
Iiduka

RESEARCH

Stochastic Approximation Method Using
Diagonal Positive-Definite Matrices for Convex
Optimization with Fixed Point Constraints
Hideaki Iiduka

Correspondence:

iiduka@cs.meiji.ac.jp

Department of Computer Science,

Meiji University, Kanagawa, Japan

Full list of author information is

available at the end of the article

Abstract

This paper proposes a stochastic approximation method for solving a convex
stochastic optimization problem over the fixed point set of a quasinonexpansive
mapping. The proposed method is based on existing adaptive learning rate
optimization algorithms that use certain diagonal positive-definite matrices for
training deep neural networks. This paper includes convergence analyses and
convergence rate analyses for the proposed method under specific assumptions.
Results show that any accumulation point of the sequence generated by the
method with diminishing step-sizes almost surely belongs to the solution set of a
stochastic optimization problem in deep learning. Additionally, we apply the
learning methods based on the existing and proposed methods to classifier
ensemble problems and conduct a numerical performance comparison showing
that the proposed learning methods achieve high accuracies faster than the
existing learning method.

Keywords: adaptive learning rate optimization algorithms; convex stochastic
optimization; fixed point; quasinonexpansive mapping; stochastic fixed point
optimization algorithm; stochastic subgradient

AMS Subject Classification: 65K05, 65K15, 90C15

1 Introduction
Convex stochastic optimization problems in which the objective function is the

expectation of convex functions are considered important due to their occurrence

in practical applications, such as machine learning and deep learning.

The classical method for solving these problems is the stochastic approximation

(SA) method [1, (5.4.1)], [2, Algorithm 8.1], [3], which is applicable when unbiased

estimates of (sub)gradients of an objective function are available. Modified versions

of the SA method, such as the mirror descent SA method [4, Sections 3 and 4],

[5, Subsection 2.3] and the accelerated SA method [6, Subsection 3.1], have been

reported as useful methods for solving these problems. Meanwhile, some stochastic

optimization algorithms have been proposed with the rapid development of deep

learning. For example, AdaGrad [7, Figures 1 and 2] is an algorithm based on the

mirror descent SA method, and Adam [8, Algorithm 1], [2, Algorithm 8.7] and

AMSGrad [9, Algorithm 2] are well known as powerful tools for solving convex

stochastic optimization problems in deep neural networks. These algorithms use

the inverses of diagonal positive-definite matrices at each iteration to adapt the

Iiduka Page 2 of 33

learning rates of all model parameters. Hence, these algorithms are called adaptive

learning rate optimization algorithms.

The abovementioned methods commonly assume that metric projection onto a

given constraint set is computationally possible. However, although the metric pro-

jection onto a simple convex set such an affine subspace, half-space, or hyperslab can

be easily computed, the projection onto a complicated set, such as the intersections

of simple convex sets, the set of minimizers of a convex function, or the solution set

of a monotone variational inequality, cannot be easily computed. Accordingly, it is

difficult to apply the abovementioned methods to stochastic optimization problems

with complicated constraints.

In order to solve a stochastic optimization problem over a complicated constraint

set, we define a computable quasinonexpansive mapping whose fixed point set co-

incides with the constraint set, which is possible for the abovementioned compli-

cated convex sets (see Subsection 3.1 and Example 4.1 for examples of computable

quasinonexpansive mappings). Accordingly, the present paper deals with a convex

stochastic optimization problem over the fixed point set of a computable quasinon-

expansive mapping.

Since useful fixed point algorithms have already been reported [10, Chapter 5],

[11, Chapters 2–9], [12, 13, 14, 15, 16], we can find fixed points of quasinonex-

pansive mappings, which are feasible points of the convex stochastic optimization

problem. By combining the SA method with an existing fixed point algorithm, we

could obtain algorithms [17, Algorithms 1 and 2] for solving convex stochastic op-

timization problems that can be applied to classifier ensemble problems [18, 19]

(Example 4.1(ii)), which arise in the field of machine learning. However, the exist-

ing algorithms converge slowly [17] due to being stochastic first-order methods. In

this paper, we propose an algorithm (Algorithm 1) for solving a convex stochastic

optimization problem (Problem 3.1) that performs better than the algorithms in

[17, Algorithms 1 and 2]. The algorithm proposed herein is based on useful adap-

tive learning rate optimization algorithms, such as Adam and AMSGrad, that use

certain diagonal positive-definite matrices.[1] The first contribution of the present

study is an analysis of the convergence of the proposed algorithm (Theorem 5.1).

This analysis finds that, if sufficiently small constant step-sizes are used, then the

proposed algorithm approximates a solution to the problem (Theorem 5.2). More-

over, for sequences of diminishing step-sizes, the convergence rates of the proposed

algorithm can be specified (Theorem 5.3 and Corollary 5.1).

We compare the proposed algorithm with the existing adaptive learning rate op-

timization algorithms for a constrained convex stochastic optimization problem in

deep learning (Example 4.1(i)). Although the existing adaptive learning rate opti-

mization algorithms achieve low regret, they cannot solve the problem. The second

contribution of the present study is to show that, unlike the existing adaptive learn-

ing rate optimization algorithms, the proposed algorithm can solve the problem

(Corollaries 5.2 and 5.3) (see Subsection 5.2 for details). The third contribution is

that we show that the proposed algorithm can solve classifier ensemble problems

and that the learning methods based on the proposed algorithm perform better

numerically than the existing learning method based on the existing algorithms in

[1]See (6) and (9) for the definitions of Adam and AMSGrad.

Iiduka Page 3 of 33

[17]. In particular, the numerical results indicate that the learning methods based

on the proposed algorithm with constant step-sizes or step-sizes computed by the

Armijo line search algorithm can solve classifier ensemble problems faster than the

existing learning method based on the algorithms in [17]. As a result, the proposed

learning methods achieve high accuracies faster than the existing learning method.

2 Mathematical Preliminaries
2.1 Definitions and Propositions

Let N be the set of all positive integers. Let RN be an N -dimensional Euclidean

space with inner product ⟨·, ·⟩ with associated norm ∥ · ∥, and let RN
+ := {(xi)

N
i=1 ∈

RN : xi ≥ 0 (i = 1, 2, . . . , N)}. Let X⊤ denote the transpose of matrix X, let I

denote the identity matrix, and let Id denote the identity mapping on RN . Let

SN be the set of N × N symmetric matrices, i.e., SN = {X ∈ RN×N : X = X⊤}.
Let SN++ denote the set of symmetric positive-definite matrices, i.e., SN++ = {X ∈
SN : X ≻ O}. Given H ∈ SN++, the H-inner product of RN and the H-norm can be

defined for all x, y ∈ RN by ⟨x, y⟩H := ⟨x,Hy⟩ and ∥x∥2H := ⟨x,Hx⟩. Let diag(xi)

be an N × N diagonal matrix with diagonal components xi ∈ R (i = 1, 2, . . . , N)

and let DN be the set of N × N diagonal matrices, i.e., DN = {X ∈ RN×N : X =

diag(xi), xi ∈ R (i = 1, 2, . . . , N)}.
Let E[X] denote the expectation of random variable X. The history of the process

ξ0, ξ1, . . . up to time n is denoted by ξ[n] = (ξ0, ξ1, . . . , ξn). Let E[X|ξ[n]] denote the

conditional expectation of X given ξ[n] = (ξ0, ξ1, . . . , ξn). Unless stated otherwise,

all relations between random variables are supported to hold almost surely.

The subdifferential [10, Definition 16.1], [20, Section 23] of a convex function

f : RN → R is defined for all x ∈ RN by

∂f(x) :=
{
u ∈ RN : f(y) ≥ f(x) + ⟨y − x, u⟩ (y ∈ RN)

}
.

A point u ∈ ∂f(x) is called the subgradient of f at x ∈ RN .

Proposition 2.1 [21, Theorem 4.1.3], [10, Propositions 16.14(ii), (iii)] Let

f : RN → R be convex. Then, f is continuous and ∂f(x) ̸= ∅ for every x ∈ RN .

Moreover, for every x ∈ RN , there exists δ > 0 such that ∂f(B(x; δ)) is bounded,

where B(x; δ) is the closed ball with center x and radius δ.

When a mapping Q : RN → RN is considered under the H-norm ∥ ·∥H , we denote

it as QH : RN → RN . We define Q := QI . A mapping Q : RN → RN is said to be

quasinonexpansive [10, Definition 4.1(iii)] if

∥Q(x)− y∥ ≤ ∥x− y∥

for all x ∈ RN and all y ∈ Fix(Q), where Fix(Q) is the fixed point set of Q defined by

Fix(Q) := {x ∈ RN : x = Q(x)}. When a quasinonexpansive mapping has one fixed

point, its fixed point set is closed and convex [22, Proposition 2.6].Q is called a firmly

quasinonexpansivemapping [23, Section 3] if ∥Q(x)−y∥2+∥(Id−Q)(x)∥2 ≤ ∥x−y∥2

for all x ∈ RN and all y ∈ Fix(Q). Q is firmly quasinonexpansive if and only if R :=

Iiduka Page 4 of 33

2Q− Id is quasinonexpansive [10, Proposition 4.2]. This means that (1/2)(Id+R) is

firmly quasinonexpansive when R is quasinonexpansive. Given H ∈ SN++, we define

the subgradient projection[2] relative to a convex function f : RN → R by

Qf,H(x) :=

x− f(x)

∥H−1G(x)∥2H
H−1G(x) if f(x) > 0,

x otherwise,

(1)

where G(x) is any point in ∂f(x) (x ∈ RN) and lev≤0f := {x ∈ RN : f(x) ≤ 0} ̸= ∅.
The following proposition holds.

Proposition 2.2 Let H ∈ SN++ and let f : RN → R be convex. Then, Qf,H : RN →
RN defined by (1) satisfies the following:

(i) Qf := Qf,I is firmly quasinonexpansive and Fix(Qf) = lev≤0f ;

(ii) Qf,H is firmly quasinonexpansive under the H-norm with Fix(Qf,H) =

Fix(Qf).

Proof (i) This follows from Proposition 2.3 in [22].

(ii) We first show that lev≤0f = Fix(Qf,H). From (1), we have that lev≤0f ⊂
Fix(Qf,H). Let x ∈ Fix(Qf,H) and assume that x /∈ lev≤0f . Then, the definition of

the H-inner product and G(x) ∈ ∂f(x) mean that, for all y ∈ lev≤0f ,

〈
y − x,H−1G(x)

〉
H

= ⟨y − x,G(x)⟩ ≤ f(y)− f(x) ≤ −f(x) < 0, (2)

which implies that H−1G(x) ̸= 0. From (1) and x ∈ Fix(Qf,H), we also have that

(f(x)/∥H−1G(x)∥2H)H−1G(x) = x − Qf,H(x) = 0, which, together with f(x) >

0, gives H−1G(x) = 0, which is a contradiction. Hence, we have that lev≤0f ⊃
Fix(Qf,H), i.e., lev≤0f = Fix(Qf,H). Accordingly, (i) ensures that Fix(Qf,H) =

lev≤0f = Fix(Qf). For all x ∈ RN\lev≤0f and all y ∈ lev≤0f ,

∥Qf,H(x)− y∥2H

= ∥x− y∥2H +
2f(x)

∥H−1G(x)∥2H

〈
y − x,H−1G(x)

〉
H
+

f(x)2

∥H−1G(x)∥2H
,

which, together with (2), implies that Qf,H is firmly quasinonexpansive under the

H-norm.

Q : RN → RN is said to be Lipschitz continuous (L-Lipschitz continuous) if there

exists L > 0 such that ∥Q(x)−Q(y)∥ ≤ L∥x− y∥ for all x, y ∈ RN . Q : RN → RN

is said to be nonexpansive [10, Definition 4.1(ii)] if Q is 1-Lipschitz continuous, i.e.,

∥Q(x)−Q(y)∥ ≤ ∥x− y∥ for all x, y ∈ RN . Any nonexpansive mapping satisfies the

quasinonexpansivity condition. The metric projection [10, Subchapter 4.2, Chapter

28] onto a nonempty, closed convex set C (⊂ RN), denoted by PC , is defined for all

x ∈ RN by PC(x) ∈ C and ∥x − PC(x)∥ = d(x,C) := infy∈C ∥x − y∥. PC is firmly

[2]See [23, Lemma 3.1], [22, Proposition 2.3], [24, Subchapter 4.3] for the definition

and properties of the subgradient projection when H = I.

Iiduka Page 5 of 33

nonexpansive, i.e., ∥PC(x)−PC(y)∥2+∥(Id−PC)(x)−(Id−PC)(y)∥2 ≤ ∥x−y∥2 for

all x, y ∈ RN , with Fix(PC) = C [10, Proposition 4.8, (4.8)]. The metric projection

onto C under the H-norm is denoted by PC,H . When C is an affine subspace, half-

space, or hyperslab, the projection onto C can be computed within a finite number

of arithmetic operations [10, Chapter 28].

3 Convex Stochastic Optimization Problem over Fixed Point Set
This paper considers the following problem.

Problem 3.1 Assume that

(A0) (Hn)n∈N is the sequence in SN++ ∩ DN ;

(A1) QHn
: RN → RN is quasinonexpansive under the Hn-norm and X :=⋂

n∈N Fix(QHn
) (⊂ C) is nonempty, where C ⊂ RN is a nonempty, closed

convex set onto which the projection can be easily computed;

(A2) f : RN → R defined for all x ∈ RN by f(x) := E[F (x, ξ)] is well defined

and convex, where ξ is a random vector whose probability distribution P is

supported on a set Ξ ⊂ RM and F : RN × Ξ → R.
Then,

find x⋆ ∈ X⋆ :=

{
x⋆ ∈ X : f(x⋆) = f⋆ := inf

x∈X
f(x)

}
,

where one assumes that X⋆ is nonempty.

Examples of QHn
satisfying (A0) and (A1) are described in Subsection 3.1 and

Example 4.1.

The following are sufficient conditions [5, (A1), (A2), (2.5)] for being able to solve

Problem 3.1.

(C1) There is an independent and identically distributed sample ξ0, ξ1, . . . of real-

izations of the random vector ξ;

(C2) There is an oracle which, for a given input point (x, ξ) ∈ RN × Ξ, returns a

stochastic subgradient G(x, ξ) such that g(x) := E[G(x, ξ)] is well defined and

is a subgradient of f at x, i.e., g(x) ∈ ∂f(x);

(C3) There exists a positive numberM such that, for all x ∈ C, E[∥G(x, ξ)∥2] ≤ M2.

Suppose that F (·, ξ) (ξ ∈ Ξ) is convex and consider the oracle which returns

a stochastic subgradient G(x, ξ) ∈ ∂xF (x, ξ) for a given (x, ξ) ∈ RN × Ξ. Then,

f(·) = E[F (·, ξ)] is well defined and convex, and ∂f(x) = E[∂xF (x, ξ)] [25, Theorem

7.51], [5, p.1575].

3.1 Related problems and their algorithms

Here, let us consider the following convex stochastic optimization problem [5, (1.1)]:

minimize f(x) = E[F (x, ξ)] subject to x ∈ C, (3)

where C ⊂ RN is nonempty, bounded, closed, and convex. The classical method

for problem (3) under (C1)–(C3) is the stochastic approximation (SA) method [1,

Iiduka Page 6 of 33

(5.4.1)], [2, Algorithm 8.1], [3] defined as follows: given x0 ∈ RN and (λn)n∈N ⊂
(0,+∞),

xn+1 = PC (xn − λnG(xn, ξn)) (n ∈ N). (4)

The SA method requires the metric projection onto C, and hence can be applied

only to cases where C is simple in the sense that PC can be efficiently computed

(e.g., C is a closed ball, half-space, or hyperslab [10, Chapter 28]). When C is not

simple, the SA method requires solving the following subproblem at each iteration

n:

Find xn+1 ∈ C such that {xn+1} = argmin
y∈C

∥(xn − λnG(xn, ξn))− y∥ .

The mirror descent SA method [4, Sections 3 and 4], [5, Subsection 2.3] is useful

for solving problem (3) and has been analyzed for the case of step-sizes that are

constant or diminishing. For example, the mirror descent SA method [5, (2.32),

(2.38), and (2.47)] with a constant step-size policy generates the following sequence

(x̃n
1)n∈N: given x0 ∈ Xo := {x ∈ RN : ∂ω(x) ̸= ∅},

xn+1 = argmin
z∈C

{⟨γnG(xn, ξn), z − xn⟩+ V (xn, z)} , x̃n+1
1 :=

n+1∑
t=1

γt∑n+1
i=1 γi

xt,

(5)

where ω : C → R is differentiable and convex, V : Xo × C → R+ is defined for all

(x, z) ∈ Xo × C by V (x, z) := ω(z) − [ω(x) + ⟨∇ω(x), z − x⟩], and γt (t ∈ N) is a

constant step-size. When ω(·) = (1/2)∥ · ∥2, xn+1 in (5) coincides with xn+1 in (4).

Under certain assumptions, the method (5) satisfies E[f(x̃n
1) − f⋆] = O(1/

√
n) [5,

(2.48)] (see [5, (2.57)] for the rate of convergence of the mirror descent SA method

with a diminishing step-size policy).

As the field of deep learning has developed, it has produced some useful stochastic

optimization algorithms, such as AdaGrad [7, Figures 1 and 2], [2, Algorithm 8.4],

RMSProp [2, Algorithm 8.5], and Adam [8, Algorithm 1], [2, Algorithm 8.7], for

solving problem (3). The AdaGrad algorithm is based on the mirror decent SA

method (5) (see also [7, (4)]), and the RMSProp algorithm is a variant of AdaGrad.

The Adam algorithm is based on a combination of RMSProp and the momentum

method [26, (9)], as follows: given xt,mt−1, vt−1 ∈ RN ,

mt := β1mt−1 + (1− β1)∇xF (xt, ξt),

vt := β2vt−1 + (1− β2)∇xF (xt, ξt)⊙∇xF (xt, ξt),

m̂t :=
mt

1− βt+1
1

, v̂t :=
vt

1− βt+1
2

,

dt := −diag

(
1√

v̂t,i + ϵ

)
m̂t = −

(
m̂t,i√
v̂t,i + ϵ

)N

i=1

,

xt+1 := PC [xt + λtdt] , i.e., {xt+1} = argmin
y∈C

∥(xt + λtdt)− y∥ ,

(6)

Iiduka Page 7 of 33

where βi > 0 (i = 1, 2), ϵ > 0, (λn)n∈N ⊂ (0, 1) is diminishing step-size, and A⊙B

denotes the Hadamard product of matrices A and B. If we define matrix Ht as

Ht := diag
(√

v̂t,i + ϵ
)
, (7)

then the Adam algorithm (6) can be expressed as

xn+1 = PC

[
xt − λtdiag

(
1√

v̂t,i + ϵ

)
m̂t

]
= PC

[
xt − λtH

−1
t m̂t

]
. (8)

Unfortunately, there exists an explicit example of a simple convex optimization

setting where Adam does not converge to the optimal solution [9, Theorem 2]. To

guarantee convergence and preserve the practical benefits of Adam, AMSGrad [9,

Algorithm 2] was proposed as follows: for (β1,t)t∈N ⊂ (0,+∞),

mt := β1,tmt−1 + (1− β1,t)∇xF (xt, ξt),

vt := β2vt−1 + (1− β2)∇xF (xt, ξt)⊙∇xF (xt, ξt),

v̂t := (v̂t,i) = (max{v̂t−1,i, vt,i}),

Ht := diag
(√

v̂t,i

)
,

dt := −H−1
t mt,

xt+1 := PC,Ht [xt + λtdt] , i.e., {xt+1} = argmin
y∈C

∥(xt + λtdt)− y∥Ht
.

(9)

The existing SA methods (4), (5), (6), and (9) (see also [6, 27], [2, Section 8.5],

and [5, Subsection 2.3]) require minimizing a certain convex function over C at each

iteration. Therefore, when C has a complicated form (e.g., C is expressed as the

set of all minimizers of a convex function over a closed convex set, the solution set

of a monotone variational inequality, or the intersection of closed convex sets), it

is difficult to compute the point xn+1 generated by any of (4), (5), (6), and (9) at

each iteration.

Meanwhile, the fixed point theory [10, 28, 29, 30] enables us to define a computable

quasinonexpansive mapping of which the fixed point set is equal to the complicated

set. For example, let lev≤0fi (i = 1, 2, . . . , I) be the level set of a convex function

fi : RN → R and let X be the intersection of lev≤0fi, i.e.,

X :=

I⋂
i=1

lev≤0fi =

I⋂
i=1

{
x ∈ RN : fi(x) ≤ 0

}
̸= ∅. (10)

Let n ∈ N be fixed arbitrarily and let Hn ∈ SN++ (see (A0)). Let Qfi,Hn : RN → RN

(i = 1, 2, . . . , I) be the subgradient projection defined by (1) with f := fi and H :=

Hn. Accordingly, Proposition 2.2 implies that Qfi,Hn
is firmly quasinonexpansive

under the Hn-norm and Fix(Qfi,Hn
) = lev≤0fi (i = 1, 2, . . . , I). Under the condition

that the subgradients of fi can be efficiently computed (see, e.g., [10, Chapter 16]

for examples of convex functions with computable subgradients), Qfi,Hn
also can

Iiduka Page 8 of 33

be computed. Here, let us define QHn : RN → RN as

QHn
:=

I∑
i=1

ωiQfi,Hn
, (11)

where (ωi)
I
i=1 ⊂ (0,+∞) satisfies

∑I
i=1 ωi = 1. Then QHn is quasinonexpansive

under the Hn-norm [10, Exercise 4.11]. Moreover, we have that

X =

I⋂
i=1

lev≤0fi =

I⋂
i=1

Fix (Qfi) =

I⋂
i=1

⋂
n∈N

Fix (Qfi,Hn) =
⋂
n∈N

Fix(QHn), (12)

where the second equality comes from Proposition 2.2(i) (i.e., Fix(Qfi) = lev≤0fi

(i = 1, 2, . . . , I)), the third equality comes from Proposition 2.2(ii) (i.e., Fix(Qfi) =

Fix(Qfi,Hn
) for all n ∈ N), and the fourth equality comes from [10, Proposition 4.34].

Therefore, (10), (11), and (12) imply that we can define a computable mapping QHn

satisfying (A1) of which the fixed point set is equal to the intersection of level sets.

In the case where C is simple in the sense that PC = PC,I can be easily computed,

I ≻ O and Q := PC obviously satisfy (A0) and (A1) with Fix(PC) = C =: X.

Accordingly, Problem 3.1 with Q := PC coincides with problem (3), which implies

that Problem 3.1 is a generalization of problem (3).

Fixed point algorithms exist for searching for a fixed point of a nonexpansive

mapping [10, Chapter 5], [11, Chapters 2–9], [12, 13, 14, 15, 16]. The sequence

(xn)n∈N is generated by the Halpern fixed point algorithm [11, Subchapter 6.5],

[12, 16] as follows: for all n ∈ N,

xn+1 := αnx0 + (1− αn)Q(xn), (13)

where x0 ∈ RN , (αn)n∈N ⊂ (0, 1) satisfies limn→+∞ αn = 0 and
∑+∞

n=0 αn = +∞,

and Q : RN → RN is nonexpansive with Fix(Q) ̸= ∅. The sequence (xn)n∈N in (13)

converges to the minimizer of the specific convex function f0(x) := (1/2)∥x− x0∥2

(x ∈ RN) over Fix(Q) (see, e.g., [11, Theorem 6.19]). From ∇f0(x) = x − x0

(x ∈ RN), the Halpern algorithm (13) can be expressed as follows (see [31, 32] for

algorithms optimizing a general convex function):

xn+1 = Q(xn)− αn (Q(xn)− x0) = Q(xn)− αn∇f0 (Q(xn)) . (14)

The following algorithm obtained by combining the SA method (4) with (14) for

solving Problem 3.1 follows naturally from the above discussion: for all n ∈ N,

xn+1 := PC [Qα(xn)− λnG(Qα(xn), ξn)] , (15)

where Qα := αId + (1− α)Q (α ∈ (0, 1)). A convergence analysis of this algorithm

for different step-size rules was performed in [17]. For example, algorithm (15) with

a diminishing step-size was shown to converge in probability to a solution to Prob-

lem 3.1 with X = Fix(Q) [17, Theorem III.2]. The advantage of algorithm (15)

Iiduka Page 9 of 33

is that it allows convex stochastic optimization problems with complicated con-

straints to be solved (see also (12)). From the fact stated in [17, Problem II.1] that

the classifier ensemble problem [18, 19], which is a central issue in machine learning,

can be formulated as a convex stochastic optimization problem with complicated

constraints, the classifier ensemble problem can be regarded as an example of Prob-

lem 3.1. This result implies that algorithm (15) can solve the classifier ensemble

problem. However, this algorithm suffers from slow convergence, as shown in [17].

Specifically, although the learning methods based on algorithm (15) have higher

accuracies than the previously proposed learning methods, they have longer the

elapsed times. Accordingly, we should consider developing stochastic optimization

techniques to accelerate algorithm (15). This paper proposes an algorithm (Algo-

rithm 1) based on useful stochastic gradient descent algorithms, such as Adam [8,

Algorithm 1] and AMSGrad [9, Algorithm 2], for solving Problem 3.1, as a replace-

ment for the existing stochastic first-order method [17].

4 Proposed Algorithm

Algorithm 1 Stochastic approximation method for solving Problem 3.1
Require: (αn)n∈N, (βn)n∈N, (λn)n∈N ⊂ (0, 1), C (⊃ X) : nonempty, closed, convex
1: n← 0, x0,m−1 ∈ RN , H0 ∈ SN++ ∩ DN

2: loop
3: mn := βnmn−1 + (1− βn)G(xn, ξn)
4: Hn ∈ SN++ ∩ DN

5: Find dn ∈ RN that solves Hnd = −mn

6: yn := QHn (xn + λndn)
7: xn+1 := PC,Hn [αnxn + (1− αn)yn]
8: n← n+ 1
9: end loop

Before giving some examples, we first prove the following lemma listing the basic

properties of Algorithm 1.

Lemma 4.1 Suppose that Hn ∈ SN++ (n ∈ N), (A1), (A2), (C1), and (C2) hold

and consider the sequence (xn)n∈N defined for all n ∈ N by Algorithm 1. Then, for

all x ∈ X and all n ∈ N,

E
[
∥xn+1 − x∥2Hn

]
≤ E

[
∥xn − x∥2Hn

]
+ 2(1− αn)λn

{
(1− βn)E [f(x)− f(xn)]

+ βnE [⟨x− xn,mn−1⟩]
}
+ (1− αn)λ

2
nE
[
∥dn∥2Hn

]
− αnE

[
∥xn+1 − xn∥2Hn

]
− (1− αn)E

[
∥xn+1 − yn∥2Hn

]
.

Moreover, under (C3), E[∥mn∥2] ≤ M̃2 := max{∥m−1∥2,M2} holds for all n ∈ N.
If

(A3) h⋆ := sup{maxi=1,2,...,N h
−1/2
n,i : n ∈ N} is finite, where Hn := diag(hn,i),

then E[∥dn∥2Hn
] ≤ h2

⋆M̃
2 holds for all n ∈ N.

Iiduka Page 10 of 33

Proof Let x ∈ X ⊂ C and n ∈ N be fixed arbitrarily. The definition of xn+1 and

the firm nonexpansivity of PC,Hn guarantee that, almost surely,

∥xn+1 − x∥2Hn

≤ ∥[αnxn + (1− αn)yn]− x∥2Hn
− ∥xn+1 − [αnxn + (1− αn)yn]∥2Hn

,

which, together with ∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2

(x, y ∈ RN , α ∈ R), implies that

∥xn+1 − x∥2Hn
≤ αn ∥xn − x∥2Hn

+ (1− αn) ∥yn − x∥2Hn
− αn ∥xn+1 − xn∥2Hn

− (1− αn) ∥xn+1 − yn∥2Hn
.

(16)

The definition of yn and (A1) ensure that, almost surely,

∥yn − x∥2Hn
≤ ∥(xn − x) + λndn∥2Hn

= ∥xn − x∥2Hn
+ 2λn ⟨xn − x, dn⟩Hn

+ λ2
n ∥dn∥

2
Hn

.

The definitions of dn and mn in turn ensure that

⟨xn − x, dn⟩Hn
= ⟨x− xn,mn⟩

= βn ⟨x− xn,mn−1⟩+ (1− βn) ⟨x− xn,G(xn, ξn)⟩ .

Hence, (16) implies that, almost surely,

∥xn+1 − x∥2Hn
≤ αn ∥xn − x∥2Hn

+ (1− αn)
{
∥xn − x∥2Hn

+ 2λn ⟨xn − x, dn⟩Hn

+ λ2
n ∥dn∥

2
Hn

}
− αn ∥xn+1 − xn∥2Hn

− (1− αn) ∥xn+1 − yn∥2Hn

= ∥xn − x∥2Hn
+ 2(1− αn)λn

{
βn ⟨x− xn,mn−1⟩ (17)

+ (1− βn) ⟨x− xn,G(xn, ξn)⟩
}
+ (1− αn)λ

2
n ∥dn∥

2
Hn

− αn ∥xn+1 − xn∥2Hn
− (1− αn) ∥xn+1 − yn∥2Hn

.

Moreover, the condition xn = xn(ξ[n−1]) (n ∈ N) and (C1) guarantee that

E [⟨x− xn,G(xn, ξn)⟩] = E
[
E
[
⟨x− xn,G(xn, ξn)⟩ |ξ[n−1]

]]
= E

[〈
x− xn,E

[
G(xn, ξn)|ξ[n−1]

]〉]
= E [⟨x− xn, g(xn)⟩] ,

which, together with (C2), implies that

E [⟨x− xn,G(xn, ξn)⟩] ≤ E [f(x)− f(xn)] .

Therefore, taking the expectation of (17) gives the first assertion of Lemma 4.1.

Iiduka Page 11 of 33

The definition of mn and (C3), together with the convexity of ∥ · ∥2, guarantee
that, for all n ∈ N,

E
[
∥mn∥2

]
≤ βnE

[
∥mn−1∥2

]
+ (1− βn)E

[
∥G(xn, ξn)∥2

]
≤ βnE

[
∥mn−1∥2

]
+ (1− βn)M

2.

Induction thus ensures that, for all n ∈ N,

E
[
∥mn∥2

]
≤ M̃2 := max

{
∥m−1∥2 ,M2

}
< +∞. (18)

Given n ∈ N, Hn ≻ O ensures that there exists a unique matrix Hn ≻ O such that

Hn = H
2

n [33, Theorem 7.2.6]. Since ∥x∥2Hn
= ∥Hnx∥2 holds for all x ∈ RN , the

definition of dn implies that, for all n ∈ N,

E
[
∥dn∥2Hn

]
= E

[∥∥∥H−1

n Hndn

∥∥∥2] ≤ E
[∥∥∥H−1

n

∥∥∥2 ∥mn∥2
]
,

where ∥H−1

n ∥ = ∥diag(h−1/2
n,i)∥ = maxi=1,2,...,N h

−1/2
n,i (n ∈ N). From (18) and h⋆ :=

sup{maxi=1,2,...,N h
−1/2
n,i : n ∈ N} < +∞ (by (A3)), we have that, for all n ∈ N,

E
[
∥dn∥2Hn

]
≤ h2

⋆M̃
2.

This completes the proof.

The convergence analyses of Algorithm 1 in Section 5 depend on the following

assumption:

(A4) [5, p.1574], [9, p.2] C (⊃ X) is bounded.

Let us consider the case where Hn and vn are defined for all n ∈ N by

vn := βvn−1 + (1− β)G(xn, ξn)⊙ G(xn, ξn),

v̂n := (v̂n,i) = (max {v̂n−1,i, vn,i}) ,

Hn := diag
(√

v̂n,i

)
,

(19)

where β ∈ (0, 1) and v−1 = v̂−1 = 0 ∈ RN (see also (9)), and discuss the re-

lationship between (A3) and (A4). Assumption (A4) implies that (xn)n∈N ⊂ C

generated by Algorithm 1 is almost surely bounded. In the standard case of

G(xn, ξn) ∈ ∂xF (xn, ξn), Proposition 2.1 and (A4) imply that (G(xn, ξn))n∈N is

almost surely bounded, i.e., M1 := supn∈N ∥G(xn, ξn) ⊙ G(xn, ξn)∥ < +∞. Since

the triangle inequality and (19) guarantee that, almost surely, ∥vn∥ ≤ β∥vn−1∥ +

(1 − β)∥G(xn, ξn) ⊙ G(xn, ξn)∥, induction shows that, for all n ∈ N, almost surely,

∥vn∥ ≤ M1 < +∞. Accordingly, (19) leads to the almost sure boundedness of

(v̂n)n∈N. Hence, h⋆ := sup{maxi=1,2,...,N

√
v̂n,i : n ∈ N} < +∞, which implies that

(A3) holds. The above discussion shows that (A4) implies (A3) when Hn and vn

Iiduka Page 12 of 33

are as follows (see also (6) and (7)):

vn := βvn−1 + (1− β)G(xn, ξn)⊙ G(xn, ξn),

v̂n := (v̂n,i) =

(
max

{
vn,i

1− βn+1
, v̂n−1,i

})
,

Hn := diag
(√

v̂n,i

)
.

(20)

We provide some examples of Problem 3.1 with (A0)–(A4) that can be solved by

Algorithm 1 under (C1)–(C3).

Example 4.1 (i) Deep learning problem [9, p.2]: At each time step t, stochastic

optimization algorithms used in training deep networks pick a point xt ∈ X with

the parameters of the model to be learned, where X ⊂ RN is the simple, nonempty,

bounded, closed convex feasible set of points, and then incur loss ft(xt), where

ft : RN → R is a convex loss function represented as the loss of the model with the

chosen parameters in the next minibatch. Accordingly, the stochastic optimization

problem in deep networks can be formulated as follows:

minimize

T∑
t=1

ft(x) subject to x ∈ X = Fix(PX) =
⋂
n∈N

Fix (PX,Hn
) , (21)

where T is the total number of rounds in the learning process and (Hn)n∈N ⊂
SN++ ∩ DN defined by each of (19) and (20) satisfies (A0). QHn := PX,Hn (n ∈ N)
satisfies (A1), and f(·) = E[fξ(·)] := (1/T)

∑T
t=1 ft(·) satisfies (A2). Setting C := X

ensures (A4), which implies (A3). Algorithm 1 for solving problem (21) is as follows:

xn+1 := αnxn + (1− αn)PX,Hn

(
xn − λnH

−1
n mn

)
. (22)

(ii) Classifier ensemble problem [18, Subsection 2.2.2], [19, Subsection 3.2.2] (see

also [17, Problem II.1]): For a training set S = {(zm, lm)}Mm=1 ⊂ RN × R, where
zm := (znm)Nn=1 and znm is the measure corresponding to the mth sample in the

sample set and the nth classifier in an ensemble. The classifier ensemble problem

with sparsity learning is the following:

minimize f(x) = E
[
1

2
(⟨z, x⟩ − l)2

]
subject to x ∈ X := RN

+ ∩
{
x ∈ RN : ∥x∥1 ≤ t1

}
,

(23)

where ∥ · ∥1 denotes the ℓ1-norm and t1 is the sparsity control parameter. Suppose

that Hn is as each of (19) and (20), which satisfies (A0), and define a mapping

QHn
: RN → RN by

QHn
:= PRN

+ ,Hn
P{x∈RN : ∥x∥1≤t1},Hn

. (24)

Since the projections PRN
+ ,Hn

and P{x∈RN : ∥x∥1≤t1},Hn
can be easily computed [34,

Lemma 1.1], QHn
defined by (24) can be also computed. Moreover, QHn

defined

Iiduka Page 13 of 33

by (24) is nonexpansive with X =
⋂

n∈N Fix(QHn); i.e., (A1) holds. Since {x ∈
RN : ∥x∥1 ≤ t1} is bounded, we can set a simple, bounded set C such that X ⊂ C;

i.e., (A4) holds. Moreover, f in problem (23) satisfies (A2).

The classifier ensemble problem with both sparsity and diversity learning is as

follows:

minimize f(x) = E
[
1

2
(⟨z, x⟩ − l)2

]
subject to x ∈ X :=

{
x ∈ RN

+ : ∥x∥1 ≤ t1
}
∩
{
x ∈ RN : fdiv(x) ≥ t2

}
,

(25)

where t2 is the diversity control parameter, fdiv(x) :=
∑M

m=1{⟨[zm], x⟩ − ⟨zm, x⟩2}
(x ∈ RN), and [zm] := ((zim)2)Ni=1 ∈ RN . From the discussion regarding (10), (11),

and (12), a mapping

QHn
:= ω1PRN

+ ,Hn
+ ω2Q∥·∥1−t1,Hn

+ ω3Q−fdiv(·)+t2,Hn
, (26)

with (Hn)n∈N ⊂ SN++ ∩ DN defined by each of (19) and (20), is quasinonexpansive

under the Hn-norm satisfying X =
⋂

n∈N Fix(QHn
); i.e., (A1) holds. The discussion

in the previous paragraph implies that (A0), (A2), and (A4) again hold.

Algorithm 1 for solving each of problems (23) and (25) is represented as follows:

xn+1 := PC,Hn

[
αnxn + (1− αn)QHn

(
xn − λnH

−1
n mn

)]
. (27)

In contrast to Adam (6) and AMSGrad (9) that can solve a convex stochastic

optimization problem with a simple constraint (3) (see also problem (21)), algorithm

(27) can be applied to a convex stochastic optimization problem with complicated

constraints, such as problems (23) and (25).

(iii) Network utility maximization problem [35, (6), (7)] (see also [36, Problem

II.1]): The network resource allocation problem is to determine the source rates that

maximize the utility aggregated over all sources over the link capacity constraints

and source constraints. This problem can be formulated as the following network

utility maximization problem:

maximize
∑
s∈S

us(xs) subject to x = (xs)s∈S ∈ X :=
⋂
l∈L

Cl ∩
⋂
s∈S

Cs, (28)

where xs denotes the transmission rate of source s ∈ S, us is a concave utility

function of source s, S(l) denotes the set of sources that use link l ∈ L, Cl is the

capacity constraint set of link l having capacity cl ∈ R+ defined by Cl := {x =

(xs)s∈S :
∑

s∈S(l) xs ≤ cl}, and Cs is the constraint set of source s having the

maximum allowed rate Ms defined by Cs := {x = (xs)s∈S : xs ∈ [0,Ms]}. Since Cl

and Cs are half-spaces, the projections PCl,Hn
and PCs,Hn

are easily computed,[3]

where (Hn)n∈N ⊂ SN++∩DN is defined by each of (19) and (20). For example, we can

[3]The projection PC,Hn onto a half-space C := {x ∈ RN : ⟨a, x⟩ ≤ b} = Fix(PC) = Fix(PC,Hn)

under the Hn-norm, where a ̸= 0 and b ∈ R, can be defined for all x ∈ RN by PC,Hn (x) :=

x + [(b − ⟨a, x⟩Hn)/∥a∥2
Hn

]a (x /∈ C) or PC,Hn (x) := x (x ∈ C).

Iiduka Page 14 of 33

define a nonexpansive mapping QHn :=
∏

l∈L PCl,Hn

∏
s∈S PCs,Hn satisfying X =⋂

n∈N Fix(QHn
). The boundedness of

⋂
s∈S Cs allows us to set a simple, bounded

set C satisfying C ⊃
⋂

s∈S Cs ⊃ X. Algorithm (27) with G(xn, ξn) ∈ ∂(−uξn)(xn)

can be applied to problem (28).

5 Convergence Analyses and Comparisons
5.1 Convergence analyses of Algorithm 1

For convergence analyses of Algorithm 1, we prove the following theorem.

Theorem 5.1 Suppose that (A0)–(A4) and (C1)–(C3) hold and that (αn)n∈N,

(βn)n∈N, (λn)n∈N, and (γn)n∈N defined by γn := (1−αn)(1−βn)λn (n ∈ N) satisfy

0 < lim inf
n→+∞

αn ≤ lim sup
n→+∞

αn < 1, lim sup
n→+∞

βn < 1, and γn+1 ≤ γn (n ∈ N)

(29)

and that Hn = diag(hn,i) satisfies
[4]

hn+1,i ≥ hn,i (n ∈ N, i = 1, 2, . . . , N). (30)

Then, Algorithm 1 is such that the following are satisfied for all n ≥ 1:

E [f(x̃n)− f⋆] ≤ D

2ãb̃nλn

E

[
N∑
i=1

hn,i

]
+

M̃
√
DN

b̃n

n∑
k=1

βk +
h2
⋆M̃

2

2b̃n

n∑
k=1

λk,

where x̃n := (1/n)
∑n

k=1 xk, M̃ and h⋆ are defined as in Lemma 4.1, D :=

maxi=1,2,...,N sup{(xk+1,i − xi)
2 : k ∈ N} < +∞, (αn)n∈N ⊂ [c, a] ⊂ (0, 1),

(βn)n∈N ⊂ (0, b] ⊂ (0, 1), ã := 1 − a, b̃ := 1 − b, c̃ := 1 − c, and M̂ :=

sup{E[f(x)− f(xn)] : n ∈ N} < +∞. If

(A1)’ QHn
: RN → RN is nonexpansive under the Hn-norm,

then, for all n ≥ 1,

1

n

n∑
k=1

E
[
∥xk −QHk

(xk)∥2Hk

]
≤ 4

(
1

ã
+

1

c

){
D

n
E

[
N∑
i=1

hn,i

]
+

2c̃M̂

n

n∑
k=1

(1− βk)λk +
2c̃M̃

√
DN

n

n∑
k=1

βkλk

}

+

{
4

(
1

ã
+

1

c

)
c̃+ 2

}
h2
⋆M̃

2

n

n∑
k=1

λ2
k.

Proof Let x ∈ X be fixed arbitrarily. Lemma 4.1 guarantees that, for all k ∈ N,

E [f(xk)− f(x)] ≤ 1

2γk

{
E
[
∥xk − x∥2Hk

]
− E

[
∥xk+1 − x∥2Hk

]}
+

βk

1− βk
E [⟨x− xk,mk−1⟩] +

λk

2(1− βk)
E
[
∥dk∥2Hk

]
.

[4]Condition (30) is satisfied when Hn is defined by either (19) or (20).

Iiduka Page 15 of 33

Summing the above inequality ensures that, for all n ≥ 1,

1

n

n∑
k=1

E [f(xk)− f(x)]

≤ 1

2n

n∑
k=1

1

γk

{
E
[
∥xk − x∥2Hk

]
− E

[
∥xk+1 − x∥2Hk

]}
︸ ︷︷ ︸

Γn

+
1

n

n∑
k=1

βk

1− βk
E [⟨x− xk,mk−1⟩]︸ ︷︷ ︸

Bn

+
1

2b̃n

n∑
k=1

λkE
[
∥dk∥2Hk

]
︸ ︷︷ ︸

Λn

,

(31)

where (29) implies that a b > 0 exists such that, for all n ∈ N, βn ≤ b < 1 and

b̃ := 1− b. The definition of Γn and E[∥xn+1 − x∥2Hn
]/γn ≥ 0 imply that

Γn ≤
E
[
∥x1 − x∥2H1

]
γ1

+

n∑
k=2

E
[
∥xk − x∥2Hk

]
γk

−
E
[
∥xk − x∥2Hk−1

]
γk−1

︸ ︷︷ ︸
Γ̃n

. (32)

Given k ∈ N, Hk ≻ O ensures that there exists a unique matrix Hk ≻ O such that

Hk = H
2

k [33, Theorem 7.2.6]. Since ∥x∥2Hk
= ∥Hkx∥2 holds for all x ∈ RN , we have

that, for all k ∈ N,

Γ̃n = E

[
n∑

k=2

{∥∥Hk(xk − x)
∥∥2

γk
−
∥∥Hk−1(xk − x)

∥∥2
γk−1

}]
. (33)

Since Hk (k ∈ N) is diagonal, we can express Hk as Hk = diag(hk,i), where hk,i > 0

(k ∈ N, i = 1, 2, . . . , N). Accordingly, for all k ∈ N and all x := (xi)
N
i=1 ∈ RN ,

Hk = diag
(
h

1
2

k,i

)
and

∥∥Hkx
∥∥2 =

N∑
i=1

hk,ix
2
i . (34)

Hence, (33) ensures that, for all n ∈ N,

Γ̃n = E

[
n∑

k=2

N∑
i=1

(
hk,i

γk
− hk−1,i

γk−1

)
(xk,i − xi)

2

]
.

From γk ≤ γk−1 (k ≥ 1) (see (29)) and (30), we have that hk,i/γk−hk−1,i/γk−1 ≥ 0

(k ≥ 1, i = 1, 2, . . . , N). Moreover, (A4) implies that D := maxi=1,2,...,N sup{(xn,i−
xi)

2 : n ∈ N} < +∞. Accordingly, for all n ∈ N,

Γ̃n ≤ DE

[
n∑

k=2

N∑
i=1

(
hk,i

γk
− hk−1,i

γk−1

)]
= DE

[
N∑
i=1

(
hn,i

γn
− h1,i

γ1

)]
.

Iiduka Page 16 of 33

Hence, (32), together with E[∥x1 − x∥2H1
]/γ1 ≤ DE[

∑N
i=1 h1,i/γ1], implies that, for

all n ∈ N,

Γn ≤ DE

[
N∑
i=1

h1,i

γ1

]
+DE

[
N∑
i=1

(
hn,i

γn
− h1,i

γ1

)]
=

D

γn
E

[
N∑
i=1

hn,i

]
,

which, together with the existence of an a > 0 such that, for all n ∈ N, αn ≤ a < 1

(by (29)) and ã := 1− a, implies that

Γn ≤ D

ãb̃λn

E

[
N∑
i=1

hn,i

]
. (35)

The Cauchy-Schwarz inequality, together with D := maxi=1,2,...,N sup{(xn,i −
xi)

2 : n ∈ N} < +∞ and E[∥mn∥] ≤ M̃ :=
√
max{∥m−1∥2,M2} (n ∈ N) (by

Lemma 4.1), guarantees that, for all n ∈ N,

Bn ≤
n∑

k=1

βk

1− βk
E [∥x− xk∥ ∥mk−1∥] ≤

√
DN

b̃

n∑
k=1

βkE [∥mk−1∥]

≤ M̃
√
DN

b̃

n∑
k=1

βk.

(36)

Since E[∥dn∥2Hn
] ≤ h2

⋆M̃
2 (n ∈ N) holds (by Lemma 4.1), we have that, for all n ∈ N,

Λn :=

n∑
k=1

λkE
[
∥dk∥2Hk

]
≤ h2

⋆M̃
2

n∑
k=1

λk. (37)

Therefore, (31), (35), (36), and (37), together with the convexity of f , imply that,

for all n ∈ N,

E [f(x̃n)− f(x)] ≤ D

2ãb̃nλn

E

[
N∑
i=1

hn,i

]
+

M̃
√
DN

b̃n

n∑
k=1

βk +
h2
⋆M̃

2

2b̃n

n∑
k=1

λk.

Lemma 4.1 ensures that, for all n ∈ N,

ã

n∑
k=1

E
[
∥xk+1 − yk∥2Hk

]
≤

n∑
k=1

{
E
[
∥xk − x∥2Hk

]
− E

[
∥xk+1 − x∥2Hk

]}
︸ ︷︷ ︸

Xn

+

n∑
k=1

(1− αk)λ
2
kE
[
∥dk∥2Hk

]

+ 2

n∑
k=1

(1− αk)λk {(1− βk)E [f(x)− f(xk)] + βkE [⟨x− xk,mk−1⟩]} .

A discussion similar to the one for obtaining (35) implies that

Xn ≤ DE

[
N∑
i=1

h1,i

]
+DE

[
N∑
i=1

(hn,i − h1,i)

]
= DE

[
N∑
i=1

hn,i

]
.

Iiduka Page 17 of 33

The continuity of f (see (A2)) and (A4) mean that M̂ := sup{E[f(x)− f(xn)] : n ∈
N} < +∞. Accordingly, an argument similar to the one for obtaining (36) and (37)

guarantees that, for all n ∈ N,

1

n

n∑
k=1

E
[
∥xk+1 − yk∥2Hk

]
≤ D

ãn
E

[
N∑
i=1

hn,i

]
+

2M̂

ãn

n∑
k=1

(1− αk)(1− βk)λk +
2M̃

√
DN

ãn

n∑
k=1

(1− αk)βkλk

+
h2
⋆M̃

2

ãn

n∑
k=1

(1− αk)λ
2
k.

From (29), there exists c > 0 such that, for all n ∈ N, c ≤ αn. Setting c̃ := 1− c, it

follows that, for all n ∈ N,

1

n

n∑
k=1

E
[
∥xk+1 − yk∥2Hk

]
≤ D

ãn
E

[
N∑
i=1

hn,i

]
+

2c̃M̂

ãn

n∑
k=1

(1− βk)λk +
2c̃M̃

√
DN

ãn

n∑
k=1

βkλk

+
c̃h2

⋆M̃
2

ãn

n∑
k=1

λ2
k.

(38)

A discussion similar to the one for obtaining (38) ensures that, for all n ∈ N,

1

n

n∑
k=1

E
[
∥xk+1 − xk∥2Hk

]
≤ D

cn
E

[
N∑
i=1

hn,i

]
+

2c̃M̂

cn

n∑
k=1

(1− βk)λk +
2c̃M̃

√
DN

cn

n∑
k=1

βkλk

+
c̃h2

⋆M̃
2

cn

n∑
k=1

λ2
k.

(39)

Suppose that (A1)’ holds. Then, we have that, for all k ∈ N, almost surely ∥yk −
QHk

(xk)∥Hk
= ∥QHk

(xk + λkdk) − QHk
(xk)∥Hk

≤ λk∥dk∥Hk
, which, together with

∥x− y∥2 ≤ 2∥x∥2 + 2∥y∥2 (x, y ∈ RN), implies that

E
[
∥xk −QHk

(xk)∥2Hk

]
≤ 2E

[
∥xk − yk∥2Hk

]
+ 2E

[
∥yk −QHk

(xk)∥2Hk

]
≤ 2E

[
∥xk − yk∥2Hk

]
+ 2λ2

kE
[
∥dk∥2Hk

]
.

Iiduka Page 18 of 33

Accordingly, (38) and (39) guarantee that, for all n ∈ N,

1

n

n∑
k=1

E
[
∥xk −QHk

(xk)∥2Hk

]
≤ 4

n

n∑
k=1

E
[
∥xk − xk+1∥2Hk

]
+

4

n

n∑
k=1

E
[
∥xk+1 − yk∥2Hk

]
+

2

n

n∑
k=1

λ2
kE
[
∥dk∥2Hk

]
≤ 4

(
1

ã
+

1

c

){
D

n
E

[
N∑
i=1

hn,i

]
+

2c̃M̂

n

n∑
k=1

(1− βk)λk +
2c̃M̃

√
DN

n

n∑
k=1

βkλk

}

+

{
4

(
1

ã
+

1

c

)
c̃+ 2

}
h2
⋆M̃

2

n

n∑
k=1

λ2
k,

which completes the proof.

5.1.1 Constant step-size rule

The following theorem indicates that sufficiently small constant step-sizes βn := β

and λn := λ allow a solution to the problem to be approximated.

Theorem 5.2 Suppose that the assumptions in Theorem 5.1 hold and also assume

that, for all i = 1, 2, . . . , N , there exists a positive number Bi such that[5]

sup{E[hn,i] : n ∈ N} ≤ Bi. (40)

Then Algorithm 1 with αn := α, βn := β, and λn := λ (n ∈ N) satisfies that

lim inf
n→+∞

E
[
∥xn − xn+1∥2Hn

]
≤ 2α̃

α

{
M̂(1− β) + M̃

√
DNβ +

h2
⋆M̃

2

2
λ

}
λ, (41)

lim inf
n→+∞

E
[
∥xn+1 − yn∥2Hn

]
≤ 2

{
M̂(1− β) + M̃

√
DNβ +

h2
⋆M̃

2

2
λ

}
λ, (42)

lim inf
n→+∞

E [f(xn)− f⋆] ≤ M̃
√
DN

1− β
β +

h2
⋆M̃

2

2(1− β)
λ, (43)

E [f(x̃n)− f⋆] ≤ O
(
1

n

)
+

M̃
√
DN

1− β
β +

h2
⋆M̃

2

2(1− β)
λ, (44)

where x̃n := (1/n)
∑n

k=1 xk and α̃ := 1− α. Under (A1)’, we have

1

n

n∑
k=1

E
[
∥xk −QHk

(xk)∥2Hk

]
≤ O

(
1

n

)
+

4

α

{
2M̂(1− β) + 2M̃

√
DNβ + 2h2

⋆M̃
2λ

}
λ+ 2h2

⋆M̃
2λ2.

(45)

[5]Condition (40) is satisfied when Hn is defined by either (19) or (20).

Iiduka Page 19 of 33

Proof We first show that, for all ϵ > 0,

lim inf
n→+∞

E
[
∥xn − xn+1∥2Hn

]
≤ 2α̃

α

{
M̂(1− β) + M̃

√
DNβ +

h2
⋆M̃

2

2
λ

}
λ

+Dϵ+ ϵ.

(46)

If (46) does not hold, then there exists ϵ0 > 0 such that

lim inf
n→+∞

E
[
∥xn − xn+1∥2Hn

]
>

2α̃

α

{
M̂(1− β) + M̃

√
DNβ +

h2
⋆M̃

2

2
λ

}
λ

+Dϵ0 + ϵ0.

(47)

Let x ∈ X and χn := E[∥xn − x∥2Hn
] for all n ∈ N. Lemma 4.1, together with the

proofs of (36) and (37), implies that, for all n ∈ N,

χn+1 ≤ χn + χn+1 − E
[
∥xn+1 − x∥2Hn

]
︸ ︷︷ ︸

X̃n

−αE
[
∥xn+1 − xn∥2Hn

]

+ 2α̃λ

{
M̂(1− β) + M̃

√
DNβ +

h2
⋆M̃

2

2
λ

}
.

(48)

From (34) and (A4), for all n ∈ N,

X̃n = E

[
N∑
i=1

(hn+1,i − hn,i)(xn+1,i − xi)
2

]
≤ DE

[
N∑
i=1

(hn+1,i − hn,i)

]
.

Accordingly, (30) and (40) ensure that there exists n0 ∈ N such that, for all n ≥ n0,

X̃n ≤ Dαϵ0. (49)

Hence, (48) implies that, for all n ≥ n0,

χn+1 ≤ χn +Dαϵ0 − αE
[
∥xn+1 − xn∥2Hn

]
+ 2α̃λ

{
M̂(1− β) + M̃

√
DNβ +

h2
⋆M̃

2

2
λ

}
.

From (47), there exists n1 ∈ N such that, for all n ≥ n1,

E
[
∥xn − xn+1∥2Hn

]
>

2α̃

α

{
M̂(1− β) + M̃

√
DNβ +

h2
⋆M̃

2

2
λ

}
λ+Dϵ0 +

ϵ0
2
.

Iiduka Page 20 of 33

Therefore, for all n ≥ n2 := max{n0, n1},

χn+1 ≤ χn +Dαϵ0 − 2α̃λ

{
M̂(1− β) + M̃

√
DNβ +

h2
⋆M̃

2

2
λ

}
−Dαϵ0 −

αϵ0
2

+ 2α̃λ

{
M̂(1− β) + M̃

√
DNβ +

h2
⋆M̃

2

2
λ

}
= χn − αϵ0

2

≤ χn2 −
αϵ0
2

(n+ 1− n2),

which is a contradiction since the right-hand side of the above inequality approaches

minus infinity as n increases. Hence, (46) holds for all ϵ, which implies that (41)

holds. A discussion similar to the one for showing (46) leads to (42). We next show

that, for all ϵ > 0,

lim inf
n→+∞

E [f(xn)− f⋆] ≤ M̃
√
DN

1− β
β +

h2
⋆M̃

2

2(1− β)
λ+

Dαϵ

2α̃(1− β)λ
+ ϵ. (50)

If (50) does not hold for all ϵ > 0, then there exist ϵ0 > 0 and n3 ∈ N such that,

for all n ≥ n3,

E [f(xn)− f⋆] >
M̃

√
DN

1− β
β +

h2
⋆M̃

2

2(1− β)
λ+

Dαϵ0
2α̃(1− β)λ

+
ϵ0
2
.

Lemma 4.1, together with (48) and (49), ensures that, for all n ≥ n0,

χn+1 ≤ χn +Dαϵ0 − 2α̃(1− β)λE [f(xn)− f⋆] +
{
2M̃

√
DNβ + h2

⋆M̃
2λ
}
α̃λ.

Accordingly, for all n ≥ n4 := max{n0, n3},

χn+1

≤ χn +Dαϵ0 − 2α̃(1− β)λ

{
M̃

√
DN

1− β
β +

h2
⋆M̃

2

2(1− β)
λ+

Dαϵ0
2α̃(1− β)λ

+
ϵ0
2

}
+
{
2M̃

√
DNβ + h2

⋆M̃
2λ
}
α̃λ

= χn − α̃(1− β)λϵ0

≤ χn4 − α̃(1− β)λϵ0(n+ 1− n4),

which is a contradiction. Since (50) holds for all ϵ > 0, we have (43). Conditions

(44) and (45) follow from Theorem 5.1, which completes the proof.

5.1.2 Diminishing step-size rule

Lemma 4.1 and Theorem 5.1 give us the following theorem as a convergence analysis

of Algorithm 1 with a diminishing step-size.

Iiduka Page 21 of 33

Theorem 5.3 Suppose that the assumptions in Theorem 5.1 and (40) hold. Let

(βn)n∈N and (λn)n∈N satisfy the following:

lim
n→+∞

βn = 0,

+∞∑
n=0

λn = +∞,

+∞∑
n=0

λ2
n < +∞, and

+∞∑
n=0

βnλn < +∞. (51)

Then Algorithm 1 satisfies that

lim inf
n→+∞

E
[
∥xn − xn+1∥Hn

]
= 0, lim inf

n→+∞
E
[
∥xn+1 − yn∥Hn

]
= 0, (52)

lim inf
n→+∞

E [f(xn)− f⋆] ≤ 0. (53)

Moreover, if (A1)’ holds, then we have

lim inf
n→+∞

E
[
∥xn −QHn(xn)∥Hn

]
= 0.

Let (βn)n∈N and (λn)n∈N satisfy the following:

lim
n→+∞

1

nλn
= 0, lim

n→+∞

1

n

n∑
k=1

λk = 0, and lim
n→+∞

1

n

n∑
k=1

βk = 0. (54)

Then the sequence (x̃n)n∈N defined by x̃n := (1/n)
∑n

k=1 xk satisfies

lim sup
n→+∞

E [f(x̃n)− f⋆] ≤ 0

with

E [f(x̃n)− f⋆] ≤
D
∑N

i=1 Bi

2ãb̃nλn

+
M̃

√
DN

b̃n

n∑
k=1

βk +
h2
⋆M̃

2

2b̃n

n∑
k=1

λk.

Moreover, if (A1)’ holds, then we have

lim
n→+∞

1

n

n∑
k=1

E
[
∥xk −QHk

(xk)∥2Hk

]
= 0

with

1

n

n∑
k=1

E
[
∥xk −QHk

(xk)∥2Hk

]
≤ 4

(
1

ã
+

1

c

){
D
∑N

i=1 Bi

n
+

2c̃M̂

n

n∑
k=1

(1− βk)λk +
2c̃M̃

√
DN

n

n∑
k=1

βkλk

}

+

{
4

(
1

ã
+

1

c

)
c̃+ 2

}
h2
⋆M̃

2

n

n∑
k=1

λ2
k.

Iiduka Page 22 of 33

Proof We first show (52). Lemma 4.1, together with (36), (37), and (48), implies

that, for all n ∈ N,

αnE
[
∥xn+1 − xn∥2Hn

]
(1− αn)E

[
∥xn+1 − yn∥2Hn

] } ≤ χn(x)− χn+1(x) +DE

[
N∑
i=1

(hn+1,i − hn,i)

]
+ 2M̂λn + 2M̃

√
DNβnλn + h2

⋆M̃
2λ2

n,

(55)

where χn(x) := E[∥xn − x∥2Hn
] for all x ∈ X and all n ∈ N. Consider (Case 1):

For all x ∈ X, there exists m0 ∈ N such that, for all n ∈ N, n ≥ m0 implies

χn+1(x) ≤ χn(x). This case guarantees the existence of limn→+∞ χn(x) for all

x ∈ X. From (30) and (40), we have that limn→+∞ E[
∑N

i=1(hn+1,i − hn,i)] = 0.

Moreover, (51) ensures that limn→+∞ βn = limn→+∞ λn = 0. Accordingly, (55)

and 0 < lim infn→+∞ αn ≤ lim supn→+∞ αn < 1 (by (29)) imply that

lim
n→+∞

E
[
∥xn+1 − xn∥Hn

]
= 0 and lim

n→+∞
E
[
∥xn+1 − yn∥Hn

]
= 0. (56)

Consider (Case 2): There exists x0 ∈ X, for all m ∈ N, there exists n ∈ N such that

n ≥ m and χn+1(x0) > χn(x0). In this case, there exists (xni
)i∈N ⊂ (xn)n∈N such

that, for all i ∈ N, χni+1(x0) > χni
(x0). From (55), we have that, for all i ∈ N,

αniE
[
∥xni+1 − xni∥

2
Hni

]
(1− αn)E

[
∥xni+1 − yni∥

2
Hni

] } < DE

 N∑
j=1

(hni+1,j − hni,j)

+ 2M̂λni

+ 2M̃
√
DNβni

λni
+ h2

⋆M̃
2λ2

ni
.

A discussion similar to the one for showing (56) guarantees that

lim
i→+∞

E
[
∥xni+1 − xni

∥Hni

]
= 0 and lim

i→+∞
E
[
∥xni+1 − yni

∥Hni

]
= 0. (57)

Therefore, we have (52). If (A1)’ holds, then Lemma 4.1 implies that, for all n ∈ N,

E
[
∥yn −QHn

(xn)∥Hn

]
≤ h⋆M̃λn,

which implies that limn→+∞ E[∥yn − QHn(xn)∥Hn] = 0. In (Case 1), (56) and

the triangle inequality mean that limn→+∞ E[∥xn − yn∥Hn] = 0. Accordingly,

the triangle inequality and limn→+∞ E[∥yn − QHn
(xn)∥Hn

] = 0 imply that

limn→+∞ E[∥xn − QHn
(xn)∥Hn

] = 0. In (Case 2), (57) and the triangle inequal-

ity mean that limi→+∞ E[∥xni
− yni

∥Hni
] = 0. Accordingly, the triangle inequal-

ity and limi→+∞ E[∥yni
− QHni

(xni
)∥Hni

] = 0 imply that limi→+∞ E[∥xni
−

QHni
(xni

)∥Hni
] = 0. Thus, we have that

lim inf
n→+∞

E
[
∥xn −QHn

(xn)∥Hn

]
= 0.

Iiduka Page 23 of 33

Next, we show (53). Lemma 4.1, together with (36) and (37), ensures that, for all

x⋆ ∈ X⋆ and all k ∈ N,

2(1− αk)(1− βk)λkE [f(xk)− f⋆]

≤ χ⋆
k − χ⋆

k+1 +DE

[
N∑
i=1

(hk+1,i − hk,i)

]
+ 2M̃

√
DNβkλk + h2

⋆M̃
2λ2

k,

where χ⋆
n := χn(x

⋆) for all x⋆ ∈ X⋆ and all n ∈ N. Summing the above inequality

from k = 0 to k = n gives that, for all n ∈ N,

2

n∑
k=0

(1− αk)(1− βk)λkE [f(xk)− f⋆]

≤ χ⋆
0 +DE

[
N∑
i=1

hn+1,i

]
+ 2M̃

√
DN

n∑
k=0

βkλk + h2
⋆M̃

2
n∑

k=0

λ2
k,

which, together with (40) and (51), implies that

+∞∑
k=0

(1− αk)(1− βk)λkE [f(xk)− f⋆] < +∞.

If (53) does not hold, then there exist ζ > 0 and m1 ∈ N such that, for all k ≥ m1,

E [f(xk)− f⋆] ≥ ζ. Hence, we have that

+∞ = ζ

+∞∑
k=0

(1− αk)(1− βk)λk ≤
+∞∑
k=0

(1− αk)(1− βk)λkE [f(xk)− f⋆] < +∞,

where the first equation comes from lim supn→+∞ αn < 1,
∑+∞

n=0 λn = +∞, and∑+∞
n=0 βnλn < +∞ (by (29) and (51)). Since we have a contradiction, (53) holds.

Theorem 5.1, together with (40) and (54), ensures that lim supn→+∞ E[f(x̃n)−f⋆] ≤
0 and limn→+∞(1/n)

∑n
k=1 E[∥xk −QHk

(xk)∥2Hk
] = 0 with the convergence rate in

Theorem 5.3.

Theorem 5.3 leads to the following corollary.

Corollary 5.1 Suppose that the assumptions in Theorem 5.3 and (A1)’ hold

and consider Algorithm 1 with λn := 1/nη (η ∈ [1/2, 1]) and (βn)n∈N such that∑+∞
n=1 βn < +∞. Under η ∈ (1/2, 1], we have that

lim inf
n→+∞

E [f(xn)− f⋆] ≤ 0, lim inf
n→+∞

E [∥xn −QHn(xn)∥Hn] = 0.

Under η ∈ [1/2, 1), we have that

lim sup
n→+∞

E [f(x̃n)− f⋆] ≤ 0, lim
n→+∞

1

n

n∑
k=1

E
[
∥xk −QHk

(xk)∥2Hk

]
= 0

Iiduka Page 24 of 33

with rate of convergence

E [f(x̃n)− f⋆] ≤ O
(

1

n1−η

)
,
1

n

n∑
k=1

E
[
∥xk −QHk

(xk)∥2Hk

]
= O

(
1

nη

)
.

Proof The step-size λn := 1/nη (η ∈ (1/2, 1]) and (βn)n∈N such that
∑+∞

n=1 βn <

+∞ satisfy (51). Accordingly, Theorem 5.3 with (A1)’ implies that lim infn→+∞ E[f(xn)−
f⋆] ≤ 0, and lim infn→+∞ E[∥xn − QHn

(xn)∥Hn
] = 0. The step-size λn := 1/nη

(η ∈ [1/2, 1)) satisfies

lim
n→+∞

1

nλn
= lim

n→+∞

1

n1−η
= 0.

Moreover, we have that

1

n

n∑
k=1

λ2
k ≤ 1

n

n∑
k=1

λk ≤ 1

n

{
1 +

∫ n

1

dt

tη

}
=

1

n

{
n1−η

1− η
− η

1− η

}
≤ 1

1− η

1

nη
.

(58)

Hence, limn→+∞(1/n)
∑n

k=1 λk = limn→+∞(1/n)
∑n

k=1 λ
2
k = 0. The condition∑+∞

n=1 βn < +∞ implies that limn→+∞(1/n)
∑n

k=1 βk = 0 and limn→+∞(1/n)
∑n

k=1 βkλk =

0. Hence, (54) is satisfied. Accordingly, from Theorem 5.3 with (A1)’ and (58), we

have the convergence rate of Algorithm 1 in Corollary 5.1.

5.2 Comparisons of Algorithm 1 with the existing adaptive learning rate optimization

algorithms

The main objective of the existing adaptive learning rate optimization algorithms

is to minimize
∑T

t=1 ft(x) subject to x ∈ X, where T is the total number of rounds

in the learning process, ft : RN → R (t = 1, 2, . . . , T) is a differentiable, convex loss

function, and X ⊂ RN is bounded, closed, and convex (see also problem (21) in

Example 4.1(i)). We would like to achieve low regret on the sequence (ft(xt))
T
t=1,

measured as

R(T) :=

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) =

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗),

where x∗ ∈ X is a minimizer of
∑T

t=1 ft(x) over X, and (xt)
T
t=1 ⊂ X is the sequence

generated by a learning algorithm. Although Theorem 4.1 in [8] indicates that

Adam [8, Algorithm 1], [2, Algorithm 8.7] (algorithm (6)) is such that there exists a

positive real number D such that R(T)/T ≤ D/
√
T , the proof of Theorem 4.1 in [8]

is incomplete [9, Theorem 1]. AMSGrad [9, Algorithm 2] (algorithm (9)) is such that

the following result holds [9, Theorem 4, Corollary 1]: Suppose that β1,t := β1λ
t−1

(β1, λ ∈ (0, 1)), γ := β1/
√
β2 < 1, and λt := α/

√
t (α > 0). Then, there exist

Iiduka Page 25 of 33

positive real numbers D̂i (i = 1, 2, 3) such that

R(T)

T
=

1

T

T∑
t=1

ft(xt)−
1

T

T∑
t=1

ft(x
∗)

≤ D̂1N

αβ̃1

√
T

+
β1D̂2

2β̃1(1− λ)2T
+

α
√
1 + lnT

β̃1
2
(1− γ)

√
1− β2T

N∑
i=1

∥g1:T,i∥,

where β̃1 := 1 − β1, gt := ∇xF (xt, ξt),
[6] and ∥g1:T,i∥ :=

√∑T
t=1 g

2
t,i ≤ D̂3

√
T .

Hence, with AMSGrad, there exists a positive real number D̂ such that

R(T)

T
=

1

T

T∑
t=1

ft(xt)−
1

T

T∑
t=1

ft(x
∗) ≤ D̂

√
1 + lnT

T
. (59)

We apply Algorithm 1 with λn := 1/nη (η ∈ [1/2, 1)) (see also algorithm (22)) to

Problem 3.1 for the special case where f(·) = E[fξ(·)] := (1/T)
∑T

t=1 ft(·), QHn :=

PX,Hn
(n ∈ N), Hn is defined by either (19) or (20), and C = X (see also problem

(21)). Then, Theorem 5.2 has the following corollary.

Corollary 5.2 Consider problem (21) and suppose that the assumptions in The-

orem 5.1 hold. Then, algorithm (22) satisfies that

lim inf
n→+∞

E

[
1

T

T∑
t=1

ft(xn)−
1

T

T∑
t=1

ft(x
∗)

]
≤ M̃

√
DN

1− β
β +

h2
⋆M̃

2

2(1− β)
λ,

lim sup
n→+∞

E

[
1

T

T∑
t=1

ft (x̃n)−
1

T

T∑
t=1

ft(x
∗)

]
≤ M̃

√
DN

1− β
β +

h2
⋆M̃

2

2(1− β)
λ,

where x̃n := (1/n)
∑n

k=1 xk and (xn)n∈N ⊂ X is the sequence in algorithm (22).

In contrast to Adam and AMSGrad with diminishing step-sizes, Corollary 5.2

indicates that algorithm (22) with constant step-sizes may approximate a solution

of problem (21).

Corollary 5.1 implies the following corollary.

Corollary 5.3 Suppose that the assumptions in Corollary 5.1 hold and λn :=

1/nη (η ∈ [1/2, 1]) and (βn)n∈N is such that
∑+∞

n=1 βn < +∞. Under η ∈ (1/2, 1],

algorithm (22) satisfies that

lim inf
n→+∞

E

[
T∑

t=1

ft(xn)−
T∑

t=1

ft(x
∗)

]
= 0.

Moreover, under η ∈ [1/2, 1), any accumulation point of (x̃n := (1/n)
∑n

k=1 xk)n∈N

almost surely belongs to the solution set of problem (21), and algorithm (22) achieves

[6]Since AMSGrad is applied to constrained convex optimization, in general,

limT→+∞ ∥g1:T,i∥ ̸= 0 and ∥g1:T,i∥ ≤ D̂3

√
T hold [8, Corollary 4.2].

Iiduka Page 26 of 33

the following rate of convergence:

E

[
T∑

t=1

ft (x̃n)−
T∑

t=1

ft(x
∗)

]
= O

(
1

n1−η

)
.

Proof For problem (21), Corollary 5.3 implies that 0 ≤ lim infn→+∞ E[f(xn)−f⋆] ≤
0 and 0 ≤ lim supn→+∞ E[f(x̃n) − f⋆] ≤ 0, where f := (1/T)

∑T
t=1 ft. The second

inequality guarantees that limn→+∞ E[f(x̃n)− f⋆] = 0. Let x̂ ∈ X be an arbitrary

accumulation point of (x̃n)n∈N ⊂ X. Since there exists (x̃ni)i∈N ⊂ (x̃n)n∈N such

that (x̃ni
)i∈N converges almost surely to x̂ ∈ X, the continuity of f ensures that

0 = limi→+∞ E[f(x̃ni) − f⋆] = E[f(x̂) − f⋆], i.e., x̂ ∈ X⋆. The rate of convergence

of (x̃n)n∈N is obtained from Corollary 5.1.

It is not guaranteed that xT defined by AMSGrad with λt := α/
√
t optimizes∑T

t=1 ft over X since (59) depends on a given parameter T , i.e.,

R(T)

T
≤ O

(√
1 + lnT

T

)
.

Meanwhile, Corollary 5.3 implies that any accumulation point of (x̃n)n∈N defined

by algorithm (22) with λn := 1/
√
n almost surely belongs to the set of minimizers

of
∑T

t=1 ft over X and (x̃n)n∈N achieves an O(1/
√
n) convergence rate, i.e.,

E

[
T∑

t=1

ft (x̃n)−
T∑

t=1

ft(x
∗)

]
= O

(
1√
n

)
.

5.3 Numerical Comparisons

In this section, we consider the classifier ensemble problem [18, Subsection 2.2.2],

[19, Subsection 3.2.2], [17, Problem II.1] (see problems (23) and (25) in Example 4.1

(ii)) and compare the performances of the learning methods based on the following

algorithms which used commonly β = 0.99 [9, Section 5] and αn = 1/2 (n ∈ N).
SG: Stochastic gradient algorithm (15) with λn ∈ [10−3/(n + 1), 1/(n + 1)] com-

puted by the Armijo line search algorithm [17, Algorithms 2 and 3, LS].

C1: Algorithm 1 with (19) and βn = λn = 10−1.

C2: Algorithm 1 with (19) and βn = λn = 10−3.

C3: Algorithm 1 with (20) and βn = λn = 10−1.

C4: Algorithm 1 with (20) and βn = λn = 10−3.

D1: Algorithm 1 with (19), βn = 0.9/2n, and λn = 10−1/
√
n+ 1.

D2: Algorithm 1 with (19), βn = 0.9/2n, and λn = 10−3/
√
n+ 1.

D3: Algorithm 1 with (19), βn = 0.9/2n, and λn ∈ [10−3/
√
n+ 1, 1/

√
n+ 1] com-

puted by the Armijo line search algorithm.

D4: Algorithm 1 with (20), βn = 0.9/2n, and λn = 10−1/
√
n+ 1.

D5: Algorithm 1 with (20), βn = 0.9/2n, and λn = 10−3/
√
n+ 1.

D6: Algorithm 1 with (20), βn = 0.9/2n, and λn ∈ [10−3/
√
n+ 1, 1/

√
n+ 1] com-

puted by the Armijo line search algorithm.

Iiduka Page 27 of 33

The step-size βn := 0.9/2n used in D1–D6 was based on [9, Section 5]. The numer-

ical results in [17] showed that the learning method based on SG performed better

than the existing methods in [19, (18)]. Therefore, we compare the performance

of the learning method based on SG with the ones of the learning methods based

on C1–D6. See Corollary 1 in [17], Theorems 5.2 and 5.3, and Corollary 5.1 for

convergence analyses of the above algorithms for solving problems (23) and (25).

The experiments used Mac Pro (Late 2013) with a 3.5 GHz 6-core Intel Xeon

E5 CPU, 32 GB 1866 MHz DDR3 memory, and macOS Catalina version 10.15.1

operating system. The algorithms used in the experiments were written in Python

3.7.5 with the NumPy 1.17.4 package. The experiments used the datasets from

LIBSVM [37] and the UCI Machine Learning Repository [38] for which information

is shown in Table 1. In these experiments, stratified 10-fold cross-validation for

the datasets was performed. For this validation, the StratifiedKFold class in the

scikit-learn 0.21.3 package was used. Ensembles of support vector classifiers were

constructed by the BaggingClassifier class in the scikit-learn 0.21.3 package.

The number of base estimators was set as the default value of the scikit-learn

package. For learning multiclass classification tasks with the classifiers used in the

experiments, the one-vs-the-rest multiclass classification strategy implemented as

the OneVsRestClassifier class in the scikit-learn 0.21.3 package was used. The

stopping condition for the algorithms used in the experiments was n = 100.

Table 1 Datasets used for classification

Dataset Classes Instances Attributes

1. australian 2 690 14
2. breast-cancer 2 683 10
3. diabetes 2 768 8
4. ionosphere 2 351 34
5. leukemia 2 72 7129
6. madelon 2 2600 500
7. splice 2 3175 60
8. iris 3 150 4
9. svmguide2 3 391 20
10. wine 3 178 13
11. vehicle 4 846 18
12. glass 6 214 9
13. segment 7 2310 19
14. digits 10 1797 64
15. usps 10 9298 256

Let us consider problem (23) and compare the performances of the sparsity learn-

ing methods based on the algorithms with QHn
defined by (24). Although we can

consider problem (25) and compare the performances of the sparsity and diversity

learning methods based on the algorithms with QHn
defined by (26), we omit the

details due to lack of space.[7]

Tables 2 and 3 show that the accuracy of the learning method based on SG was

almost the same as those of the learning methods based on C1, C2, C3, C4, D3, D4,

[7]We checked that the sparsity and diversity learning methods based on C1, C2,

C3, C4, D3, D4, and D6 with QHn defined by (26) perform better than the learning

method based on SG, as seen in the results (Tables 2, 3, 4, and 5) for ensemble

learning with sparsity.

Iiduka Page 28 of 33

Table 2 Classification accuracies (%) and elapsed times (s) for the sparsity learning methods
based on SG, C1, C2, C3, and C4 applied to the datasets in Table 1

SG C1 C2 C3 C4
acc. time acc. time acc. time acc. time acc. time

1 80.59 0.531 81.74 0.206 83.34 0.197 84.20 0.208 83.92 0.213
2 95.52 0.499 94.45 0.203 94.01 0.206 94.44 0.205 93.43 0.209
3 65.10 0.510 64.06 0.205 63.15 0.205 63.41 0.210 63.67 0.211
4 71.29 0.433 74.78 0.206 71.03 0.209 72.14 0.210 71.03 0.212
5 75.16 39.848 48.16 9.405 68.66 9.402 57.83 9.364 75.16 9.246
6 50.00 4.107 48.65 0.801 50.05 0.815 50.30 0.819 49.95 0.805
7 45.70 0.697 46.68 0.220 43.89 0.219 43.89 0.224 42.19 0.230
8 87.33 0.916 83.33 0.601 81.33 0.599 82.66 0.605 82.00 0.615
9 56.54 1.080 56.54 0.605 56.54 0.616 40.63 0.632 13.53 0.626

10 96.72 1.015 96.72 1.015 89.91 0.613 92.13 0.621 91.09 0.625
11 45.89 2.236 48.05 0.806 44.44 0.829 42.68 0.850 43.97 0.856
12 42.17 2.111 46.77 1.211 46.22 1.201 46.67 1.238 45.43 1.226
13 68.05 7.326 75.06 1.517 72.94 1.500 72.98 1.521 71.60 1.532
14 70.24 10.197 66.78 2.298 65.58 2.278 75.62 2.358 40.73 2.303
15 60.91 95.861 64.99 11.571 71.20 11.594 58.69 11.604 69.95 11.611

Ave. 67.41 11.158 66.04 2.030 66.82 2.032 65.22 2.045 62.51 2.035

and D6. These tables also show that the elapsed times for the proposed learning

methods were shorter than the elapsed times for the learning method based on SG.

The average accuracies and elapsed times of the existing learning method (SG)

were compared to the average accuracies and elapsed times of the proposed learn-

ing methods (C1–D6) by using an analysis of variance (ANOVA) test and Tukey-

Kramer’s honestly significant difference (HSD) test. The scipy.stats.f oneway

method in the SciPy library was used as the implementation of the ANOVA test, and

the statsmodels.stats.multicomp.pairwise tukeyhsdmethod in the StatsMod-

els package was used as the implementation of Tukey-Kramer’s HSD test. Recall

that the ANOVA test examines whether the hypothesis that the given groups have

the same population mean is rejected, whereas Tukey-Kramer’s HSD test can be

used to find specifically which pair has a significant difference in groups. The signif-

icance level was set at 5% (0.05) for the ANOVA and Tukey-Kramer’s HSD tests.

The p-value computed by the ANOVA test for the accuracies was about 4.09×10−19

(< 0.05). Table 4 indicates that the adjusted p-value between each of the learning

methods based on C1, C2, C3, C4, D3, D4, and D6 and the existing learning method

based on SG was greater than 0.05. This implies that the existing and proposed

methods based on C1, C2, C3, C4, D3, D4, and D6 had almost the same perfor-

mances in the sense of accuracy. The p-value computed by the ANOVA test for the

elapsed time was about 2.67 × 10−29 (< 0.05). Table 5 indicates that there is a

significant difference in the sense of the elapsed time between each of the proposed

methods and the existing method based on SG. Therefore, the proposed methods

ran significantly faster than the existing method based on SG.

6 Conclusion
In this paper, we proposed a stochastic approximation method based on adaptive

learning rate optimization algorithms for solving a convex stochastic optimization

problem over the fixed point set of a quasinonexpansive mapping. It also presented

Iiduka Page 29 of 33

Table 3 Classification accuracies (%) and elapsed times (s) for the sparsity learning methods
based on D1, D2, D3, D4, D5, and D6 applied to the datasets in Table 1

D1 D2 D3 D4 D5 D6
acc. time acc. time acc. time acc. time acc. time acc. time

1 77.84 0.210 82.75 0.207 83.92 0.298 82.47 0.210 83.33 0.213 83.78 0.229
2 95.52 0.180 89.76 0.206 94.44 0.287 93.57 0.206 91.81 0.208 94.15 0.254
3 27.86 0.202 51.17 0.206 64.32 0.280 56.76 0.212 59.11 0.209 64.06 0.237
4 76.45 0.187 71.03 0.200 71.58 0.312 71.32 0.213 71.01 0.212 71.86 0.267
5 39.00 9.383 54.00 9.365 46.16 9.697 51.5 9.525 66.16 9.584 68.66 10.190
6 49.90 0.795 51.35 0.822 50.20 1.068 50.8 0.805 49.65 0.849 50.00 0.974
7 43.49 0.222 43.08 0.225 43.60 0.352 44.39 0.223 42.49 0.229 43.48 0.298
8 63.33 0.607 74.66 0.600 84.66 0.780 77.33 0.621 78.66 0.613 81.33 0.690
9 25.01 0.615 39.24 0.612 56.54 0.722 16.79 0.625 23.28 0.629 56.54 0.694

10 62.47 0.592 69.50 0.603 91.55 0.823 88.71 0.630 94.53 0.616 91.65 0.717
11 29.28 0.841 32.14 0.829 40.94 1.150 40.08 0.835 37.49 0.843 43.86 1.006
12 22.38 1.221 25.62 1.205 45.80 1.617 31.02 1.234 33.95 1.246 49.02 1.469
13 50.95 1.497 41.47 1.507 72.25 2.182 67.44 1.527 53.03 1.527 76.66 1.937
14 64.78 2.304 34.18 2.322 66.33 3.319 74.17 2.356 37.78 2.358 66.40 3.079
15 32.06 11.604 46.01 11.585 67.63 13.472 62.63 11.620 55.46 11.671 66.20 13.259

Ave. 50.69 2.031 53.73 2.033 65.33 2.424 60.60 2.056 58.52 2.067 67.18 2.353

convergence analyses of the proposed method with constant and diminishing step-

sizes. The analyses confirm that any accumulation point of the sequence generated

by the proposed method almost surely belongs to the solution set of the stochas-

tic optimization problem in deep learning. We also compared the proposed algo-

rithm with the existing adaptive learning rate optimization algorithms and showed

that the proposed algorithm achieved an O(1/
√
n) convergence rate which was not

achieved for the existing adaptive learning rate optimization algorithms. Numerical

results for the classifier ensemble problems demonstrated that the proposed learning

methods achieve high accuracies faster than the existing learning method based on

the first-order algorithm. In particular, the proposed methods with constant step-

sizes or Armijo line search step-sizes solve the classifier ensemble problems faster

than the existing method based on the first-order algorithm.

Acknowledgements

The author would like to thank Professor Heinz Bauschke, Professor Yunier Bello-Cruz, Professor Radu Ioan Bot,

Professor Robert Csetnek, and Professor Alexander Zaslavski for giving me a chance to submit my paper to this

special issue. The author is sincerely grateful to Editor-in-Chief Yunier Bello-Cruz and the two anonymous reviewers

for helping him improve the original manuscript. The author thanks Hiroyuki Sakai for his input on the numerical

examples.

Funding

This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number

JP18K11184).

Availability of data and materials

Not applicable.

Competing interests

The author declares that he has no competing interests.

Authors’ contributions

HI developed the mathematical methods. HI discussed the results and contributed to the final manuscript.

Author details

Department of Computer Science, Meiji University, Kanagawa, Japan.

Iiduka Page 30 of 33

References
1. Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press,

Cambridge, New York (2008)

2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

3. Robbins, H., Monro, S.: A stochastic approximation method. The Annals of Mathematical Statistics 22,
400–407 (1951)

4. Nedić, A., Lee, S.: On stochastic subgradient mirror-descent algorithm with weighted averaging. SIAM Journal

on Optimization 24, 84–107 (2014)

5. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic

programming. SIAM Journal on Optimization 19, 1574–1609 (2009)

6. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite

optimization I: A generic algorithmic framework. SIAM Journal on Optimization 22, 1469–1492 (2012)

7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization.

Journal of Machine Learning Research 12, 2121–2159 (2011)

8. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. International Conference on Learning

Representations, 1–15 (2015)

9. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. Proceedings of The International

Conference on Learning Representations, 1–23 (2018)

10. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer,

New York (2011)

11. Berinde, V.: Iterative Approximation of Fixed Points. Springer, Berlin (2007)

12. Halpern, B.: Fixed points of nonexpanding maps. Bulletin of the American Mathematical Society 73, 957–961
(1967)

13. Krasnosel’skĭı, M.A.: Two remarks on the method of successive approximations. Uspekhi Matematicheskikh

Nauk 10, 123–127 (1955)

14. Mann, W.R.: Mean value methods in iteration. Proceedings of American Mathematical Society 4, 506–510
(1953)

15. Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive

semigroups. Journal of Mathematical Analysis and Applications 279, 372–379 (2003)

16. Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Archiv der Mathematik 58, 486–491
(1992)

17. Iiduka, H.: Stochastic fixed point optimization algorithm for classifier ensemble. IEEE Transactions on

Cybernetics 50, 4370–4380 (2020)

18. Yin, X.C., Huang, K., Hao, H.W., Iqbal, K., Wang, Z.B.: A novel classifier ensemble method with sparsity and

diversity. Neurocomputing 134, 214–221 (2014)

19. Yin, X.C., Huang, K., Yang, C., Hao, H.W.: Convex ensemble learning with sparsity and diversity. Information

Fusion 20, 49–58 (2014)

20. Rockafellar, R.T.: Convex Analysis. Princeton University Press, New Jersey (1970)

21. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New

York (2000)

22. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in

Hilbert space. Mathematics of Operations Research 26, 248–264 (2001)

23. Bauschke, H.H., Chen, J.: A projection method for approximating fixed points of quasi nonexpansive mappings

without the usual demiclosedness condition. Journal of Nonlinear and Convex Analysis 15, 129–135 (2014)

24. Vasin, V.V., Ageev, A.L.: Ill-posed Problems with a Priori Information. V.S.P. Intl Science, Utrecht (1995)

25. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, 2nd

edn. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2014)

26. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature

323, 533–536 (1986)

27. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite

optimization II: Shrinking procedures and optimal algorithms. SIAM Journal on Optimization 23, 2061–2089
(2013)

28. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics.

Cambridge University Press, New York (1990)

29. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New

York and Basel (1984)

30. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

31. Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of

fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel

Algorithms for Feasibility and Optimization and Their Applications, pp. 473–504. Elsevier, New York (2001)

32. Yamada, I., Ogura, N.: Hybrid steepest descent method for variational inequality problem over the fixed point

set of certain quasi-nonexpansive mappings. Numerical Functional Analysis and Optimization 25, 619–655
(2004)

33. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

34. Wanka, G., Wilfer, O.: Formulae of epigraphical projection for solving minimax location problems. Pacific

Journal of Optimization 16, 289–313 (2020)

35. Nedić, A., Ozdaglar, A.: Approximate primal solutions and rate analysis for dual subgradient methods. SIAM

Journal on Optimization 19, 1757–1780 (2009)

36. Iiduka, H.: Distributed optimization for network resource allocation with nonsmooth utility functions. IEEE

Transactions on Control of Network Systems 6, 1354–1365 (2019)

37. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent

Iiduka Page 31 of 33

Systems and Technology 2, 27–12727 (2011)

38. Dua, D., Graff, C.: UCI Machine learning repository. School Inf. Comput. Sci., Univ. California at Irvine, Irvine,

CA, USA (2019)

Iiduka Page 32 of 33

Table 4 Multiple comparison for accuracies for the sparsity learning methods applied to the
datasets in Table 1 using Tukey-Kramer’s HSD test at the 5% significance level (“meandiffs”
indicates the pairwise mean differences between Groups 1 and 2, “p-adj” indicates the adjusted
p-value, and “Lower” (resp. “Upper”) indicates the lower (resp. upper) value of the confidence
interval for the pairwise mean differences.)

Group 1 Group 2 meandiffs p-adj Lower Upper Reject

C1 C2 0.7823 0.9 -6.969 8.5335 FALSE
C1 C3 -0.8189 0.9 -8.5702 6.9323 FALSE
C1 C4 -3.5273 0.9 -11.2785 4.2239 FALSE
C1 D1 -15.4512 0.001 -23.2024 -7.6999 TRUE
C1 D2 -12.3071 0.001 -20.0583 -4.5559 TRUE
C1 D3 -0.7095 0.9 -8.4607 7.0417 FALSE
C1 D4 -5.4384 0.4642 -13.1897 2.3128 FALSE
C1 D5 -7.5201 0.0668 -15.2713 0.2311 FALSE
C1 D6 1.1391 0.9 -6.6122 8.8903 FALSE
C1 SG 1.3916 0.9 -6.3596 9.1428 FALSE
C2 C3 -1.6012 0.9 -9.3524 6.15 FALSE
C2 C4 -4.3096 0.7575 -12.0608 3.4416 FALSE
C2 D1 -16.2334 0.001 -23.9847 -8.4822 TRUE
C2 D2 -13.0894 0.001 -20.8406 -5.3382 TRUE
C2 D3 -1.4918 0.9 -9.243 6.2594 FALSE
C2 D4 -6.2207 0.2564 -13.9719 1.5305 FALSE
C2 D5 -8.3023 0.0241 -16.0536 -0.5511 TRUE
C2 D6 0.3568 0.9 -7.3944 8.108 FALSE
C2 SG 0.6093 0.9 -7.1419 8.3605 FALSE
C3 C4 -2.7084 0.9 -10.4596 5.0428 FALSE
C3 D1 -14.6322 0.001 -22.3834 -6.881 TRUE
C3 D2 -11.4882 0.001 -19.2394 -3.737 TRUE
C3 D3 0.1094 0.9 -7.6418 7.8606 FALSE
C3 D4 -4.6195 0.6775 -12.3707 3.1317 FALSE
C3 D5 -6.7011 0.1642 -14.4524 1.0501 FALSE
C3 D6 1.958 0.9 -5.7932 9.7092 FALSE
C3 SG 2.2105 0.9 -5.5407 9.9617 FALSE
C4 D1 -11.9238 0.001 -19.6751 -4.1726 TRUE
C4 D2 -8.7798 0.0121 -16.531 -1.0286 TRUE
C4 D3 2.8178 0.9 -4.9334 10.569 FALSE
C4 D4 -1.9111 0.9 -9.6623 5.8401 FALSE
C4 D5 -3.9928 0.8393 -11.744 3.7585 FALSE
C4 D6 4.6664 0.6654 -3.0848 12.4176 FALSE
C4 SG 4.9189 0.6002 -2.8323 12.6701 FALSE
D1 D2 3.144 0.9 -4.6072 10.8953 FALSE
D1 D3 14.7416 0.001 6.9904 22.4929 TRUE
D1 D4 10.0127 0.0016 2.2615 17.7639 TRUE
D1 D5 7.9311 0.0398 0.1799 15.6823 TRUE
D1 D6 16.5902 0.001 8.839 24.3414 TRUE
D1 SG 16.8427 0.001 9.0915 24.594 TRUE
D2 D3 11.5976 0.001 3.8464 19.3488 TRUE
D2 D4 6.8687 0.1379 -0.8825 14.6199 FALSE
D2 D5 4.787 0.6343 -2.9642 12.5383 FALSE
D2 D6 13.4462 0.001 5.6949 21.1974 TRUE
D2 SG 13.6987 0.001 5.9475 21.4499 TRUE
D3 D4 -4.7289 0.6493 -12.4801 3.0223 FALSE
D3 D5 -6.8106 0.1467 -14.5618 0.9407 FALSE
D3 D6 1.8486 0.9 -5.9027 9.5998 FALSE
D3 SG 2.1011 0.9 -5.6501 9.8523 FALSE
D4 D5 -2.0816 0.9 -9.8329 5.6696 FALSE
D4 D6 6.5775 0.1849 -1.1737 14.3287 FALSE
D4 SG 6.83 0.1437 -0.9212 14.5812 FALSE
D5 D6 8.6591 0.0145 0.9079 16.4104 TRUE
D5 SG 8.9117 0.0099 1.1604 16.6629 TRUE
D6 SG 0.2525 0.9 -7.4987 8.0037 FALSE

Iiduka Page 33 of 33

Table 5 Multiple comparison for elapsed time for the sparsity learning methods applied to the
datasets in Table 1 using Tukey-Kramer’s HSD test at the 5% significance level (“meandiffs”
indicates the pairwise mean differences between Groups 1 and 2, “p-adj” indicates the adjusted
p-value, and “Lower” (resp. “Upper”) indicates the lower (resp. upper) value of the confidence
interval for the pairwise mean differences.)

Group 1 Group 2 meandiffs p-adj Lower Upper Reject

C1 C2 0.0019 0.9 -3.0351 3.0389 FALSE
C1 C3 0.0142 0.9 -3.0227 3.0512 FALSE
C1 C4 0.0043 0.9 -3.0327 3.0413 FALSE
C1 D1 0.0003 0.9 -3.0367 3.0372 FALSE
C1 D2 0.0026 0.9 -3.0344 3.0395 FALSE
C1 D3 0.3937 0.9 -2.6433 3.4307 FALSE
C1 D4 0.0258 0.9 -3.0111 3.0628 FALSE
C1 D5 0.0366 0.9 -3.0003 3.0736 FALSE
C1 D6 0.323 0.9 -2.714 3.3599 FALSE
C1 SG 9.1275 0.001 6.0905 12.1645 TRUE
C2 C3 0.0123 0.9 -3.0246 3.0493 FALSE
C2 C4 0.0024 0.9 -3.0346 3.0394 FALSE
C2 D1 -0.0016 0.9 -3.0386 3.0353 FALSE
C2 D2 0.0007 0.9 -3.0363 3.0376 FALSE
C2 D3 0.3918 0.9 -2.6452 3.4288 FALSE
C2 D4 0.0239 0.9 -3.013 3.0609 FALSE
C2 D5 0.0347 0.9 -3.0022 3.0717 FALSE
C2 D6 0.3211 0.9 -2.7159 3.358 FALSE
C2 SG 9.1256 0.001 6.0886 12.1626 TRUE
C3 C4 -0.0099 0.9 -3.0469 3.027 FALSE
C3 D1 -0.014 0.9 -3.051 3.023 FALSE
C3 D2 -0.0117 0.9 -3.0486 3.0253 FALSE
C3 D3 0.3795 0.9 -2.6575 3.4164 FALSE
C3 D4 0.0116 0.9 -3.0254 3.0485 FALSE
C3 D5 0.0224 0.9 -3.0146 3.0593 FALSE
C3 D6 0.3087 0.9 -2.7282 3.3457 FALSE
C3 SG 9.1132 0.001 6.0763 12.1502 TRUE
C4 D1 -0.004 0.9 -3.041 3.0329 FALSE
C4 D2 -0.0017 0.9 -3.0387 3.0352 FALSE
C4 D3 0.3894 0.9 -2.6476 3.4264 FALSE
C4 D4 0.0215 0.9 -3.0155 3.0585 FALSE
C4 D5 0.0323 0.9 -3.0046 3.0693 FALSE
C4 D6 0.3187 0.9 -2.7183 3.3556 FALSE
C4 SG 9.1232 0.001 6.0862 12.1602 TRUE
D1 D2 0.0023 0.9 -3.0347 3.0393 FALSE
D1 D3 0.3935 0.9 -2.6435 3.4304 FALSE
D1 D4 0.0256 0.9 -3.0114 3.0625 FALSE
D1 D5 0.0364 0.9 -3.0006 3.0733 FALSE
D1 D6 0.3227 0.9 -2.7143 3.3597 FALSE
D1 SG 9.1272 0.001 6.0903 12.1642 TRUE
D2 D3 0.3911 0.9 -2.6458 3.4281 FALSE
D2 D4 0.0232 0.9 -3.0137 3.0602 FALSE
D2 D5 0.0341 0.9 -3.0029 3.071 FALSE
D2 D6 0.3204 0.9 -2.7166 3.3574 FALSE
D2 SG 9.1249 0.001 6.088 12.1619 TRUE
D3 D4 -0.3679 0.9 -3.4049 2.6691 FALSE
D3 D5 -0.3571 0.9 -3.3941 2.6799 FALSE
D3 D6 -0.0707 0.9 -3.1077 2.9662 FALSE
D3 SG 8.7338 0.001 5.6968 11.7707 TRUE
D4 D5 0.0108 0.9 -3.0262 3.0478 FALSE
D4 D6 0.2972 0.9 -2.7398 3.3341 FALSE
D4 SG 9.1017 0.001 6.0647 12.1386 TRUE
D5 D6 0.2863 0.9 -2.7506 3.3233 FALSE
D5 SG 9.0909 0.001 6.0539 12.1278 TRUE
D6 SG 8.8045 0.001 5.7676 11.8415 TRUE

