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Abstract: The goal of this article is to train deep neural networks that accelerate useful adaptive1

learning rate optimization algorithms such as AdaGrad, RMSProp, Adam, and AMSGrad. To2

reach this goal, we devise an iterative algorithm combining the existing adaptive learning rate3

optimization algorithms with conjugate gradient-like methods, which are useful for constrained4

optimization. Convergence analyses show that the proposed algorithm with a small constant5

learning rate approximates a stationary point of a nonconvex optimization problem in deep learning.6

Furthermore, it is shown that the proposed algorithm with diminishing learning rates converges to7

a stationary point of the nonconvex optimization problem. The convergence and performance of8

the algorithm are demonstrated through numerical comparisons with the existing adaptive learning9

rate optimization algorithms for image and text classification. The numerical results show that the10

proposed algorithm with a constant learning rate is superior for training neural networks.11

Keywords: adaptive learning rate optimization algorithms; conjugate gradient-like method; deep12

neural network; nonconvex optimization13

1. Introduction14

Deep neural networks are used for many tasks, such as natural language processing, computer15

vision, and text and image classification (see also [1–3] for applications of neural networks), and a16

number of algorithms have been presented to tune the model parameters of such networks. The17

appropriate parameters are found by solving nonconvex stochastic optimization problems. In18

particular, the algorithms solve these problems in order to adapt the learning rates of the model19

parameters. Accordingly, they are called adaptive learning rate optimization algorithms [4, Subchapter20

8.5], and they include AdaGrad [5], RMSProp [4, Algorithm 8.5], Adam [6], and AMSGrad [7].21

Recently, reference [8] preformed convergence analyses on adaptive learning rate optimization22

algorithms for constant learning rates and diminishing learning rates. The convergence analyses23

indicated that the algorithms with sufficiently small constant learning rates approximate stationary24

points of the problems [8, Theorem 3.1]. This implies that useful algorithms, such as Adam and25

AMSGrad, can use constant learning rates to solve the nonconvex stochastic optimization problems26

in deep learning, in contrast to the results in [6] and [7] that presented only analyses assuming the27

convexity conditions of objective functions for diminishing learning rates. The analyses also indicated28

that the algorithms with diminishing learning rates converge to stationary points of the problems29

and achieve a certain convergence rate [8, Theorem 3.2]. Numerical comparisons showed that the30

algorithms with constant learning rates perform better than the ones with diminishing learning rates.31
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Meanwhile, conjugate gradient methods are useful for unconstrained nonconvex deterministic32

optimization (see [9] for details on conjugate gradient methods). These methods use the conjugate33

gradient direction (see also (2) for the definition of the conjugate gradient direction with the34

Fletcher-Reeves formula), and they accelerate the steepest descent method. Conjugate gradient35

methods converge globally and generate the descent direction. In particular, the Hager-Zhang,36

Polak-Ribière-Polyak, and Hestenes-Stiefel methods have efficient numerical performance [9]. It seems37

that conjugate gradient methods could be applied to constrained optimization, because they might38

accelerate the existing methods for constrained optimization. However, the inconvenient possibility39

that the conjugate gradient methods may not converge to solutions to constrained optimization40

problems [10, Proposition 3.2] means that we cannot apply them directly. Actually, the numerical41

results in [10] showed that the conjugate gradient methods with conventional formulas, such as the42

Fletcher-Reeves, Polak-Ribière-Polyak, and Hestenes-Stiefel formulas, do not always converge to43

solutions to constrained optimization problems.44

The conjugate gradient direction has been modified so that it can be applied to constrained45

optimization. The modified direction is called the conjugate gradient-like direction [10–14], and it is46

obtained by replacing the formula used for finding the conventional conjugate gradient direction with a47

positive real sequence depending on the number of iterations (see (1) for the definition of the conjugate48

gradient-like direction). The conjugate gradient-like method with the conjugate gradient-like direction can49

be applied to constrained convex deterministic optimization. In particular, the conjugate gradient-like50

method converges to solutions to constrained convex deterministic optimization problems when the51

step sizes (which are called learning rates) are diminishing [10, Theorem 3.1]. Moreover, the numerical52

results in [10] showed that it converges faster than the existing steepest descent method.53

Roughly speaking, the existing adaptive learning rate optimization algorithms [4, Subchapter 8.5]54

are first-order methods using the steepest descent direction of an observed function at each iteration.55

Accordingly, using the conjugate gradient-like method would be useful to accelerate these algorithms.56

Hence, in this article, we propose an iterative method combining the existing adaptive learning rate57

optimization algorithms [4, Subchapter 8.5] with the conjugate gradient-like method [10–14].58

This article provides two convergence analyses. The first analysis shows that with a small constant59

learning rate, the proposed algorithm approximates a stationary point of a nonconvex optimization60

problem in deep learning (Theorem 1). The second analysis shows that with diminishing learning rates,61

it converges to a stationary point of the nonconvex optimization problem (Theorem 2). The convergence62

and performance of the proposed algorithm are examined through numerical comparisons with the63

existing adaptive learning rate optimization algorithms for image and text classification. The numerical64

results show that the proposed algorithm with a constant learning rate is superior for training neural65

networks, while the one with diminishing learning rates is not good for training neural networks.66

This article is organized as follows. Section 2 gives the mathematical preliminaries and states the67

main problem. Section 3 presents the proposed algorithm for solving the main problem and analyzes68

its convergence. Section 4 numerically compares the behaviors of the proposed learning algorithms69

with those of the existing ones. Section 5 discusses the relationship between the previously reported70

results and the results in Sections 3 and 4. Section 6 concludes the paper with a brief summary.71

2. Mathematical Preliminaries72

2.1. Notation and definitions73

N denotes the set of all positive integers and zero. Rd denotes a d-dimensional Euclidean space74

with inner product 〈·, ·〉, which induces the norm ‖ · ‖. Sd denotes the set of d× d symmetric matrices,75

i.e., Sd = {X ∈ Rd×d : X = X>}. Sd
++ denotes the set of d× d symmetric positive-definite matrices, i.e.,76

Sd
++ = {X ∈ Sd : X � O}. Dd denotes the set of d× d diagonal matrices, i.e., Dd = {X ∈ Rd×d : X =77

diag(xi), xi ∈ R (i = 1, 2, . . . , d)}. A� B denotes the Hadamard product of matrices A and B. For all78

x := (xi) ∈ Rd, we have x� x := (x2
i ) ∈ Rd.79



Version October 28, 2020 submitted to Journal Not Specified 3 of 26

Given H ∈ Sd
++, the H-inner product of Rd and the H-norm are defined for all x, y ∈ Rd by80

〈x, y〉H := 〈x, Hy〉 and ‖x‖2
H := 〈x, Hx〉.81

The metric projection [15, Subchapter 4.2, Chapter 28] onto a nonempty, closed convex set X82

(⊂ Rd), denoted by PX, is defined for all x ∈ Rd by PX(x) ∈ X and ‖x− PX(x)‖ = infy∈X ‖x− y‖.83

PX satisfies the nonexpansivity condition, i.e., ‖PX(x)− PX(y)‖ ≤ ‖x− y‖ (x, y ∈ Rd), and satisfies84

Fix(PX) := {x ∈ Rd : x = PX(x)} = X [15, Proposition 4.8, (4.8)]. The metric projection onto X85

under the H-norm is denoted by PX,H . When X is an affine subspace, a half-space, or a hyperslab, the86

projection onto X can be computed within a finite number of arithmetic operations [15, Chapter 28].87

E[X] denotes the expectation of a random variable X. The history of the process ξ0, ξ1, . . . up88

to time n is denoted by ξ [n] = (ξ0, ξ1, . . . , ξn). For a random process ξ0, ξ1, . . ., E[X|ξ [n]] denotes the89

conditional expectation of X given ξ [n] = (ξ0, ξ1, . . . , ξn). Unless stated otherwise, all relations between90

random variables hold almost surely.91

2.2. Stationary point problem associated with nonconvex optimization problem92

Let us consider the following problem [8] (see, e.g., Subchapter 1.3.1 in [16] for details on stationary93

point problems):94

Problem 1. Assume that95

(A1) X ⊂ Rd is a nonempty, closed convex set onto which the projection can be easily computed;96

(A2) f : Rd → R, which is defined for all x ∈ Rd by f (x) := E[F(x, ξ)], is well defined, where F(·, ξ) is97

continuously differentiable for almost every ξ ∈ Ξ, where ξ ∈ Ξ is a random vector whose probability98

distribution P is supported on a set Ξ ⊂ Rd1 .99

Then, we would like to find a stationary point x? of the problem of minimizing f over X, i.e.,

x? ∈ X? := {x? ∈ X : 〈x− x?,∇ f (x?)〉 ≥ 0 (x ∈ X)} ,

where ∇ f denotes the gradient of f .100

We can see that, if X = Rd, then X? = {x? ∈ Rd : ∇ f (x?) = 0} and that, if f is convex, then101

x? ∈ X? is a global minimizer of f over X [16, Subchapter 1.3.1].102

Problem 1 is examined under the following conditions [8].103

(C1) There is an independent and identically distributed sample ξ0, ξ1, . . . of realizations of the random104

vector ξ;105

(C2) There is an oracle which, for a given input point (x, ξ) ∈ Rd × Ξ, returns a stochastic gradient106

G(x, ξ) such that E[G(x, ξ)] = ∇ f (x);107

(C3) There exists a positive number M such that, for all x ∈ X, E[‖G(x, ξ)‖2] ≤ M2.108

3. Conjugate Gradient-like Method109

Algorithm 1 is a method for solving Problem 1 under (C1)–(C3).110

First, we would like to emphasize that Algorithm 1 uses a conjugate gradient-like direction [10–13]
(see step 3 in Algorithm 1) defined by

γn = γ ∈
[

0,
1
2

]
or

1
n

, Gn = G(xn, ξn)− γnGn−1. (1)

The direction (1) differs from a conventional conjugate gradient direction using, for example, the
Fletcher-Reeves formula,

γFR
n =

‖G(xn, ξn)‖2

‖G(xn−1, ξn−1)‖2 , Gn = G(xn, ξn)− γFR
n Gn−1. (2)
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Algorithm 1 Conjugate gradient-like method for solving Problem 1
Require: (αn)n∈N ⊂ (0, 1), (βn)n∈N ⊂ [0, 1), (γn)n∈N ⊂ [0, 1/2], δ ∈ [0, 1)

1: n← 0, x0,G−1, m−1 ∈ Rd,H0 ∈ Sd
++ ∩Dd

2: loop
3: Gn := G(xn, ξn)− γnGn−1
4: mn := βnmn−1 + (1− βn)Gn
5: m̂n := (1− δn+1)−1mn
6: Hn ∈ Sd

++ ∩Dd

7: Find dn ∈ Rd that solves Hnd = −m̂n.
8: xn+1 := PX,Hn(xn + αndn)
9: n← n + 1

10: end loop

Although conventional conjugate gradient methods are powerful tools for solving unconstrained111

smooth nonconvex optimization (see, e.g., [9] for details on conjugate gradient methods), iterative112

methods with the conjugate gradient-like directions are useful for solving constrained smooth113

optimization problems [10–13] (see also Section 1 for details). Since Problem 1 is a constrained114

optimization problem, we will focus on using conjugate gradient-like directions.115

We can see that Algorithm 1 with γn = 0 (n ∈ N) coincides with the existing algorithm in [8]
defined by 

Gn := G(xn, ξn),

mn := βnmn−1 + (1− βn)Gn,

m̂n := (1− δn+1)−1mn,

xn+1 := PX,Hn(xn − αnH
−1
n m̂n),

(3)

where Hn ∈ Sd
++ ∩Dd. We can also show that algorithm (3) (i.e., Algorithm 1 with γn = 0) includes

AMSGrad [7] and Adam [6] by referring to [8, Section 3]. For example, consider Hn and vn (n ∈ N)
defined for all n ∈ N by

vn := ζvn−1 + (1− ζ)G(xn, ξn)� G(xn, ξn),

v̂n = (v̂n,i) := (max{v̂n−1,i, vn,i}) ,

Hn := diag
(√

v̂n,i

)
,

(4)

where v−1 = v̂−1 = 0 ∈ Rd and ζ ∈ [0, 1). Then, algorithm (3) with (4) and δ = 0 is the AMSGrad
algorithm. When Hn and vn (n ∈ N) are defined for all n ∈ N by

vn := ζvn−1 + (1− ζ)G(xn, ξn)� G(xn, ξn),

v̄n := (1− ζn+1)−1vn,

v̂n = (v̂n,i) := (max{v̂n−1,i, v̄n,i}) ,

Hn := diag
(√

v̂n,i

)
,

(5)

algorithm (3) with (5) resembles the Adam algorithm.1116

1 The original Adam uses Hn := diag(
√

v̄n,i) and does not always converge [7, Theorems 1–3]. We use Hn := diag(
√

v̂n,i) to
guarantee its convergence (see Theorems 1 and 2 for the convergence of Algorithm 1).
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For example, let us consider Algorithm 1 with (4) and δ = 0, i.e,

Gn := G(xn, ξn)− γnGn−1,

mn := βnmn−1 + (1− βn)Gn,

vn := ζvn−1 + (1− ζ)G(xn, ξn)� G(xn, ξn),

v̂n = (v̂n,i) := (max{v̂n−1,i, vn,i}) ,

Hn := diag
(√

v̂n,i
)

,

xn+1 := PX,Hn(xn − αnH
−1
n mn).

(6)

From the above discussion, algorithm (6) with γn = 0 coincides with AMSGrad. We can see that117

algorithm (6) uses a conjugate gradient-like direction Gn = G(xn, ξn) − γnGn−1, while AMSGrad118

(algorithm (3) with (4)) uses a gradient direction Gn = G(xn, ξn).119

The convergence analyses of Algorithm 1 assume the following conditions.120

Assumption 1. The sequence (Hn)n∈N ⊂ Sd
++ ∩Dd, denoted by Hn := diag(hn,i), in Algorithm 1 satisfies121

the following conditions:122

(A3) hn+1,i ≥ hn,i almost surely for all n ∈ N and all i = 1, 2, . . . , d;123

(A4) For all i = 1, 2, . . . , d, a positive number Bi exists such that sup{E[hn,i] : n ∈ N} ≤ Bi.124

Moreover,125

(A5) D := maxi=1,2,...,d sup{(xi − yi)
2 : (xi), (yi) ∈ X} < +∞.126

Assumption (A5) holds under the boundedness condition of X, which is assumed in [17, p.1574]127

and [7, p.2]. In [8, Section 3], it is shown that Hn and vn defined by (4) or (5) satisfies (A3) and (A4).128

3.1. Constant learning rate rule129

The following is the convergence analysis of Algorithm 1 with a constant learning rate. Theorem130

1 can be inferred by referring to the proof of Theorem 3.1 in [8]. The proof of Theorem 1 is given in131

Appendix A.132

Theorem 1. Suppose that (A1)–(A5) and (C1)–(C3) hold and (xn)n∈N is the sequence generated by Algorithm
1 with αn := α, βn := β, and γn := γ (n ∈ N). Then, for all x ∈ X,

lim sup
n→+∞

E [〈x− xn,∇ f (xn)〉] ≥ −
B̃2M̃2

2b̃δ̃2
α−
√

DdM̃
b̃δ̃

β− 2
√

DdM̂
δ̃

γ,

where δ̃ := 1 − δ, b̃ := 1 − β, M is defined as in (C3), M̂2 := max{M2, ‖G−1‖2}, M̃2 :=133

max{‖m−1‖2, 4M̂2}, D is defined as in (A5), and B̃ := sup{maxi=1,2,...,d h−1/2
n,i : n ∈ N} < +∞.134

Theorem 1 shows that using a small constant learning rate approximates a solution to Problem 1.135

The result for γ := 0 coincides with Theorem 3.1 in [8].136

We have the following proposition for convex stochastic optimization.137

Proposition 1. Suppose that (A1)–(A5) and (C1)–(C3) hold, F(·, ξ) is convex for almost every ξ ∈ Ξ, and
(xn)n∈N is the sequence generated by Algorithm 1 with αn := α, βn := β, and γn := γ (n ∈ N). Then,

lim inf
n→+∞

E [ f (xn)− f ?] ≤ B̃2M̃2

2b̃δ̃2
α +

√
DdM̃
b̃δ̃

β +
2
√

DdM̂
δ̃

γ,

where f ? denotes the optimal value of the problem of minimizing f over X, and δ̃, b̃, M, M̂, M̃, D, and B̃ are138

defined as in Theorem 1.139
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The previously reported results in [7] showed that AMSGrad, which is an example of Algorithm 1
(see algorithm (3) with (4) and δ = 0), ensures that there exists a positive real number B such that

R(T)
T

=
1
T

(
T

∑
t=1

F(xt, ξt)− f ?
)
≤ B

√
1 + ln T

T
, (7)

where T is the number of training examples and F(·, ξ) is convex for almost every ξ ∈ Ξ. Inequality140

(7) indicates that the value R(T)/T generated by AMSGrad has an upper bound; however, it is not141

guaranteed that AMSGrad solves Problem 1. Meanwhile, Proposition 1 shows that Algorithm 1, which142

includes Adam and AMSGrad, can approximate a global minimizer of f by using a small constant143

learning rate.144

3.2. Diminishing learning rate rule145

The following is the convergence analysis of Algorithm 1 with diminishing learning rates.146

Theorem 2 can be proven by referring to the proof of Theorem 3.2 in [8]. The proof of Theorem147

2 is given in Appendix A.148

Theorem 2. Suppose that (A1)–(A5) and (C1)–(C3) hold and (xn)n∈N is the sequence generated by Algorithm
1 with αn, βn, and γn (n ∈ N)2 satisfying ∑+∞

n=0 αn = +∞, ∑+∞
n=0 α2

n < +∞, ∑+∞
n=0 αnβn < +∞, and

∑+∞
n=0 αnγn < +∞. Then, for all x ∈ X,

lim sup
n→+∞

E [〈x− xn,∇ f (xn)〉] ≥ 0. (8)

Moreover, suppose that αn := 1/nη , βn := βn, γn := γn or 1/nκ , where η ∈ [1/2, 1), κ > 1− η, and
β, γ ∈ (0, 1). Then, Algorithm 1 achieves the following convergence rate:

1
n

n

∑
k=1

E [〈x− xk,∇ f (xk)〉] ≥


−O

(√
1 + ln n

n

)
if η = 1

2 ,

−O
(

1
n1−η

)
if η ∈

(
1
2 , 1
)

.

Inequality (8) implies that there exists a subsequence (xnj)j∈N of (xn)n∈N such that (xnj)j∈N
converges to x? and, for all x ∈ X,

lim
j→+∞

E
[
〈x− xnj ,∇ f (xnj)〉

]
= lim sup

n→+∞
E [〈x− xn,∇ f (xn)〉] ≥ 0,

which implies that x? satisfies 〈x− x?,∇ f (x?)〉 ≥ 0 (x ∈ X); i.e., x? is a solution to Problem 1.149

Theorem 2 leads to the following proposition, which indicates that Algorithm 1 converges to a150

global minimizer of f when F(·, ξ) is convex for almost every ξ ∈ Ξ.151

Proposition 2. Suppose that (A1)–(A5) and (C1)–(C3) hold, F(·, ξ) is convex for almost every ξ ∈ Ξ,
and (xn)n∈N is the sequence generated by Algorithm 1 with αn, βn, and γn satisfying ∑+∞

n=0 αn = +∞,
∑+∞

n=0 α2
n < +∞, ∑+∞

n=0 αnβn < +∞, and ∑+∞
n=0 αnγn < +∞. Then,

lim inf
n→+∞

E [ f (xn)− f ?] = 0,

2 Let αn := 1/nη , βn := βn, γn := γn or 1/nκ , where η ∈ (1/2, 1], κ > 1− η, and β, γ ∈ (0, 1). Then, ∑+∞
n=1 αn = +∞,

∑+∞
n=1 α2

n < +∞, ∑+∞
n=1 αn βn < +∞, and ∑+∞

n=1 αnγn < +∞ hold. Since (γn)n∈N converges to 0, there exists k0 ∈ N such that,
for all n ≥ k0, γn ≤ 1/2.
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where f ? denotes the optimal value of the problem of minimizing f over X. Moreover, suppose that αn := 1/nη ,
βn := βn, γn := γn or 1/nκ , where η ∈ [1/2, 1), κ > 1− η, and β, γ ∈ (0, 1). Then, any accumulation
point of (x̃n)n∈N defined by x̃n := (1/n)∑n

k=1 xk almost surely belongs to the solution set X?, and Algorithm
1 achieves the following convergence rate:

E [ f (x̃n)− f ?] =


O
(√

1 + ln n
n

)
if η = 1

2 ,

O
(

1
n1−η

)
if η ∈

(
1
2 , 1
)

.

4. Numerical Experiments152

The experiments used a fast scalar computation server 3 at Meiji University. The environment has153

two Intel(R) Xeon(R) Gold 6148 (2.4 GHz, 20 cores) CPUs, an NVIDIA Tesla V100 (16GB, 900Gbps)154

GPU, and a Red Hat Enterprise Linux 7.6 operating system. The experimental code was written in155

Python 3.8.2, and we used the NumPy 1.19.1 package and PyTorch 1.5.0 package.156

We compared the existing algorithms, such as the momentum method [18, (9)], [19, Section 2],157

AdaGrad [5], RMSProp [4, Algorithm 8.5], Adam [6], and AMSGrad [7] in torch.optim4 using the158

default values and learning rate 10−3, with Algorithm 1 defined as follows:159

Algorithm 1 with a constant learning rate (Algorithm 1 with γn = 0, such as Momentum-Ci,160

Adam-Ci, and AMSGrad-Ci (i = 1, 2, 3), is Algorithm 1 in [8]):161

• Momentum-C1: Algorithm 1 with δ = 0, Hn = diag(1), αn = βn = 10−1, and γn = 0.162

• Momentum-C2: Algorithm 1 with δ = 0, Hn = diag(1), αn = βn = 10−2, and γn = 0.163

• Momentum-C3: Algorithm 1 with δ = 0, Hn = diag(1), αn = βn = 10−3, and γn = 0.164

• MomentumCG-C1: Algorithm 1 with δ = 0, Hn = diag(1), and αn = βn = γn = 10−1.165

• MomentumCG-C2: Algorithm 1 with δ = 0, Hn = diag(1), and αn = βn = γn = 10−2.166

• MomentumCG-C3: Algorithm 1 with δ = 0, Hn = diag(1), and αn = βn = γn = 10−3.167

• Adam-C1: Algorithm 1 with δ = 0.9, ζ = 0.999, Hn defined by (5), αn = βn = 10−1, and γn = 0.168

• Adam-C2: Algorithm 1 with δ = 0.9, ζ = 0.999, Hn defined by (5), αn = βn = 10−2, and γn = 0.169

• Adam-C3: Algorithm 1 with δ = 0.9, ζ = 0.999, Hn defined by (5), αn = βn = 10−3, and γn = 0.170

• AdamCG-C1: Algorithm 1 with δ = 0.9, ζ = 0.999, Hn defined by (5), and αn = βn = γn = 10−1.171

• AdamCG-C2: Algorithm 1 with δ = 0.9, ζ = 0.999, Hn defined by (5), and αn = βn = γn = 10−2.172

• AdamCG-C3: Algorithm 1 with δ = 0.9, ζ = 0.999, Hn defined by (5), and αn = βn = γn = 10−3.173

• AMSGrad-C1: Algorithm 1 with δ = 0, ζ = 0.999, Hn defined by (4), αn = βn = 10−1, and γn = 0.174

• AMSGrad-C2: Algorithm 1 with δ = 0, ζ = 0.999, Hn defined by (4), αn = βn = 10−2, and γn = 0.175

• AMSGrad-C3: Algorithm 1 with δ = 0, ζ = 0.999, Hn defined by (4), αn = βn = 10−3, and γn = 0.176

• AMSGradCG-C1: Algorithm 1 with δ = 0, ζ = 0.999, Hn defined by (4), and αn = βn = γn = 10−1.177

• AMSGradCG-C2: Algorithm 1 with δ = 0, ζ = 0.999, Hn defined by (4), and αn = βn = γn = 10−2.178

• AMSGradCG-C3: Algorithm 1 with δ = 0, ζ = 0.999, Hn defined by (4), and αn = βn = γn = 10−3.179

Algorithm 1 with diminishing learning rates αn = 1/
√

n and βn = 1/2n based on [7, Theorem 4180

and Corollary 1] (Algorithm 1 with γn = 0, such as Momentum-D1, Adam-D1, and AMSGrad-D1, is181

Algorithm 1 in [8]):182

• Momentum-D1: Algorithm 1 with δ = 0, Hn = diag(1), and γn = 0.183

• MomentumCG-D1: Algorithm 1 with δ = 0, Hn = diag(1), and γn = 1/2n.184

• MomentumCG-D2: Algorithm 1 with δ = 0, Hn = diag(1), and γn = 1/n.185

• Adam-D1: Algorithm 1 with δ = 0.9, ζ = 0.999, Hn defined by (5), and γn = 0.186

• AdamCG-D1: Algorithm 1 with δ = 0.9, ζ = 0.999, Hn defined by (5), and γn = 1/2n.187

3 https://www.meiji.ac.jp/isys/hpc/ia.html
4 https://pytorch.org/docs/stable/optim.html

https://www.meiji.ac.jp/isys/hpc/ia.html
https://pytorch.org/docs/stable/optim.html
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• AdamCG-D2: Algorithm 1 with δ = 0.9, ζ = 0.999, Hn defined by (5), and γn = 1/n.188

• AMSGrad-D1: Algorithm 1 with δ = 0, ζ = 0.999, Hn defined by (4), and γn = 0.189

• AMSGradCG-D1: Algorithm 1 with δ = 0, ζ = 0.999, Hn defined by (4), and γn = 1/2n.190

• AMSGradCG-D2: Algorithm 1 with δ = 0, ζ = 0.999, Hn defined by (4), and γn = 1/n.191

Python implementations of the algorithms are available at https://github.com/iiduka-researches/192

202008-cg-like.193

4.1. Image classification194

This experiment used the CIFAR10 dataset5, a benchmark for image classification. The dataset195

consists of 60,000 color images (32× 32) in 10 classes, with 6,000 images per class. There are 50,000196

training images and 10,000 test images. The test batch contained exactly 1,000 randomly selected197

images from each class. We trained a 44-layer ResNet (ResNet-44) [20] organized into 43 convolutional198

layers which had 3× 3 filters and a 1,000-way-fully-connected layer with a softmax function. We used199

the cross entropy as the loss function for fitting ResNet in accordance with the commonly used strategy200

in image classification.201

Figure 1. Loss function value versus number of epochs on the CIFAR-10 dataset for training (constant).

5 https://www.cs.toronto.edu/~kriz/cifar.html

https://github.com/iiduka-researches/202008-cg-like
https://github.com/iiduka-researches/202008-cg-like
https://github.com/iiduka-researches/202008-cg-like
https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 2. Classification error rate versus number of epochs on the CIFAR-10 dataset for training
(constant).

Figure 3. Classification error rate versus number of epochs on the CIFAR-10 dataset for testing
(constant).

Figures 1–3 compare the behaviors of the proposed algorithm with a constant learning rate202

with those of Momentum, AdaGrad, RMSProp, Adam, and AMSGrad using the default values in203

torch.optim (i.e., αn = 10−3, βn = 0.9). Figure 1 shows that Momentum-C1, MomentumCG-C1, and204

AMSGrad-C2 minimized the training loss function faster than the existing algorithms, and Figure205

2 shows that they decreased the training error rate faster as well. Moreover, AdamCG-Ci (resp.206
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AMSGradCG-Ci) (i = 2, 3) outperformed AdamCG-C1 (resp. AMSGradCG-C1); this implies AdamCG207

and AMSGradCG require fewer iterations at smaller learning rates. Figure 3 shows that Adam-C2,208

AdamCG-C2, AMSGrad-C2, AMSGradCG-C2 decreased the test error rate faster than other algorithms.209

A similar trend was observed in the numerical results in [21].210

Figure 4. Loss function value versus number of epochs on the CIFAR-10 dataset for training
(diminishing).

Figure 5. Classification error rate versus number of epochs on the CIFAR-10 dataset for training
(diminishing).
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Figure 6. Classification error rate versus number of epochs on the CIFAR-10 dataset for testing
(diminishing).

Figures 4–6 plot the behaviors of the proposed algorithms with diminishing learning rates. These211

algorithms did not work, and thus, it clear that using diminishing learning rates is not good for training212

neural networks (see Section 5 for the details). A similar problem was observed in the numerical213

results in [8].214

Table 1. Mean and variance of elapsed time per epoch for the existing algorithms and Algorithm 1 on
the CIFAR-10 dataset

Existing C1 C2 C3 CG-C1 CG-C2 CG-C3

Momentum mean 14.815106 14.766352 14.643343 14.191675 14.370240 14.536258 13.732973
variance 0.268979 1.144346 0.268576 0.363746 0.180754 0.872769 0.314055

Adam mean 17.621361 17.388947 18.511805 18.084771 18.106918 18.108820 17.127479
variance 0.149553 0.044539 1.392942 0.056606 0.213341 0.063594 1.317213

AMSGrad mean 18.122551 17.650377 17.796328 19.335775 18.855297 18.272888 16.328777
variance 1.245563 0.313088 0.289944 4.738541 2.820650 1.671705 1.754373

Table 2. Results of t-test on the training error rates of the existing algorithms (Momentum, Adam, and
AMSGrad) and Algorithm 1 (Ci and CG-Ci (i = 1, 2, 3)) on the CIFAR-10 dataset (significance level is
5%; the p-values for the proposed algorithms with significantly low error rates are indicated in bold)

C1 C2 C3 CG-C1 CG-C2 CG-C3

Momentum t-statistic 3.70879 0.23783 -13.65314 3.34063 -0.17214 -12.77890
(Existing) p-value 2.38E-04 8.12E-01 4.44E-35 9.15E-04 8.63E-01 1.43E-31

Adam t-statistic -10.46006 0.03599 0.20774 -6.70248 0.37493 0.04342
(Existing) p-value 8.73E-23 9.71E-01 8.36E-01 7.03E-11 7.08E-01 9.65E-01

AMSGrad t-statistic -157.96917 -1.59278 -0.16230 -157.97057 -1.59440 -0.00869
(Existing) p-value 0.00E+00 1.12E-01 8.71E-01 0.00E+00 1.12E-01 9.93E-01
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Table 1 shows the mean and variance of elapsed time per epoch for the existing algorithms and215

Algorithm 1 with a constant learning rate. This table indicates that the elapsed time of Momentum216

was almost the same as those of the proposed algorithms, e.g., Momentum-Ci and MomentumCG-Ci217

(i = 1, 2, 3). Adam and AMSGrad also had such a trend.218

Table 2 compares the training error rates of the existing algorithms with those of Algorithm 1 by219

using the scipy.stats.ttest_ind function in Python. The p-value is the probability associated with220

a t-test, and the significance level is set at 5 %. If the value is less than 0.05, then there is a significant221

difference between the existing algorithm and the proposed algorithms. Table 2 and Figure 2 indicate222

that Momentum-C1 and MomentumCG-C1 outperformed Momentum and the performance of the223

existing algorithm (Momentum) was significantly different from the performances of the proposed224

algorithms (Momentum-C1 and MomentumCG-C1). Adam-Ci and AdamCG-Ci (i = 1, 2, 3) had almost225

the same performance as Adam, while the performance of AMSGrad was not significantly different226

from that of AMSGrad-Ci and AMSGradCG-Ci (i = 1, 2, 3).227

4.2. Text classification228

This experiment used the IMDb dataset6 for text classification tasks. The dataset contains 50,000229

movie reviews along with their associated binary sentiment polarity labels. The dataset is split into230

25,000 training and 25,000 test sets. We used an embedding layer that generated 50-dimensional231

embedding vectors and two bidirectional long short-term memory (LSTM) with an affine layer and a232

sigmoid function as an activation function for the output. To train it, we used the binary cross entropy233

(BCE) as a loss function minimized by the existing and proposed algorithms.234

Figure 7. Loss function value versus number of epochs on the IMDb dataset for training (constant).

6 https://datasets.imdbws.com/

https://datasets.imdbws.com/


Version October 28, 2020 submitted to Journal Not Specified 13 of 26

Figure 8. Classification error rate versus number of epochs on the IMDb dataset for training (constant).

Figure 9. Classification error rate versus number of epochs on the IMDb dataset for testing (constant).

Figures 7–9 compare the behaviors of the proposed algorithm with a constant learning rate235

with those of Momentum, AdaGrad, RMSProp, Adam, and AMSGrad, using the default values236

in torch.optim (i.e., αn = 10−3, βn = 0.9). These figures show that Adam-C3, AdamCG-C3,237

AMSGrad-C3, RMSProp, Adam, and AMSGrad all performed well. In particular, Figure 8 shows that238

AdamCG-C3 (resp. AMSGradCG-C3) performed better than Adam-C3 (resp. AMSGrad-C3), which239

implies that using conjugate gradient-like directions would be good for training neural networks.240
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Figure 10. Loss function value versus number of epochs on the IMDb dataset for training (diminishing).

Figure 11. Classification error rate versus number of epochs on the IMDb dataset for training
(diminishing).



Version October 28, 2020 submitted to Journal Not Specified 15 of 26

Figure 12. Classification error rate versus number of epochs on the IMDb dataset for testing
(diminishing).

Figures 10–12 indicate the behaviors of the proposed algorithms with diminishing learning rates.241

These figures show that the algorithms did not work, as was the case in Figures 4–6 (see Section 5 for242

the details).243

Table 3. Mean and variance of elapsed time per epoch for the existing algorithms and Algorithm 1 on
the IMDb dataset

Existing C1 C2 C3 CG-C1 CG-C2 CG-C3

Momentum mean 19.029660 18.999186 18.957496 19.098836 19.241769 19.286854 18.671163
variance 0.095132 0.074935 0.107259 0.196841 0.035649 0.058319 0.003906

Adam mean 20.256827 20.194220 20.193260 20.260705 20.231550 20.388470 19.536741
variance 0.061552 0.023485 0.041777 0.060461 0.039103 0.174818 0.165803

AMSGrad mean 20.109489 20.092463 20.102763 20.025613 20.146646 20.136673 19.335856
variance 0.075432 0.059149 0.059561 0.089540 0.113563 0.098914 0.003543

Table 4. Results of t-test on the training error rates of the existing algorithms (Momentum, Adam, and
AMSGrad) and Algorithm 1 (Ci and CG-Ci (i = 1, 2, 3)) on the IMDb dataset (significance level is 5%;
the p-values for the proposed algorithms with significantly low error rates are indicated in bold)

C1 C2 C3 CG-C1 CG-C2 CG-C3

Momentum t-statistic 13.87142 0.63115 -4.59306 13.22951 1.71477 -4.59306
(Existing) p-value 5.17E-31 5.29E-01 7.76E-06 4.82E-29 8.80E-02 7.76E-06

Adam t-statistic -63.39972 -11.01275 -0.00287 -63.33435 -9.41552 0.11707
(Existing) p-value 1.79E-133 2.61E-22 9.98E-01 2.17E-133 1.24E-17 9.07E-01

AMSGrad t-statistic -63.53084 -5.68706 -0.63240 -63.42279 -7.93451 -0.06863
(Existing) p-value 1.21E-133 4.59E-08 5.28E-01 1.67E-133 1.53E-13 9.45E-01

Table 3 indicates that the elapsed time for the existing algorithm was almost the same as the one244

for the proposed algorithms, as seen in Table 1. Table 4 and Figure 8 show that, although Momentum,245
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Momentum-Ci, and MomentumCG-Ci did not perform better than the existing algorithms such as246

Adam and AMSGrad, the performance of Momentum was significantly different from that of almost247

all of proposed algorithms. It can be seen that Adam, Adam-C3, and AdamCG-C3 performed well248

and that, although AMSGrad, AMSGrad-C3, and AMSGradCG-C3 did not perform better than Adam,249

AMSGrad-C3 and AMSGradCG-C3 had almost the same performance as AMSGrad.250

5. Discussion251

Let us first discuss the relationship between the momentum method [18, (9)], [19, Section 2] with
MomentumCG used in Section 4. The momentum method [18, (9)], [19, Section 2] is defined by

mn := −εG(xn, ξn) + µmn−1, xn+1 := PX(xn + mn), i.e., (9a)

xn+1 := PX (xn − εG(xn, ξn) + µmn−1) , (9b)

where ε > 0 is the learning rate and µ ∈ [0, 1] is the momentum coefficient. We can see that mn defined
by (9) is the conjugate gradient-like direction of εG(xn, ξn). Meanwhile, MomentumCG used in Section
4 is as follows:

Gn = G(xn, ξn)− γnGn−1, (10a)

mn := (1− βn)Gn + βnmn−1, (10b)

xn+1 := PX(xn − αnmn). (10c)

Algorithm (10) uses the conjugate gradient-like direction Gn of G(xn, ξn). For simplicity, algorithm (10)
with βn = 0 is such that

xn+1 := PX (xn − αnG(xn, ξn) + αnγnmn−1) , (11)

which implies that algorithm (11) is the momentum method with a learning rate αn and momentum252

coefficient αnγn.253

The numerical comparisons in Section 4 show that Algorithm 1 with a constant learning rate
performed better than Algorithm 1 with diminishing learning rates. For example, let us consider the
text classification in Subsection 4.2 and compare AdamCG-C3 defined by

Gn := G(xn, ξn)− 10−3Gn−1,

mn := 10−3mn−1 + (1− 10−3)Gn,

m̂n := (1− 0.9n+1)−1mn,

vn := 0.999vn−1 + (1− 0.999)G(xn, ξn)� G(xn, ξn),

v̄n := (1− 0.999n+1)−1vn,

v̂n = (v̂n,i) := (max{v̂n−1,i, v̄n,i}) ,

Hn := diag
(√

v̂n,i
)

,

xn+1 := PX,Hn(xn − 10−3H−1
n mn).

(12)
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with AdamCG-D1 defined by

Gn := G(xn, ξn)− 2−nGn−1,

mn := 2−nmn−1 + (1− 2−n)Gn,

m̂n := (1− 0.9n+1)−1mn,

vn := 0.999vn−1 + (1− 0.999)G(xn, ξn)� G(xn, ξn),

v̄n := (1− 0.999n+1)−1vn,

v̂n = (v̂n,i) := (max{v̂n−1,i, v̄n,i}) ,

Hn := diag
(√

v̂n,i
)

,

xn+1 := PX,Hn(xn − n−1/2H−1
n mn).

(13)

AdamCG-C3 (algorithm (12)) works well for all n ∈ N, since it uses a constant learning rate. Meanwhile,
there is a possibility that AdamCG-D1 (algorithm (13)) does not work for a large number of iterations,
because it uses diminishing learning rates. In fact, AdamCG-D1 (algorithm (13)) for a large n is as
follows: 

Gn := G(xn, ξn)− 2−nGn−1 ≈ G(xn, ξn),

mn := 2−nmn−1 + (1− 2−n)Gn ≈ Gn ≈ G(xn, ξn),

m̂n := (1− 0.9n+1)−1mn,

vn := 0.999vn−1 + (1− 0.999)G(xn, ξn)� G(xn, ξn),

v̄n := (1− 0.999n+1)−1vn,

v̂n = (v̂n,i) := (max{v̂n−1,i, v̄n,i}) ,

Hn := diag
(√

v̂n,i
)

,

xn+1 := PX,Hn(xn − n−1/2H−1
n mn) ≈ PX,Hn(xn) = xn,

(14)

which implies that algorithm (14) does not work. As can be seen in Figures 7–12, Algorithm 1 with254

diminishing learning rates would not be good for training neural networks.255

Finally, let us compare the existing algorithm with Algorithm 1, in particular, AMSGrad in
torch.optim using αn = 10−3, βn = 0.9, and ζ = 0.999 with AMSGrad-C3 using αn = 10−3, βn = 10−3,
and ζ = 0.999. The difference between AMSGrad and AMSGrad-C3 is the setting of βn. According
to Figures 7–9, AMSGrad-C3 performs comparably to AMSGrad, a useful algorithm. These results
are guaranteed by Theorem 1, which indicates that Algorithm 1 with a small constant learning rate
approximates a stationary point of the minimization problem in deep neural networks, and more
specifically, the sequence (xn)n∈N generated by AMSGrad-C3 (Algorithm 1 with δ = 0) satisfying

lim sup
n→+∞

E [〈x− xn,∇ f (xn)〉] ≥ −
B̃2M̃2

2b̃
1

103 −
√

DdM̃
b̃

1
103 (x ∈ X)

approximates x? ∈ X? := {x? ∈ X : 〈x− x?,∇ f (x?)〉 ≥ 0 (x ∈ X)}.256

6. Conclusion257

We proposed an iterative algorithm with conjugate gradient-like directions for nonconvex258

optimization in deep neural networks to accelerate conventional adaptive learning rate optimization259

algorithms. We presented two convergence analyses of the algorithm. The first convergence analysis260

showed that the algorithm with a constant learning rate approximates a stationary point of a nonconvex261

optimization problem. The second analysis showed that the algorithm with a diminishing learning262

rate converges to a stationary point of the nonconvex optimization problem. We gave numerical results263

for concrete neural networks. The results showed that the proposed algorithm with a constant learning264
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rate is superior for training neural networks from the viewpoints of theory and practice, while the265

proposed algorithm with a diminishing learning rate is not good for training neural networks. The266

reason behind these results is that using a constant learning rate guarantees that the algorithm works267

well, while a diminishing learning rate for a large number of iterations, which is approximately zero,268

implies that the algorithm is not updated.269

Appendix A Proofs of Theorems 1 and 2 and Propositions 1 and 2270

This section refers to [8]. Let us first prove the following lemma.271

Lemma A1. Suppose that (A1)–(A2) and (C1)–(C2) hold. Then, for all x ∈ X and all n ∈ N,

E
[
‖xn+1 − x‖2

Hn

]
≤ E

[
‖xn − x‖2

Hn

]
+

2αn

1− δn+1

{
(1− βn)E [〈x− xn,∇ f (xn)〉]

+ βnE [〈x− xn, mn−1〉]− (1− βn)γnE [〈x− xn,Gn−1〉]
}
+ α2

nE
[
‖dn‖2

Hn

]
.

Proof. Choose x ∈ X and n ∈ N. The definition of xn+1 and the nonexpansivity of PX,Hn imply that,
almost surely,

‖xn+1 − x‖2
Hn
≤ ‖(xn − x) + αndn‖2

Hn

= ‖xn − x‖2
Hn

+ 2αn 〈xn − x,dn〉Hn
+ α2

n ‖dn‖2
Hn

.

The definitions of dn, mn, and m̂n ensure that

〈xn − x,dn〉Hn
=

1
δ̃n
〈x− xn, mn〉 =

βn

δ̃n
〈x− xn, mn−1〉+

1− βn

δ̃n
〈x− xn,Gn〉 ,

where δ̃n := 1− δn+1. Moreover, the definition of Gn implies that

〈x− xn,Gn〉 = 〈x− xn,G(xn, ξn)〉 − γn 〈x− xn,Gn−1〉 .

Hence, almost surely,

‖xn+1 − x‖2
Hn
≤ ‖xn − x‖2

Hn
+ 2αn

{
βn

δ̃n
〈x− xn, mn−1〉+

1− βn

δ̃n
〈x− xn,G(xn, ξn)〉

− (1− βn)γn

δ̃n
〈x− xn,Gn−1〉

}
+ α2

n ‖dn‖2
Hn

.
(A1)

The conditions xn = xn(ξ [n−1]) (n ∈ N), (C1), and (C2) imply that

E [〈x− xn,G(xn, ξn)〉] = E
[
E
[
〈x− xn,G(xn, ξn)〉 |ξ [n−1]

]]
= E

[〈
x− xn,E

[
G(xn, ξn)|ξ [n−1]

]〉]
= E [〈x− xn,∇ f (xn)〉] .

Taking the expectation of (A1) leads to the assertion of Lemma A1.272

Lemma A2. If (C3) holds, then, for all n ∈ N, E[‖Gn‖2] ≤ 4M̂2 and E[‖mn‖2] ≤ M̃2, where273

M̂2 := max{M2, ‖G−1‖2} and M̃2 := max{‖m−1‖2, 4M̂2}. Moreover, if (A3) holds, then, for all n ∈ N,274

E[‖dn‖2
Hn

] ≤ B̃2M̃2/(1− δ)2, where B̃ := sup{maxi=1,2,...,d h−1/2
n,i : n ∈ N} < +∞.275
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Proof. Let us define M̂2 := max{M2, ‖G−1‖2} < +∞, where M is defined as in (C3). Let us consider
the case where n = 0. The inequality ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2 (x, y ∈ Rd) ensures that

‖G0‖2 ≤ 2 ‖G(x0, ξ0)‖2 + 2γ2
0 ‖G−1‖2 , (A2)

which, together with γn ≤ 1/2 (n ∈ N) and the definition of M̂, implies that

E
[
‖G0‖2

]
≤ 2M2 + 2 · 1

4
· 4M̂2 ≤ 4M̂2.

Assume that E[‖Gn‖2] ≤ 4M̂2 for some n ∈ N. The same discussion as for (A2) ensures that

E
[
‖Gn+1‖2

]
≤ 2E

[
‖G(xn+1, ξn+1)‖2

]
+ 2γ2

n+1E
[
‖Gn‖2

]
≤ 2M2 + 2 · 1

4
· 4M̂2 ≤ 4M̂2.

Accordingly, we have, for all n ∈ N,

E
[
‖Gn‖2

]
≤ 4M̂2. (A3)

From the definition of mn, the convexity of ‖ · ‖2, and (A3), for all n ∈ N,

E
[
‖mn‖2

]
≤ βnE

[
‖mn−1‖2

]
+ (1− βn)E

[
‖Gn‖2

]
≤ βnE

[
‖mn−1‖2

]
+ 4M̂2(1− βn).

Hence, induction leads to, for all n ∈ N,

E
[
‖mn‖2

]
≤ M̃2 := max

{
‖m−1‖2 , 4M̂2

}
< +∞. (A4)

Given n ∈ N, Hn � O ensures that there exists a unique matrix Hn � O such that Hn = H
2
n [22, Theorem

7.2.6]. From ‖x‖2
Hn

= ‖Hnx‖2 (x ∈ Rd) and the definitions of dn and m̂n, we have, for all n ∈ N,

E
[
‖dn‖2

Hn

]
= E

[∥∥∥H−1
n Hndn

∥∥∥2
]
≤ 1

δ̃2
n
E
[∥∥∥H−1

n

∥∥∥2
‖mn‖2

]
,

where δ̃n := 1− δn+1 ≥ 1− δ and ‖H−1
n ‖ = ‖diag(h−1/2

n,i )‖ = maxi=1,2,...,d h−1/2
n,i (n ∈ N). From (A4)

and B̃ := sup{maxi=1,2,...,d h−1/2
n,i : n ∈ N} ≤ maxi=1,2,...,d h−1/2

0,i < +∞ (by (A3)), we have, for all
n ∈ N,

E
[
‖dn‖2

Hn

]
≤ B̃2M̃2

(1− δ)2 ,

which completes the proof.276

The convergence rate analysis of Algorithm 1 is as follows.277

Theorem A1. Suppose that (A1)–(A5) and (C1)–(C3) hold and (θn)n∈N defined by θn := αn(1 −
βn)/(1 − δn+1) and (βn)n∈N satisfy θn+1 ≤ θn (n ∈ N) and lim supn→+∞ βn < 1. Let Vn(x) :=
E [〈xn − x,∇ f (xn)〉] for all x ∈ X and all n ∈ N. Then, for all x ∈ X and all n ≥ 1,

1
n

n

∑
k=1

Vk(x) ≤ D ∑d
i=1 Bi

2b̃nαn
+

B̃2M̃2

2b̃δ̃2n

n

∑
k=1

αk +

√
DdM̃
b̃n

n

∑
k=1

βk +
2
√

DdM̂
n

n

∑
k=1

γk,

where (βn)n∈N ⊂ (0, b] ⊂ (0, 1), b̃ := 1− b, δ̃ := 1− δ, M̂, M̃ and B̃ are defined as in Lemma A2, and D278

and Bi are defined as in Assumption 1.279
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Proof. Let x ∈ X be fixed arbitrarily. Lemma A1 guarantees that, for all k ∈ N,

Vk(x) ≤ 1
2θk

{
E
[
‖xk − x‖2

Hk

]
−E

[
‖xk+1 − x‖2

Hk

]}
+

βk
1− βk

E [〈x− xk, mk−1〉] + γkE [〈xk − x,Gn−1〉] +
αk δ̃k

2(1− βk)
E
[
‖dk‖2

Hk

]
,

where δ̃n := 1− δn+1 ≤ 1 (n ∈ N). The condition lim supn→+∞ βn < 1 ensures the existence of b > 0
such that, for all n ∈ N, βn ≤ b < 1. Let b̃ := 1− b. Then, for all n ≥ 1, we have

n

∑
k=1

Vk(x) ≤ 1
2

n

∑
k=1

1
θk

{
E
[
‖xk − x‖2

Hk

]
−E

[
‖xk+1 − x‖2

Hk

]}
︸ ︷︷ ︸

Θn

+
n

∑
k=1

βk
1− βk

E [〈x− xk, mk−1〉]︸ ︷︷ ︸
Bn

+
n

∑
k=1

γkE [〈xk − x,Gn−1〉]︸ ︷︷ ︸
Γn

+
1
2b̃

n

∑
k=1

αkE
[
‖dk‖2

Hk

]
︸ ︷︷ ︸

An

.
(A5)

The definition of Θn and E[‖xn+1 − x‖2
Hn

]/θn ≥ 0 imply that

Θn ≤
E
[
‖x1 − x‖2

H1

]
θ1

+
n

∑
k=2

E
[
‖xk − x‖2

Hk

]
θk

−
E
[
‖xk − x‖2

Hk−1

]
θk−1

︸ ︷︷ ︸
Θ̃n

. (A6)

Accordingly,

Θ̃n = E
[

n

∑
k=2

{∥∥Hk(xk − x)
∥∥2

θk
−
∥∥Hk−1(xk − x)

∥∥2

θk−1

}]
,

where, for all k ∈ N and all x := (xi) ∈ Rd,

Hk = diag
(√

hk,i

)
and

∥∥Hkx
∥∥2

=
d

∑
i=1

hk,ix2
i . (A7)

Thus, for all n ≥ 2,

Θ̃n = E
[

n

∑
k=2

d

∑
i=1

(
hk,i

θk
−

hk−1,i

θk−1

)
(xk,i − xi)

2

]
.

The condition θk ≤ θk−1 (k ≥ 1) and (A3) imply that, for all k ≥ 1 and all i = 1, 2, . . . , d,

hk,i

θk
−

hk−1,i

θk−1
≥ 0.

Hence, for all n ≥ 2,

Θ̃n ≤ DE
[

n

∑
k=2

d

∑
i=1

(
hk,i

θk
−

hk−1,i

θk−1

)]
= DE

[
d

∑
i=1

(
hn,i

θn
− h1,i

θ1

)]
,



Version October 28, 2020 submitted to Journal Not Specified 21 of 26

where maxi=1,2,...,d sup{(xn,i − xi)
2 : n ∈ N} ≤ D < +∞ (by (A5)). Therefore, (A6), E[‖x1 −

x‖2
H1
]/θ1 ≤ DE[∑d

i=1 h1,i/θ1], and (A4) imply, for all n ∈ N,

Θn ≤ DE
[

d

∑
i=1

h1,i

θ1

]
+ DE

[
d

∑
i=1

(
hn,i

θn
− h1,i

θ1

)]
=

D
θn

E
[

d

∑
i=1

hn,i

]
≤ D

θn

d

∑
i=1

Bi,

which, together with θn := αn(1− βn)/(1− δn+1) ≥ b̃αn, implies

Θn ≤
D ∑d

i=1 Bi

b̃αn
. (A8)

The Cauchy-Schwarz inequality, together with maxi=1,2,...,d sup{(xn,i − xi)
2 : n ∈ N} ≤ D < +∞ (by

(A5)) and E[‖mn‖] ≤ M̃ (n ∈ N) (by Lemma A2), guarantees that, for all n ∈ N,

Bn ≤
√

Dd
b̃

n

∑
k=1

βkE [‖mk−1‖] ≤
√

DdM̃
b̃

n

∑
k=1

βk. (A9)

A discussion similar to the one for obtaining (A9), together with E[‖Gn‖] ≤ 2M̂ (n ∈ N) (by Lemma
A2), implies that

Γn ≤
√

Dd
n

∑
k=1

γkE [‖Gk−1‖] ≤ 2
√

DdM̂
n

∑
k=1

γk. (A10)

Since E[‖dn‖2
Hn

] ≤ B̃2M̃2/(1− δ)2 (n ∈ N) holds (by Lemma A2), we have, for all n ∈ N,

An :=
n

∑
k=1

αkE
[
‖dk‖2

Hk

]
≤ B̃2M̃2

(1− δ)2

n

∑
k=1

αk. (A11)

Therefore, (A5), (A8), (A9), (A10), and (A11) leads to the assertion in Theorem A1. This completes the280

proof.281

Proof of Theorem 1. Let αn := α ∈ (0, 1), βn := β = b ∈ (0, 1), and γn := γ ∈ [0, 1/2]. We show that,
for all ε > 0 and all x ∈ X,

lim inf
n→+∞

Vn(x) ≤ B̃2M̃2

2b̃δ̃2
α +

√
DdM̃
b̃δ̃

β +
2
√

DdM̂
δ̃

γ +
Ddε

2b̃
+ ε. (A12)

If (A12) does not hold for all ε > 0 and all x ∈ X, then there exist ε0 > 0 and x̂ ∈ X such that

lim inf
n→+∞

Vn(x̂) >
B̃2M̃2

2b̃δ̃2
α +

√
DdM̃
b̃δ̃

β +
2
√

DdM̂
δ̃

γ +
Ddε0

2b̃
+ ε0. (A13)

Assumptions (A3) and (A4) ensure that there exists n0 ∈ N such that, for all n ∈ N, n ≥ n0 implies that

E
[

d

∑
i=1

(hn+1,i − hn,i)

]
≤ dαε0

2
. (A14)

Assumptions (A4) and (A5) and (A7) also imply that, for all n ∈ N,

Xn := E
[
‖xn − x̂‖2

Hn

]
= E

[
d

∑
i=1

hn,i(xn,i − x̂i)
2

]
≤ D

d

∑
i=1

Bi < +∞. (A15)
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Moreover, Assumptions (A3) and (A5), (A7), and (A14) ensure that, for all n ≥ n0,

Xn+1 −E
[
‖xn+1 − x̂‖2

Hn

]
= E

[
d

∑
i=1

(hn+1,i − hn,i)(xn+1,i − x̂i)
2

]
≤ Ddαε0

2
. (A16)

The condition δ ∈ [0, 1) and Xn+1 < +∞ (by (A15)) ensure that there exists n1 ∈ N such that, for all
n ∈ N, n ≥ n1 implies that

Xn+1δn+1 ≤ Ddαε0

2
. (A17)

The definition of the limit inferior of (Vn(x̂))n∈N guarantees that there exists n2 ∈ N such that, for all
n ≥ n2,

lim inf
n→+∞

Vn(x̂)− 1
2

ε0 ≤ Vn(x̂),

which, together with (A13), implies that, for all n ≥ n1,

Vn(x̂) >
B̃2M̃2

2b̃δ̃2
α +

√
DdM̃
b̃δ̃

β +
2
√

DdM̂
δ̃

γ +
Ddε0

2b̃
+

1
2

ε0. (A18)

Thus, Lemmas A1 and A2 and (A16) lead to the finding that, for all n ≥ n3 := max{n0, n1, n2},

Xn+1 ≤ Xn +
Ddαε0

2
− 2αb̃

1− δn+1 Vn(x̂) +
2
√

DdM̃
δ̃

αβ +
4
√

DdM̂b̃
δ̃

αγ +
B̃2M̃2

δ̃2
α2,

where b̃ := 1− b and δ̃ := 1− δ. Hence, from (A17), 1− δn+1 ≤ 1, and (Xn+1 − Xn)δn+1 ≤ Xn+1δn+1

(n ∈ N), we have, for all n ≥ n3,

Xn+1 ≤ Xn +
Ddαε0

2
− 2αb̃Vn(x̂) +

2
√

DdM̃
δ̃

αβ +
4
√

DdM̂b̃
δ̃

αγ +
B̃2M̃2

δ̃2
α2 + Xn+1δn+1

≤ Xn + Ddαε0 − 2αb̃Vn(x̂) +
2
√

DdM̃
δ̃

αβ +
4
√

DdM̂b̃
δ̃

αγ +
B̃2M̃2

δ̃2
α2.

(A19)

Therefore, (A18) ensures that, for all n ≥ n3,

Xn+1 < Xn + Ddαε0 − 2αb̃
{

B̃2M̃2

2b̃δ̃2
α +

√
DdM̃
b̃δ̃

β +
2
√

DdM̂
δ̃

γ +
Ddε0

2b̃
+

1
2

ε0

}
+

2
√

DdM̃
δ̃

αβ +
4
√

DdM̂b̃
δ̃

αγ +
B̃2M̃2

δ̃2
α2

= Xn − αb̃ε0

< Xn3 − αb̃ε0(n + 1− n3).

Since the right-hand side of the above inequality approaches minus infinity when n diverges, we have
a contradiction. Hence, (A12) holds for all ε > 0 and all x ∈ X. From the arbitrary condition of ε, we
have, for all x ∈ X,

lim inf
n→+∞

Vn(x) ≤ B̃2M̃2

2b̃δ̃2
α +

√
DdM̃
b̃δ̃

β +
2
√

DdM̂
δ̃

γ,

which completes the proof.282
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Proof of Theorem 2. Let x ∈ X. Lemmas A1 and A2 and (A15), together with a discussion similar to
the one for obtaining (A19), ensure that, for all k ∈ N,

Xk+1 ≤ Xk + DE
[

d

∑
i=1

(hk+1,i − hk,i)

]
− 2αk(1− βk)Vk(x)

+
2
√

DdM̃
δ̃

αkβk +
4
√

DdM̂b̃
δ̃

αkγk +
B̃2M̃2

δ̃2
α2

k + D
d

∑
i=1

Biδ
k+1,

which implies that

2αkVk(x) ≤ Xk − Xk+1 + DE
[

d

∑
i=1

(hk+1,i − hk,i)

]
+

4
√

DdM̂b̃
δ̃

αkγk +
B̃2M̃2

δ̃2
α2

k

+ 2

(√
DdM̃
δ̃

+ F

)
αkβk + D

d

∑
i=1

Biδ
k+1,

where F := sup{|Vn(x)| : n ∈ N} < +∞ holds from Assumptions (A2) and (A5). Summing up the
above inequality from k = 0 to k = n ensures that

2
n

∑
k=0

αkVk(x) ≤ X0 + DE
[

d

∑
i=1

(hn+1,i − h0,i)

]
+

4
√

DdM̂b̃
δ̃

n

∑
k=0

αkγk +
B̃2M̃2

δ̃2

n

∑
k=0

α2
k

+ 2

(√
DdM̃
δ̃

+ F

)
n

∑
k=0

αkβk + DB̂
n

∑
k=0

δk+1,

where B̂ := ∑d
i=1 Bi. Let (αn)n∈N, (βn)n∈N, and (γn)n∈N satisfy ∑+∞

n=0 αn = +∞, ∑+∞
n=0 α2

n < +∞,
∑+∞

n=0 αnβn < +∞, and ∑+∞
n=0 αnγn < +∞. Assumption (A4) and δ ∈ [0, 1) imply that

+∞

∑
k=0

αkVk(x) < +∞. (A20)

We prove that, for all x ∈ X, lim infn→+∞ Vn(x) ≤ 0. Assume that lim infn→+∞ Vn(x) ≤ 0 does not
hold for all x ∈ X. Then there exist x̂ ∈ X, ζ > 0, and m0 ∈ N such that, for all n ≥ m0, Vn(x̂) ≥ ζ.
Accordingly, (A20) and ∑+∞

n=0 αn = +∞ guarantee that

+∞ = ζ
+∞

∑
k=m0

αk ≤
+∞

∑
k=m0

αkVk(x̂) < +∞,

which is a contradiction. Hence, lim infn→+∞ Vn(x) ≤ 0 holds for all x ∈ X.283

Let αn := 1/nη (η ∈ [1/2, 1)) and βn := βn (β ∈ (0, 1)). First, we consider the case where γn := γn

(γ ∈ (0, 1)).7 Then, θn+1 ≤ θn (n ∈ N) and lim supn→+∞ βn < 1. When η = 1/2, we have

1
nαn

=
1√
n

7 Footnote 2 implies that γn ≤ 1/2 (n ≥ k0) and max{M2, ‖Gk0‖} < +∞. Accordingly, Theorem A1 holds for all n ≥ k0.
Since Theorem 2 discusses the convergence of Algorithm 1, we may assume, without loss of generality, that Theorem A1
holds for all n ≥ 1. Or, we may replace γ ∈ (0, 1) with γ ∈ (0, 1/2].
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and

1
n

n

∑
k=1

αk ≤
1
n

√
n

∑
k=1

12

√√√√ n

∑
k=1

(
1√
k

)2
≤
√

1 + ln n
n

,

where the first inequality comes from the Cauchy-Schwarz inequality and the second inequality comes
from ∑n

k=1(1/k) ≤ 1 + ln n. We also have

1
n

n

∑
k=1

βk ≤
1
n

+∞

∑
k=1

βk =
β

(1− β)n
and

1
n

n

∑
k=1

γk ≤
1
n

+∞

∑
k=1

γk =
γ

(1− γ)n
. (A21)

Therefore, Theorem A1 implies that

1
n

n

∑
k=1

Vk(x) ≤ O
(√

1 + ln n
n

)
.

In the case where η ∈ (1/2, 1), we have

1
nαn

=
1

n1−η
and

1
n

n

∑
k=1

αk ≤
1
n

√
n

∑
k=1

12

√√√√ n

∑
k=1

(
1
kη

)2
≤ B√

n
, (A22)

where B := ∑+∞
n=1(1/k2η) < +∞. Therefore, Theorem A1, together with (A21), ensures that

1
n

n

∑
k=1

Vk(x) ≤ O
(

1
n1−η

)
.

Next, we consider the case where γn := 1/nκ (κ > 1− η). Since κ > 1/2 holds, an argument
similar to the one for obtaining (A22) implies that

1
n

n

∑
k=1

γk = O
(

1√
n

)
.

The discussion in the above paragraph and Theorem A1 lead to the same convergence rate of284

(1/n)∑n
k=1 Vk(x) as the one for γn := γn (γ ∈ (0, 1)). This completes the proof.285

Proof of Proposition 1. Since F(·, ξ) is convex for almost every ξ ∈ Ξ, we have, for all n ∈ N,

E[ f (xn)− f ?] ≤ Vn(x?),

E[ f (x̃n)− f ?] ≤ 1
n

n

∑
k=1

E[ f (xk)− f ?] ≤ 1
n

n

∑
k=1

Vk(x?),

which, together with Theorem 1, leads to Proposition 1.286

Proof of Proposition 2. Theorem 2 and the proof of Proposition 1 lead to the finding that287

lim infn→+∞ E[ f (xn) − f ?] = 0 and limn→+∞ E[ f (x̃n) − f ?] = 0. Let x̂ ∈ X be an arbitrary288

accumulation point of (x̃n)n∈N ⊂ X. Since there exists (x̃ni )i∈N ⊂ (x̃n)n∈N such that (x̃ni )i∈N converges289

almost surely to x̂, the continuity of f and limn→+∞ E[ f (x̃n)− f ?] = 0 imply that E [ f (x̂)− f ?] = 0,290

and hence, x̂ ∈ X?. The convergence rate of E[ f (x̃n)− f ?] follows from Theorem A1.291
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