1.

D2: Algorithm 1 with (19), 8, = 0.9/27, and \, = 1073 /y/n + 1.

D3: Algorithm 1 with (19), 8, = 0.9/2", and \,, € [1073//n + 1,1/v/n + 1] com-
puted by the Armijo line search algorithm.

D4: Algorithm 1 with (20), 8, = 0.9/2", and \,, = 10~ //n + 1.

D5: Algorithm 1 with (20), 3, = 0.9/2", and \,, = 1073 /y/n + 1.

D6: Algorithm 1 with (20), 8, = 0.9/2", and A\, € [1073/v/n + 1,1/v/n + 1] com-
puted by the Armijo line search algorithm.
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The step-size B, := 0.9/2™ used in D1-D6 was based on [9, Section 5]. The numer-
ical results in [17] showed that the learning method based on SG performed better
than the existing methods in [19, (18)]. Therefore, we compare the performance
of the learning method based on SG with the ones of the learning methods based
on C1-D6. See Corollary 1 in [17], Theorems 5.2 and 5.3, and Corollary 5.1 for
convergence analyses of the above algorithms for solving problems (23) and (25).

The experiments used Mac Pro (Late 2013) with a 3.5 GHz 6-core Intel Xeon
E5 CPU, 32 GB 1866 MHz DDR3 memory, and macOS Catalina version 10.15.1
operating system. The algorithms used in the experiments were written in Python
3.7.5 with the NumPy 1.17.4 package. The experiments used the datasets from
LIBSVM [37] and the UCI Machine Learning Repository [38] for which information
is shown in Table 1. In these experiments, stratified 10-fold cross-validation for
the datasets was performed. For this validation, the StratifiedKFold class in the
scikit-learn 0.21.3 package was used. Ensembles of support vector classifiers were
constructed by the BaggingClassifier class in the scikit-learn 0.21.3 package.
The number of base estimators was set as the default value of the scikit-learn
package. For learning multiclass classification tasks with the classifiers used in the
experiments, the one-vs-the-rest multiclass classification strategy implemented as
the OneVsRestClassifier class in the scikit-learn 0.21.3 package was used. The
stopping condition for the algorithms used in the experiments was n = 100.

Table 1 Datasets used for classification

Dataset Classes Instances  Attributes
1. australian 2 690 14
2. breast-cancer || 2 683 10
3. diabetes 2 768 8

4. ionosphere 2 351 34
5. leukemia 2 72 7129
6. madelon 2 2600 500
7. splice 2 3175 60
8. iris 3 150 4

9. svmguide2 3 301 20
10. wine 3 178 13
11. vehicle 4 846 18
12. glass 6 214 9
13. segment 7 2310 19
14. digits 10 1797 64
15. usps 10 9298 256

Let us consider problem (23) and compare the performances of the sparsity learn-
ing methods based on the algorithms with Qy, defined by (24). Although we can
consider problem (25) and compare the performances of the sparsity and diversity
learning methods based on the algorithms with Qn, defined by (26), we omit the
details due to lack of space.!”!

Tables 2 and 3 show that the accuracy of the learning method based on SG was

almost the same as those of the learning methods based on C1, C2, C3, C4, D3, D4,

MWe checked that the sparsity and diversity learning methods based on C1, C2,
C3, C4, D3, D4, and D6 with @, defined by (26) perform better than the learning
method based on SG, as seen in the results (Tables 2, 3, 4, and 5) for ensemble
learning with sparsity.
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Table 2 Classification accuracies (%) and elapsed times (s) for the sparsity learning methods
based on SG, C1, C2, C3, and C4 applied to the datasets in Table 1

# SG C1 C2 C3 Cca

acc. time acc. time acc. time acc. time acc. time
1| 80.59 0.531 | 81.74 0.206 | 83.34 0.197 | 84.20 0.208 | 83.92 0.213
2 || 95.52 0.499 | 94.45 0.203 | 94.01 0.206 | 94.44 0.205 | 93.43 0.209
3 || 65.10 0.510 | 64.06 0.205 | 63.15 0.205 | 63.41 0.210 | 63.67 0.211
4 71.29 0.433 74.78 0.206 71.03 0.209 72.14 0.210 71.03 0.212
5 || 75.16 39.848 | 48.16 9.405 | 68.66 9.402 | 57.83 9.364 | 75.16 9.246
6 || 50.00 4.107 | 48.65 0.801 | 50.05 0.815 | 50.30 0.819 | 49.95 0.805
7 4570 0.697 46.68 0.220 43.89 0.219 43.89 0.224 42.19 0.230
8 || 87.33 0.916 | 83.33 0.601 | 81.33 0.599 | 82.66 0.605 | 82.00 0.615

9 || 56.54 1.080 | 56.54 0.605 | 56.54 0.616 | 40.63 0.632 | 13.53 0.626
10 || 96.72 1.015 | 96.72 1.015 | 89.91 0.613 | 92.13 0.621 | 91.09 0.625
11 || 45.89 2.236 | 48.05 0.806 | 44.44 0.829 | 42.68 0.850 | 43.97 0.856
12 || 42.17 2111 | 46.77 1.211 | 46.22 1.201 | 46.67 1.238 | 4543 1.226
13 || 68.05 7.326 | 75.06 1517 | 7294 1500 | 7298 1.521 | 71.60 1.532
14 || 70.24 10.197 | 66.78 2.298 | 65.58 2278 | 75.62 2.358 | 40.73 2.303
15 || 60.91 95.861 | 64.99 11571 | 71.20 11.594 | 58.69 11.604 | 69.95 11.611

Ave. || 67.41 11.158 | 66.04 2.030 | 66.82 2.032 | 65.22 2.045 | 62.51 2.035

and D6. These tables also show that the elapsed times for the proposed learning
methods were shorter than the elapsed times for the learning method based on SG.

The average accuracies and elapsed times of the existing learning method (SG)
were compared to the average accuracies and elapsed times of the proposed learn-
ing methods (C1-D6) by using an analysis of variance (ANOVA) test and Tukey-
Kramer’s honestly significant difference (HSD) test. The scipy.stats.f_oneway
method in the SciPy library was used as the implementation of the ANOVA test, and
the statsmodels.stats.multicomp.pairwise_tukeyhsd method in the StatsMod-
els package was used as the implementation of Tukey-Kramer’s HSD test. Recall
that the ANOVA test examines whether the hypothesis that the given groups have
the same population mean is rejected, whereas Tukey-Kramer’s HSD test can be
used to find specifically which pair has a significant difference in groups. The signif-
icance level was set at 5% (0.05) for the ANOVA and Tukey-Kramer’s HSD tests.
The p-value computed by the ANOVA test for the accuracies was about 4.09 x 10~ 19
(< 0.05). Table 4 indicates that the adjusted p-value between each of the learning
methods based on C1, C2, C3, C4, D3, D4, and D6 and the existing learning method
based on SG was greater than 0.05. This implies that the existing and proposed
methods based on C1, C2, C3, C4, D3, D4, and D6 had almost the same perfor-
mances in the sense of accuracy. The p-value computed by the ANOVA test for the
elapsed time was about 2.67 x 10729 (< 0.05). Table 5 indicates that there is a
significant difference in the sense of the elapsed time between each of the proposed
methods and the existing method based on SG. Therefore, the proposed methods
ran significantly faster than the existing method based on SG.

6 Conclusion
In this paper, we proposed a stochastic approximation method based on adaptive
learning rate optimization algorithms for solving a convex stochastic optimization

problem over the fixed point set of a quasinonexpansive mapping. It also presented
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Table 3 Classification accuracies (%) and elapsed times (s) for the sparsity learning methods
based on D1, D2, D3, D4, D5, and D6 applied to the datasets in Table 1

# D1 D2 D3 D4 D5 D6

acc. time | acc. time | acc. time | acc. time | acc. time | acc. time
77.84 0.210| 82.75 0.207 | 83.92 0.298 | 82.47 0.210| 83.33 0.213| 83.78 0.229
95.52 0.180| 89.76 0.206 | 94.44 0.287 | 93.57 0.206| 91.81 0.208| 94.15 0.254
27.86 0.202 | 51.17 0.206 | 64.32 0.280| 56.76 0.212| 59.11 0.209 | 64.06 0.237
76.45 0.187| 71.03 0.200| 71.58 0.312| 71.32 0.213| 71.01 0.212| 71.86 0.267

49.90 0.795| 51.35 0.822| 50.20 1.068 | 50.8 0.805| 49.65 0.849 | 50.00 0.974
43.49 0.222| 43.08 0.225| 43.60 0.352 | 44.39 0.223 | 42.49 0.229 | 43.48 0.298
63.33 0.607 | 74.66 0.600| 84.66 0.780| 77.33 0.621| 78.66 0.613 | 81.33 0.690
9 || 25.01 0.615| 39.24 0.612 | 56.54 0.722| 16.79 0.625| 23.28 0.629 | 56.54 0.694
10 || 62.47 0.592| 69.50 0.603 | 91.55 0.823 | 88.71 0.630 | 94.53 0.616 | 91.65 0.717
11 || 29.28 0.841| 32.14 0.829| 40.94 1.150| 40.08 0.835| 37.49 0.843 | 43.86 1.006
12 || 22.38 1.221| 25.62 1.205| 45.80 1.617 | 31.02 1.234| 33.95 1.246 | 49.02 1.469
13 || 50.95 1.497| 41.47 1507 | 72.25 2.182| 67.44 1.527| 53.03 1.527 | 76.66 1.937
14 || 64.78 2.304| 34.18 2.322| 66.33 3.319| 74.17 2.356| 37.78 2.358 | 66.40 3.079

O~NO O WN -

15 || 32.06 11.604 46.01 11.588 67.63 13.472 62.63 11.620Q 55.46 11.671 66.20 13.259

Ave.|| 50.69 2.031| 53.73 2.033 | 65.33 2.424 | 60.60 2.056| 58.52 2.067 | 67.18 2.353

convergence analyses of the proposed method with constant and diminishing step-
sizes. The analyses confirm that any accumulation point of the sequence generated
by the proposed method almost surely belongs to the solution set of the stochas-
tic optimization problem in deep learning. We also compared the proposed algo-
rithm with the existing adaptive learning rate optimization algorithms and showed
that the proposed algorithm achieved an O(1/4/n) convergence rate which was not
achieved for the existing adaptive learning rate optimization algorithms. Numerical
results for the classifier ensemble problems demonstrated that the proposed learning
methods achieve high accuracies faster than the existing learning method based on
the first-order algorithm. In particular, the proposed methods with constant step-
sizes or Armijo line search step-sizes solve the classifier ensemble problems faster
than the existing method based on the first-order algorithm.

Acknowledgements

The author would like to thank Professor Heinz Bauschke, Professor Yunier Bello-Cruz, Professor Radu loan Bot,
Professor Robert Csetnek, and Professor Alexander Zaslavski for giving me a chance to submit my paper to this
special issue. The author is sincerely grateful to Editor-in-Chief Yunier Bello-Cruz and the two anonymous reviewers
for helping him improve the original manuscript. The author thanks Hiroyuki Sakai for his input on the numerical
examples.

Funding
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number
JP18K11184).

Availability of data and materials
Not applicable.

Competing interests
The author declares that he has no competing interests.

Authors’ contributions

HI developed the mathematical methods. HI discussed the results and contributed to the final manuscript.

Author details
Department of Computer Science, Meiji University, Kanagawa, Japan.

39.00 9.383| 54.00 9.365| 46.16 9.697 | 51.5 9.525| 66.16 9.584 | 68.66 10.190

Page 29 of 33



liduka

References
1. Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press,
Cambridge, New York (2008)
2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
3. Robbins, H., Monro, S.: A stochastic approximation method. The Annals of Mathematical Statistics 22,
400-407 (1951)
4. Nedi¢, A., Lee, S.: On stochastic subgradient mirror-descent algorithm with weighted averaging. SIAM Journal
on Optimization 24, 84-107 (2014)
5. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic
programming. SIAM Journal on Optimization 19, 1574-1609 (2009)
6. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite
optimization I: A generic algorithmic framework. SIAM Journal on Optimization 22, 1469-1492 (2012)
7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization.
Journal of Machine Learning Research 12, 2121-2159 (2011)
8. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. International Conference on Learning
Representations, 1-15 (2015)
9. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. Proceedings of The International
Conference on Learning Representations, 1-23 (2018)

10. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer,
New York (2011)

11. Berinde, V.: Iterative Approximation of Fixed Points. Springer, Berlin (2007)

12. Halpern, B.: Fixed points of nonexpanding maps. Bulletin of the American Mathematical Society 73, 957-961
(1967)

13. Krasnosel'skii, M.A.: Two remarks on the method of successive approximations. Uspekhi Matematicheskikh
Nauk 10, 123-127 (1955)

14. Mann, W.R.: Mean value methods in iteration. Proceedings of American Mathematical Society 4, 506-510
(1953)

15. Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive
semigroups. Journal of Mathematical Analysis and Applications 279, 372-379 (2003)

16. Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Archiv der Mathematik 58, 486—-491
(1992)

17. liduka, H.: Stochastic fixed point optimization algorithm for classifier ensemble. IEEE Transactions on
Cybernetics 50, 4370-4380 (2020)

18. Yin, X.C., Huang, K., Hao, HW., Igbal, K., Wang, Z.B.: A novel classifier ensemble method with sparsity and
diversity. Neurocomputing 134, 214-221 (2014)

19. Yin, X.C., Huang, K., Yang, C., Hao, H.W.: Convex ensemble learning with sparsity and diversity. Information
Fusion 20, 49-58 (2014)

20. Rockafellar, R.T.: Convex Analysis. Princeton University Press, New Jersey (1970)

21. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New
York (2000)

22. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in
Hilbert space. Mathematics of Operations Research 26, 248-264 (2001)

23. Bauschke, H.H., Chen, J.: A projection method for approximating fixed points of quasi nonexpansive mappings
without the usual demiclosedness condition. Journal of Nonlinear and Convex Analysis 15, 129-135 (2014)

24. Vasin, V.V., Ageev, A.L.: lll-posed Problems with a Priori Information. V.S.P. Intl Science, Utrecht (1995)

25. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory, 2nd
edn. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2014)

26. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature
323, 533-536 (1986)

27. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite
optimization Il: Shrinking procedures and optimal algorithms. SIAM Journal on Optimization 23, 2061-2089
(2013)

28. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, New York (1990)

29. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New
York and Basel (1984)

30. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

31. Yamada, l.: The hybrid steepest descent method for the variational inequality problem over the intersection of
fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel
Algorithms for Feasibility and Optimization and Their Applications, pp. 473-504. Elsevier, New York (2001)

32. Yamada, |., Ogura, N.: Hybrid steepest descent method for variational inequality problem over the fixed point
set of certain quasi-nonexpansive mappings. Numerical Functional Analysis and Optimization 25, 619-655
(2004)

33. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

34. Wanka, G., Wilfer, O.: Formulae of epigraphical projection for solving minimax location problems. Pacific
Journal of Optimization 16, 289-313 (2020)

35. Nedié, A., Ozdaglar, A.: Approximate primal solutions and rate analysis for dual subgradient methods. SIAM
Journal on Optimization 19, 1757-1780 (2009)

36. liduka, H.: Distributed optimization for network resource allocation with nonsmooth utility functions. IEEE
Transactions on Control of Network Systems 6, 1354-1365 (2019)

37. Chang, C.C,, Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent

Page 30 of 33



liduka Page 31 of 33

Systems and Technology 2, 27-12727 (2011)
38. Dua, D., Graff, C.: UCI Machine learning repository. School Inf. Comput. Sci., Univ. California at Irvine, Irvine,
CA, USA (2019)



liduka

Table 4 Multiple comparison for accuracies for the sparsity learning methods applied to the
datasets in Table 1 using Tukey-Kramer’s HSD test at the 5% significance level (“meandiffs”
indicates the pairwise mean differences between Groups 1 and 2, “p-adj” indicates the adjusted
p-value, and “Lower” (resp. “Upper”) indicates the lower (resp. upper) value of the confidence

interval for the pairwise mean differences.)

Group 1  Group 2 || meandiffs | p-adj Lower Upper Reject
C1 C2 0.7823 0.9 -6.969 8.5335 | FALSE
C1 C3 -0.8189 0.9 -8.5702 6.9323 | FALSE
C1 C4 -3.5273 0.9 -11.2785 4.2239 FALSE
C1 D1 -15.4512 0.001 -23.2024 | -7.6999 | TRUE
C1 D2 -12.3071 0.001 | -20.0583 | -4.5559 | TRUE
C1 D3 -0.7095 0.9 -8.4607 7.0417 | FALSE
C1 D4 -5.4384 0.4642 | -13.1897 2.3128 FALSE
C1 D5 -7.5201 0.0668 | -15.2713 | 0.2311 | FALSE
C1 D6 1.1391 0.9 -6.6122 8.8903 FALSE
C1 SG 1.3916 0.9 -6.3596 9.1428 FALSE
C2 C3 -1.6012 0.9 -9.3524 6.15 FALSE
C2 C4 -4.3096 | 0.7575 | -12.0608 | 3.4416 | FALSE
C2 D1 -16.2334 0.001 -23.9847 | -8.4822 | TRUE
C2 D2 -13.0894 | 0.001 | -20.8406 | -5.3382 | TRUE
Cc2 D3 -1.4918 0.9 -9.243 6.2594 FALSE
C2 D4 -6.2207 0.2564 | -13.9719 1.5305 FALSE
C2 D5 -8.3023 | 0.0241 | -16.0536 | -0.5511 | TRUE
C2 D6 0.3568 0.9 -7.3944 8.108 FALSE
C2 SG 0.6093 0.9 -7.1419 8.3605 | FALSE
C3 C4 -2.7084 0.9 -10.4596 | 5.0428 | FALSE
c3 D1 -14.6322 0.001 -22.3834 -6.881 TRUE
Cc3 D2 -11.4882 | 0.001 | -19.2394 | -3.737 TRUE
C3 D3 0.1094 0.9 -7.6418 7.8606 | FALSE
C3 D4 -4.6195 | 0.6775 | -12.3707 | 3.1317 | FALSE
Cc3 D5 -6.7011 0.1642 | -14.4524 | 1.0501 | FALSE
C3 D6 1.958 0.9 -5.7932 9.7092 | FALSE
C3 SG 2.2105 0.9 -5.5407 9.9617 | FALSE
C4 D1 -11.9238 | 0.001 | -19.6751 | -4.1726 | TRUE
C4 D2 -8.7798 0.0121 -16.531 -1.0286 | TRUE
C4 D3 2.8178 0.9 -4.9334 10.569 | FALSE
C4 D4 -1.9111 0.9 -9.6623 5.8401 | FALSE
C4 D5 -3.9928 | 0.8393 | -11.744 3.7585 | FALSE
C4 D6 4.6664 0.6654 | -3.0848 12.4176 | FALSE
C4 SG 4.9189 0.6002 | -2.8323 | 12.6701 | FALSE
D1 D2 3.144 0.9 -4.6072 10.8953 | FALSE
D1 D3 14.7416 0.001 6.9904 22.4929 | TRUE
D1 D4 10.0127 | 0.0016 | 2.2615 17.7639 | TRUE
D1 D5 7.9311 0.0398 | 0.1799 15.6823 | TRUE
D1 D6 16.5902 0.001 8.839 24.3414 | TRUE
D1 SG 16.8427 0.001 9.0915 24594 | TRUE
D2 D3 11.5976 0.001 3.8464 19.3488 | TRUE
D2 D4 6.8687 0.1379 | -0.8825 14.6199 | FALSE
D2 D5 4.787 0.6343 | -2.9642 | 12.5383 | FALSE
D2 D6 13.4462 0.001 5.6949 21.1974 | TRUE
D2 SG 13.6987 0.001 5.9475 21.4499 | TRUE
D3 D4 -4.7289 | 0.6493 | -12.4801 | 3.0223 | FALSE
D3 D5 -6.8106 | 0.1467 | -14.5618 | 0.9407 | FALSE
D3 D6 1.8486 0.9 -5.9027 9.5998 | FALSE
D3 SG 2.1011 0.9 -5.6501 9.8523 | FALSE
D4 D5 -2.0816 0.9 -9.8329 5.6696 | FALSE
D4 D6 6.5775 0.1849 | -1.1737 14.3287 | FALSE
D4 SG 6.83 0.1437 | -0.9212 | 14.5812 | FALSE
D5 D6 8.6591 0.0145 | 0.9079 16.4104 | TRUE
D5 SG 8.9117 0.0099 1.1604 16.6629 | TRUE
D6 SG 0.2525 0.9 -7.4987 8.0037 | FALSE
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Table 5 Multiple comparison for elapsed time for the sparsity learning methods applied to the
datasets in Table 1 using Tukey-Kramer’s HSD test at the 5% significance level (“meandiffs”
indicates the pairwise mean differences between Groups 1 and 2, “p-adj” indicates the adjusted
p-value, and “Lower” (resp. “Upper”) indicates the lower (resp. upper) value of the confidence

interval for the pairwise mean differences.)

Group 1  Group 2 || meandiffs | p-adj Lower Upper Reject
C1 C2 0.0019 0.9 -3.0351 | 3.0389 | FALSE
C1 C3 0.0142 0.9 -3.0227 | 3.0512 | FALSE
C1 C4 0.0043 0.9 -3.0327 | 3.0413 | FALSE
C1 D1 0.0003 0.9 -3.0367 | 3.0372 | FALSE
C1 D2 0.0026 0.9 -3.0344 | 3.0395 | FALSE
C1 D3 0.3937 0.9 -2.6433 | 3.4307 | FALSE
C1 D4 0.0258 0.9 -3.0111 3.0628 FALSE
C1 D5 0.0366 0.9 -3.0003 | 3.0736 | FALSE
C1 D6 0.323 0.9 -2.714 3.3599 | FALSE
C1 SG 9.1275 0.001 | 6.0905 | 12.1645 | TRUE
C2 C3 0.0123 0.9 -3.0246 | 3.0493 | FALSE
C2 C4 0.0024 0.9 -3.0346 | 3.0394 | FALSE
C2 D1 -0.0016 0.9 -3.0386 | 3.0353 | FALSE
C2 D2 0.0007 0.9 -3.0363 | 3.0376 | FALSE
C2 D3 0.3918 0.9 -2.6452 | 3.4288 | FALSE
C2 D4 0.0239 0.9 -3.013 3.0609 | FALSE
C2 D5 0.0347 0.9 -3.0022 | 3.0717 | FALSE
Cc2 D6 0.3211 0.9 -2.7159 3.358 FALSE
C2 SG 9.1256 0.001 | 6.0886 | 12.1626 | TRUE
C3 C4 -0.0099 0.9 -3.0469 3.027 FALSE
C3 D1 -0.014 0.9 -3.051 3.023 FALSE
C3 D2 -0.0117 0.9 -3.0486 | 3.0253 | FALSE
C3 D3 0.3795 0.9 -2.6575 | 3.4164 | FALSE
C3 D4 0.0116 0.9 -3.0254 | 3.0485 | FALSE
C3 D5 0.0224 0.9 -3.0146 | 3.0593 | FALSE
C3 D6 0.3087 0.9 -2.7282 | 3.3457 | FALSE
C3 SG 9.1132 0.001 | 6.0763 | 12.1502 | TRUE
C4 D1 -0.004 0.9 -3.041 3.0329 | FALSE
C4 D2 -0.0017 0.9 -3.0387 | 3.0352 | FALSE
C4 D3 0.3894 0.9 -2.6476 3.4264 FALSE
C4 D4 0.0215 0.9 -3.0155 | 3.0585 | FALSE
C4 D5 0.0323 0.9 -3.0046 | 3.0693 | FALSE
C4 D6 0.3187 0.9 -2.7183 | 3.3556 | FALSE
C4 SG 9.1232 0.001 | 6.0862 | 12.1602 | TRUE
D1 D2 0.0023 0.9 -3.0347 | 3.0393 | FALSE
D1 D3 0.3935 0.9 -2.6435 | 3.4304 | FALSE
D1 D4 0.0256 0.9 -3.0114 | 3.0625 | FALSE
D1 D5 0.0364 0.9 -3.0006 | 3.0733 | FALSE
D1 D6 0.3227 0.9 -2.7143 3.3597 FALSE
D1 SG 9.1272 0.001 | 6.0903 | 12.1642 | TRUE
D2 D3 0.3911 0.9 -2.6458 3.4281 FALSE
D2 D4 0.0232 0.9 -3.0137 3.0602 FALSE
D2 D5 0.0341 0.9 -3.0029 3.071 FALSE
D2 D6 0.3204 0.9 -2.7166 3.3574 FALSE
D2 SG 9.1249 0.001 6.088 12.1619 | TRUE
D3 D4 -0.3679 0.9 -3.4049 | 2.6691 | FALSE
D3 D5 -0.3571 0.9 -3.3941 | 2.6799 | FALSE
D3 D6 -0.0707 0.9 -3.1077 2.9662 FALSE
D3 SG 8.7338 0.001 | 5.6968 | 11.7707 | TRUE
D4 D5 0.0108 0.9 -3.0262 | 3.0478 | FALSE
D4 D6 0.2972 0.9 -2.7398 3.3341 FALSE
D4 SG 9.1017 0.001 | 6.0647 | 12.1386 | TRUE
D5 D6 0.2863 0.9 -2.7506 | 3.3233 | FALSE
D5 SG 9.0909 0.001 | 6.0539 | 12.1278 | TRUE
D6 SG 8.8045 0.001 | 5.7676 | 11.8415 | TRUE

Page 33 of 33



