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Appropriate Learning Rates of Adaptive Learning
Rate Optimization Algorithms for Training Deep

Neural Networks
Hideaki Iiduka

Abstract—This paper deals with nonconvex stochastic opti-
mization problems in deep learning. Appropriate learning rates,
based on theory, for adaptive-learning-rate optimization algo-
rithms (e.g., Adam, AMSGrad) to approximate the stationary
points of such problems are provided. These rates are shown to
allow faster convergence than previously reported for these al-
gorithms. Specifically, the algorithms are examined in numerical
experiments on text and image classification, and are shown in
experiments to perform better with constant learning rates than
algorithms using diminishing learning rates.

Index Terms—Adam, adaptive-learning-rate optimization algo-
rithm, AMSGrad, deep neural network, learning rate, nonconvex
stochastic optimization.

I. INTRODUCTION

DEEP learning as a field is mainly concerned with de-
termining appropriate methods for training deep neural

networks [1], [2], [3]. One aspect of this is devising useful
methods for finding the model parameter values of deep neural
networks that reduce certain cost functions called the expected
risk and empirical risk (Section 2 in [4]). Accordingly, op-
timization methods are needed for minimizing the expected
(or empirical) risk, i.e., for solving stochastic optimization
problems in deep learning.

The classical method for solving a convex stochastic op-
timization problem is the Stochastic Approximation (SA)
method [5], [6], which is a first-order method using the
stochastic (sub)gradient of an observed function at each it-
eration. Modifications of the SA method, such as the mirror
descent SA method [6] and the accelerated SA method [7],
have been presented.

Within the field of deep learning, practical algorithms
based on the SA method and incremental methods [8] for
adjusting the learning rates of the model parameters have
been developed. Such algorithms are referred to as adaptive-
learning-rate optimization algorithms (Subchapter 8.5 in [9]).
Examples include ones that use momentum (Subchapter 8.3.2
in [9]) or Nesterov’s accelerated gradients (Subchapter 2.2
in [10] and Subchapter 8.3.3 in [9]). The Adaptive Gradient
(AdaGrad) algorithm [11] is a modification of the mirror
descent SA method, while the Root Mean Square Propagation
(RMSProp) algorithm (Algorithm 8.5 in [9]) is in turn based
on AdaGrad, both using element-wise squared values of the
stochastic (sub)gradient.
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The Adaptive Moment Estimation (Adam) algorithm [12],
which is based on momentum and RMSProp, is a powerful
algorithm for training deep neural networks. The performance
measure of adaptive-learning-rate optimization algorithms is
called the regret (see (2) for the definition of regret), and the
main objective is to achieve low regret. However, there is an
example of a convex optimization problem for which Adam
does not minimize the regret (Theorems 1–3 in [13]).

The Adaptive Mean Square Gradient (AMSGrad) algorithm
[13] guarantees that the regret is minimized and preserves
the practical benefits of Adam. Theorem 4 and Corollary 1
in [13] show that AMSGrad achieves an O(

√
(1 + lnn)/n)

convergence rate for convex optimization, where n is the
number of iterations. However, since the primary goal of
training deep models is to solve nonconvex stochastic opti-
mization problems [14], [15], [16] in deep learning by using
optimization algorithms, we need to develop algorithms that
can in theory be applied to nonconvex stochastic optimization.
The convergence of AMSGrad for nonconvex optimization
was recently studied in [17] (see [18, Theorem 3], [19,
Section 4], [20, Section 3], and [21, Sections 3.5 and 3.6] for
convergence analyses of Stochastic Gradient Descent (SGD)
methods for nonconvex optimization). The results in [17] show
that AMSGrad can be applied to nonconvex optimization in
deep learning. In particular, Corollary 3.1 in [17] indicates
that AMSGrad with diminishing learning rates for nonconvex
optimization achieves an O(lnn/

√
n) convergence rate (see

[17, Corollary 3.2] for a convergence analysis of the AdaGrad
with First Order Momentum (AdaFom) algorithm for noncon-
vex optimization).

In complicated stochastic optimizations, the learning rates
are approximately zero for some iterations of adaptive-
learning-rate optimization algorithms if diminishing learning
rates are adopted, indicating that diminishing learning rates
are not practical. Even if this basic problem were overcome,
the problem of empirically selecting appropriate learning rates
for obtaining sufficient convergence speed would still remain,
and setting these rates in advance in such a way that the
convergence speed is guaranteed is prohibitively difficult, due
to the rates significantly affecting the model parameters (see
Subchapter 8.5 in [9]). We avoid both problems by using
constant learning rates [22].

The first motivation behind this work is to identify whether
adaptive-learning-rate optimization algorithms (Algorithm 1),
including Adam and AMSGrad, with constant learning rates
can in theory be applied to nonconvex optimization in deep
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learning. This is significant from the viewpoint of practice
since using constant learning rates would make adaptive-
learning-rate optimization algorithms truly implementable.

The second motivation is to identify whether Algorithm 1
can achieve a better convergence rate than the previous results.
We look in particular at the case of AMSGrad—which is in-
cluded in Algorithm 1 (Section II)—with diminishing learning
rates to see whether (for the convex setting) it surpasses the
O(
√

(1 + lnn)/n) convergence rate reported in [13] or (for
the nonconvex setting) it does better than the O(lnn/

√
n)

convergence rate reported in [17].
The results of this study include the sufficient conditions

for both constant and diminishing learning rates in order that
Algorithm 1 is guaranteed to solve a nonconvex stochastic
optimization problem. We consider this to be one of the two
contributions of this paper (see Theorems III.1 and III.2). In
particular, we show that Algorithm 1 with a constant learning
rate has approximately O(1/n) convergence (Theorem III.1),
which is superior to the convergence rates reported in [17] for
diminishing learning rates. Because the learning rate never be-
comes zero, the analysis for constant learning rates (Theorem
III.1) should be of theoretical interest as well as being useful
for practical applications.

The second contribution is to show that Algorithm 1 with
diminishing learning rates achieves an O(1/

√
n) convergence

rate (Theorem III.2), which improves on the results in [13]
and [17]. In the special case where cost functions are convex,
our analyses guarantee that Algorithm 1 can solve the convex
stochastic optimization problem (Propositions III.1 and III.2),
in contrast to the previously reported results in [12] and [13]
showing Adam and AMSGrad achieving low regret.

To supplement the convergence analysis reports (Theorems
III.1 and III.2), Algorithm 1 is applied to the stochastic
optimization of tasks in text and image classification. As
a result, it was found numerically that the algorithm with
constant learning rates is superior to the same algorithm with
diminishing learning rates (Section IV).

The remainder of the paper is as follows. First, the math-
ematical preliminaries and the main problem are laid out in
Section II, among with related problems and a more detailed
discussion of the motivations behind the present study. These
preliminaries include the notation used in this paper, which
is summarized in Table I. Then, the adaptive-learning-rate
optimization algorithm (Algorithm 1) for solving the main
problem is presented in Section III and its convergence is
analyzed. These analyses are then compared with previously
reported results, summarized in Table II. A numerical com-
parison of the proposed algorithm with constant versus dimin-
ishing learning rates follows in Section IV. Finally, a brief
summary is presented in Section V.

II. STATIONARY POINT PROBLEM FOR NONCONVEX
OPTIMIZATION

We consider the following stationary point problem (for
a detailed discussion of stationary point problems, see, e.g.,
Subchapter 1.3.1 in [23]):

Problem II.1 Let

(A1) X ⊂ Rd be a closed convex set such that projection
onto X can be easily computed; and

(A2) f : Rd → R be defined such that f(x) := E[F (x, ξ)]
is well defined for all x ∈ Rd for some F (·, ξ) that is
continuously differentiable for all ξ ∈ Ξ.

Find any stationary point x⋆ for the problem of minimizing f
over X , i.e.,

x⋆ ∈ X⋆ := {x⋆ ∈ X : ⟨x− x⋆,∇f(x⋆)⟩ ≥ 0 (x ∈ X)} .

If X = Rd, then X⋆ = {x⋆ ∈ Rd : ∇f(x⋆) = 0}. A point
x⋆ ∈ Rd satisfying ∇f(x⋆) = 0 is a local minimizer of f
over Rd. In the case that f is convex, all x⋆ ∈ X⋆ are also
global minimizers of f over X .

We will examine Problem II.1 under the following condi-
tions [6, Assumptions (A1) and (A2)].
(C1) For the random vector ξ, there exists an indepen-

dent identically distributed (i.i.d.) sample of realizations
ξ0, ξ1, . . .;

(C2) There exists an oracle that for input (x, ξ) ∈
Rd × Ξ returns stochastic gradient G(x, ξ) such that
E[G(x, ξ)]= ∇f(x);

(C3) A positive scalar M exists such that E[∥G(x, ξ)∥2] ≤
M2 for all x ∈ X .

A. Related work

The main objective of adaptive-learning-rate optimization
algorithms is to solve Problem II.1 with f(x) = E[F (x, ξ)] =
(1/T )

∑T
t=1 ft(x) under (A1) and (A2) and (C1)–(C3), i.e.,

minimize
∑
t∈T

ft(x) subject to x ∈ X, (1)

where T := {1, 2, . . . , T} is the index set of training examples
and ft(·) = F (·, t) : Rd → R (t ∈ T ) is a differentiable loss
function.

1) Convex case: The measure of the performance of
adaptive-learning-rate optimization algorithms in solving prob-
lem (1) when ft (t ∈ T ) is convex is called the regret and is
defined as follows:

R(T ) :=
∑
t∈T

ft(xt)− f⋆, (2)

where f⋆ denotes the optimal value for problem (1) and
(xt)t∈N ⊂ X is the sequence generated by a learning algo-
rithm. Adam [12] is useful for training deep neural networks.
In particular, as indicated in Theorem 4.1 in [12], using Adam
guarantees the existence of a positive real number D such
that R(T )/T ≤ D/

√
T . However, Theorem 1 in [13] shows

a counter-example that disproves Theorem 4.1 in [12].
AMSGrad [13] was proposed as a way to guarantee the

convergence of Adam. The AMSGrad algorithm is as follows:

mn := βnmn−1 + (1− βn)G(xn, ξn),

vn := δvn−1 + (1− δ)G(xn, ξn)⊙ G(xn, ξn),

v̂n = (v̂n,i) := (max{v̂n−1,i, vn,i}) ,

Hn := diag
(√

v̂n,i

)
,

xn+1 := PX,Hn

(
xn − αnH

−1
n mn

)
,

(3)
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TABLE I: Notation List

Notation Description

N The set of all positive integers and zero
Rd A d-dimensional Euclidean space with inner product ⟨·, ·⟩, which induces the norm ∥ · ∥
Sd The set of d× d symmetric matrices, i.e., Sd = {M ∈ Rd×d : M = M⊤}
Sd++ The set of d× d symmetric positive-definite matrices, i.e., Sd++ = {M ∈ Sd : M ≻ O}
Dd The set of d× d diagonal matrices, i.e., Dd = {M ∈ Rd×d : M = diag(xi), xi ∈ R (i = 1, 2, . . . , d)}

A⊙B The Hadamard product of matrices A and B (x⊙ x := (x2
i ) ∈ Rd (x := (xi) ∈ Rd))

⟨x,y⟩H The H-inner product of Rd, where H ∈ Sd++, i.e., ⟨x,y⟩H := ⟨x, Hy⟩
∥x∥2H The H-norm, where H ∈ Sd++, i.e., ∥x∥2H := ⟨x, Hx⟩
PX The metric projection onto a nonempty, closed convex set X (⊂ Rd)

PX,H The metric projection onto X under the H-norm
E[Y ] The expectation of a random variable Y

ξ A random vector whose probability distribution P is supported on a set Ξ ⊂ Rd1

F (·, ξ) A function from Rd to R continuously differentiable for all ξ ∈ Ξ

f The objective function defined by f(x) := E[F (x, ξ)] for all x ∈ Rd

∇f The gradient of f
G(x, ξ) The stochastic gradient for a given (x, ξ) ∈ Rd × Ξ which satisfies E[G(x, ξ)] = ∇f(x)

X⋆ The set of stationary points of the problem of minimizing f over X

where x0,m−1 ∈ Rd, v−1 = v̂−1 = 0 ∈ Rd, and δ ∈
[0, 1). The AMSGrad algorithm has the following property
(see Corollary 4.2 in [12] and Theorem 4 and Corollary 1 in
[13]): suppose that βn := νλn (ν, λ ∈ (0, 1)), θ := ν/

√
δ < 1,

and αn := α/
√
n (α > 0). For AMSGrad (3), some positive

real number D̂ exists such that the following bound holds:

R(T )

T
=

1

T

(
T∑

t=1

ft(xt)− f⋆

)
≤ D̂

√
1 + lnT

T
. (4)

Two algorithms based on Adam and AMSGrad were pre-
sented in [24]. One of the two algorithms is called AMS-
GWDC (named for AMSGrad with weighted gradient and
dynamic bound of learning rate), which was obtained by
modifying Hn in (3) with a clip function. For AMSGWDC,
taking αn := α/

√
n and βn := β1e

−β2n, where β1, β2 > 0,
guarantees the following [24, Appendix B]: there exists some
positive real number D̃ such that the bound R(T )/T ≤ D̃/

√
T

holds.
AMSGrad where βn = 0 and Hn is the identity matrix, i.e.,

xn+1 = xn − αnG(xn, ξn), (5)

is the corresponding SGD method. A parallel SGD algorithm
[22, Algorithm 3] was presented for solving problem (1) when
X = Rd and ft(x) := (λ/2)∥x∥2 + Lt(x) (x ∈ Rd), where
λ > 0 and Lt : Rd → R (t ∈ T ) is convex. Theorem 12
in [22] shows that, under certain assumptions [22, (6)], the
sequence (wn)n∈N generated by the parallel SGD algorithm
with k machines and a constant learning rate α satisfies that,
for n := (ln k − (lnα+ lnλ))/(2αλ),

E [f(wn)]− f⋆ ≤
8αG2

√
∥∇f∥√

kλ
+

8αG2∥∇f∥
kλ

+ 2αG2,

(6)

where G > 0 is a constant. See [25] for two natural variants
of SGD (5), greedy deploy and lazy deploy, for optimizing
jointly smooth, strongly convex loss functions.

2) Nonconvex case: Let us next consider the following
stationary point problem [17, (1), (2), Theorem 3.1] associated
with a nonconvex optimization problem (1) in the case that ft
(t ∈ T ) is nonconvex and X = Rd: find a point x⋆ ∈ Rd such
that

x⋆ ∈ X⋆ =
{
x⋆ ∈ Rd : ∇f(x⋆) = 0

}
. (7)

Under certain assumptions [17, p.4], AMSGrad (3) has the
following property (see Theorem 3.1 and Corollary 3.1 in
[17]): Let (gn,i) := G(xn, ξn). Suppose that there exists c > 0
such that, for all i = 1, 2, . . . , d, |g0,i| ≥ c, (βn) ⊂ [0, 1) is
non-increasing, and αn := 1/

√
n. Using AMSGrad (3) for

problem (7) ensures that there are positive real numbers Q1

and Q2 such that, for all n ∈ N,

min
k∈[n]

E
[
∥∇f(xk)∥2

]
≤ 1√

n
(Q1 +Q2 lnn) , (8)

where [n] := {1, 2, . . . , n}. AdaBelief (named for adapting
stepsizes by the belief in observed gradients) was presented in
[26], which uses vn := δvn−1 + (1− δ)(G(xn, ξn)−mn)⊙
(G(xn, ξn)−mn) in place of vn in (3). If vn+1,i ≥ vn,i holds,
then AdaBelief with αn := α/

√
n has convergence satisfying

(8) [26, Theorem 2.2].
Recently, useful results for SGD (5) were presented for

solving problem (7). The convergence analyses of SGD (5)
with both constant and diminishing learning rates were pre-
sented in [19]. In particular, for a constant learning rate
αn = 1/β, where β > 0 is the Lipschitz constant of ∇f , the
following was reported [19, Theorem 12]: there exist positive
real numbers M1 and M2 such that, for all n ∈ N, almost
surely

1

n

n∑
k=1

∥∇f(xk)∥2 ≤
M1

n
+M2.

See [19, Theorem 11] for the convergence rate of SGD
being O(1/

√
n) with a diminishing learning rate αn =

min{O(1/
√
n), 1/β} (this result is also listed in Table II).
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Theorem 3.8 in [21] indicates that, under certain assump-
tions, using SGD (5) with the stochastic Polyak step-size (SPS)
defined by αn = min{(ft(xn) − f∗

t )/(c∥∇ft(xn)∥2), γb}
guarantees that there exist positive real numbers M3 and
M4 such that, for all n ∈ N, mink∈[n] E[∥∇f(xk)∥2] ≤
M3/n+M4, where c, γb > 0 and f∗

t := infx∈Rd ft(x).
A minibatch SGD with a diminishing learning rate αn =

O(1/n) was presented in [20], and Theorem 3.2 in [20]
shows that, under certain assumptions, using minibatch SGD
guarantees that there exists C1 > 0 such that, with high
probability, ∥∇f(xn)∥2 ≤ C(C1/n + m−1/2+ϵ), where m
(> C) is the minibatch size and ϵ ∈ (0, C ln(lnm)/ lnm).
See [27] for an appropriate minibatch setting for achieving
an ϵ-approximation of Stochastic Path Integrated Differential
EstimatoR (SPIDER).

B. Motivation
It was shown in Section II-A that the existing adaptive-

learning-rate optimization algorithms are suitable for both
convex and nonconvex stochastic optimization problems. Here,
we discuss two motivations for the present work that are
related to the results in [13], [17], [19], [22]. In the cases of
[13], [17], only a convergence analysis of AMSGrad with a
diminishing learning rate was reported. Since such diminishing
learning rates became approximately zero after a large number
of iterations, an algorithm using such rates is not practical. In
the case of [22], a convergence analysis of a parallel SGD al-
gorithm with a constant learning rate, which does not have this
problem, was presented. However, those results were limited
to convex optimization. In the case of [19], although a useful
convergence analysis of SGD with a constant learning rate was
presented for nonconvex optimization, it remains necessary
to develop adaptive-learning-rate optimization algorithms with
constant learning rates for nonconvex optimization. Accord-
ingly, the first motivation of the present study was to identify
whether AMSGrad with constant learning rates would be such
an algorithm in the context of deep learning.

The second motivation was to identify whether AMSGrad
can achieve a better convergence rate than previous results.
In particular, we would like to show that, for the convex
setting, AMSGrad with a diminishing learning rate (e.g.,
αn = 1/

√
n) achieves a better convergence rate than (4)

and, for the nonconvex setting, AMSGrad with a diminishing
learning rate (e.g., αn = 1/

√
n) achieves a better convergence

rate than (8).
We also analyze the following modified Adam algorithm

based on the definition of v̂n in AMSGrad (3):

mn := βnmn−1 + (1− βn)G(xn, ξn),

vn := δvn−1 + (1− δ)G(xn, ξn)⊙ G(xn, ξn),

v̄n :=
vn

1− δn+1
,

v̂n = (v̂n,i) := (max{v̂n−1,i, v̄n,i}) ,

Hn := diag
(√

v̂n,i

)
,

xn+1 := PX,Hn

(
xn − αnH

−1
n mn

)
,

(9)

where x0,m−1 ∈ Rd, v−1 = v̂−1 = 0 ∈ Rd, and δ ∈ [0, 1).
We can see that Adam [12] uses Hn = diag(v̄

1/2
n,i ). We use

v̂n = (v̂n,i) := (max{v̂n−1,i, v̄n,i}) in (9) so as to guarantee
the convergence of algorithm (9).

To analyze both AMSGrad (3) and the modified Adam
(9), we study the following algorithm which includes both.
Throughout this paper, we refer to the parameters αn and βn

as sub-learning rates.

Algorithm 1 Adaptive learning rate optimization algorithm
for solving Problem II.1

Require: (αn)n∈N ⊂ (0, 1), (βn)n∈N ⊂ [0, 1), γ ∈ [0, 1)
1: n← 0, x0,m−1 ∈ Rd, H0 ∈ Sd++ ∩ Dd

2: loop
3: mn := βnmn−1 + (1− βn)G(xn, ξn)

4: m̂n :=
mn

1− γn+1

5: Hn ∈ Sd++ ∩Dd (see (3) and (9) for examples of Hn)
6: Find dn ∈ Rd that solves Hnd = −m̂n

7: xn+1 := PX,Hn(xn + αndn)
8: n← n+ 1
9: end loop

III. CONVERGENCE ANALYSES OF ALGORITHM 1

In the convergence analyses of Algorithm 1 presented here,
we adopt the following set of conditions as assumptions.

Assumption III.1 For Algorithm 1, first, with the decompo-
sition Hn := diag(hn,i), sequence (Hn)n∈N ⊂ Sd++ ∩ Dd

satisfies the following two conditions:

(A3) hn+1,i ≥ hn,i almost surely for all n ∈ N and all i =
1, 2, . . . , d;

(A4) For all i = 1, 2, . . . , d, a positive number Bi exists such
that sup{E[hn,i] : n ∈ N} ≤ Bi.

Second, with the decomposition xn = (xn,i), the generated
sequence (xn)n∈N satisfies the following condition: for x =
(xi) ∈ X ,

(A5) D := maxi=1,2,...,d sup{(xn+1,i − xi)
2 : n ∈ N} <

+∞.

Assumption (A5) holds if X is bounded, which was as-
sumed in [6, p.1574], [12, Theorem 4.1], and [13, p.2]. Here,
we show that (Hn)n∈N defined for either AMSGrad (3) or
Adam (9) satisfies (A3) and (A4) given that X is bounded
(i.e., (A5) holds).

To show this, we first consider Hn and vn (n ∈ N)
defined for Adam (9). The definitions of v̂n and Hn =
diag(hn,i) = diag(v̂

1/2
n,i ) ∈ Sd++ ∩ Dd in (9) obviously

satisfy (A3). Step 7 in Algorithm 1 implies that (xn)n∈N ⊂
X . Accordingly, the boundedness of X and (A2) ensure
that (G(xn, ξn))n∈N is almost surely bounded, i.e., M1 :=
sup {∥G(xn, ξn)⊙ G(xn, ξn)∥ : n ∈ N} < +∞. Moreover,
from the definition of vn and the triangle inequality, we have,
for all n ∈ N, ∥vn∥ ≤ δ∥vn−1∥+ (1− δ)M1. Induction thus
shows that, for all n ∈ N, ∥vn∥ = (

∑d
i=1 |vn,i|2)1/2 ≤ M1

almost surely, which, together with the definition of v̄n,
implies that ∥v̄n∥ = (

∑d
i=1 |v̄n,i|2)1/2 ≤ M1/(1 − δ).

Accordingly, we have, for all n ∈ N and all i = 1, 2, . . . , d,
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|vn,i|2, |v̄n,i|2 ≤ M2
1 /(1 − δ)2. The definition of v̂n and

v̂−1 = 0 ensure that, for all n ∈ N and all i = 1, 2, . . . , d,

E[hn,i] := E
[√

v̂n,i

]
≤ M1

1− δ
,

which implies that (A4) holds.
Next, we consider Hn and vn (n ∈ N) defined for AMSGrad

(3). A discussion similar to the one showing that Hn and vn

defined by (9) satisfy (A3) and (A4) ensures that Hn and vn

defined by (3) also satisfy (A3) and (A4); i.e., for all n ∈ N
and all i = 1, 2, . . . , d,

E[hn,i] := E
[√

v̂n,i

]
≤M1.

A. Constant sub-learning rate case

Here we present a convergence analysis of Algorithm 1
for constant sub-learning rates. The proof of the following
theorem is given in Appendix A.

Theorem III.1 Under assumptions (A1)–(A5) and (C1)–(C3)
and supposing that sequence (xn)n∈N was generated by
Algorithm 1 using αn := α and βn := β (n ∈ N), the
following relation holds for all x ∈ X:

lim sup
n→+∞

E [⟨x− xn,∇f(xn)⟩] ≥ −
B̃2M̃2

2b̃γ̃2
α− M̃

√
Dd

b̃γ̃
β,

where B̃ := sup{maxi=1,2,...,d h
−1/2
n,i : n ∈ N} < +∞,

M̃2 := max{∥m−1∥2,M2} and γ̃ := 1 − γ, b̃ := 1 − β
(Note that D was defined in (A5)). Furthermore, the following
two relations hold for all x ∈ X and all n ∈ N:

1

n

n∑
k=1

E [⟨x− xk,∇f(xk)⟩]

≥ −
D
∑d

i=1 Bi

2b̃αn
− B̃2M̃2

2b̃γ̃2
α− M̃

√
Dd

b̃
β,

max
k∈[n]

E [⟨x− xk,∇f(xk)⟩]

≥ −
D
∑d

i=1 Bi

2b̃αn
− B̃2M̃2

2b̃γ̃2
α− M̃

√
Dd

b̃
β.

Theorem III.1 leads to the following proposition.

Proposition III.1 Under assumptions (A1)–(A5) and (C1)–
(C3) and supposing that F (·, ξ) is convex for any fixed ξ ∈ Ξ
and that (xn)n∈N is the sequence generated by Algorithm 1
using αn := α and βn := β (n ∈ N), the following relation
holds:

lim inf
n→+∞

E [f(xn)− f⋆] ≤ B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃γ̃
β,

where f⋆ denotes the optimal objective function value for the
problem of minimizing f over X , and γ̃, b̃, M̃ , D, and B̃ are
as defined in Theorem III.1. Furthermore, for all n ∈ N, the
following relation holds:

min
k∈[n]

E [f(xk)− f⋆] ≤
D
∑d

i=1 Bi

2b̃αn
+

B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃
β.

If we additionally define the elements of the sequence (x̃n)n∈N
by x̃n := (1/n)

∑n
k=1 xk, then the following relation holds:

E [f(x̃n)− f⋆] ≤
D
∑d

i=1 Bi

2b̃αn
+

B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃
β.

Finally, for problem (1), the regret for Algorithm 1 satisfies
the following relation:

R(T )

T
≤

D
∑d

i=1 Bi

2b̃αT
+

B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃
β.

B. Diminishing sub-learning rate case

Here we give a convergence analysis of Algorithm 1 for
diminishing sub-learning rates. The proof of the following
theorem is also presented in Appendix A.

Theorem III.2 Under assumptions (A1)–(A5) and (C1)–(C3)
and supposing that sequence (xn)n∈N was generated by Algo-
rithm 1 using αn and βn (n ∈ N)1 such that

∑+∞
n=0 αn = +∞,∑+∞

n=0 α
2
n < +∞, and

∑+∞
n=0 αnβn < +∞, the following

relation holds for all x ∈ X:

lim sup
n→+∞

E [⟨x− xn,∇f(xn)⟩] ≥ 0. (10)

For the case of αn := 1/nη (η ∈ [1/2, 1))2 and βn := λn

(λ ∈ (0, 1)), Algorithm 1 has convergences such that, for all
x ∈ X and all n ∈ N,

1

n

n∑
k=1

E [⟨x− xk,∇f(xk)⟩]

≥ −
D
∑d

i=1 Bi

2b̃n1−η
− B̃2M̃2

2b̃γ̃2(1− η)n1−η
− M̃λ

√
Dd

b̃(1− λ)n
,

max
k∈[n]

E [⟨x− xk,∇f(xk)⟩]

≥ −
D
∑d

i=1 Bi

2b̃n1−η
− B̃2M̃2

2b̃γ̃2(1− η)n1−η
− M̃λ

√
Dd

b̃(1− λ)n
,

where D, b̃, M̃ , B̃, and γ̃ are the same as in Theorem III.1.

Theorem III.2 leads to the following.

Proposition III.2 Under assumptions (A1)–(A5) and (C1)–
(C3), suppose that F (·, ξ) is convex for any fixed ξ ∈ Ξ and
that (xn)n∈N is the sequence generated by Algorithm 1 using
αn := 1/nη (η ∈ [1/2, 1]) and βn := λn (n ∈ N; λ ∈ (0, 1)).
If η ∈ (1/2, 1], then the following limit holds:

lim inf
n→+∞

E [f(xn)− f⋆] = 0,

where f⋆ denotes the optimal objective function value for the
problem of minimizing f over X . If η ∈ [1/2, 1), any accumu-
lation point of (x̃n)n∈N, defined by x̃n := (1/n)

∑n
k=1 xk, al-

1The sub-learning rates αn := 1/nη (η ∈ (1/2, 1]) and βn := λn (λ ∈
(0, 1)) satisfy

∑+∞
n=0 αn = +∞,

∑+∞
n=0 α

2
n < +∞, and

∑+∞
n=0 αnβn <

+∞ (by limn→+∞(αn+1βn+1)/(αnβn) = λ ∈ (0, 1)).
2Algorithm 1 with αn := 1/

√
n and βn := λn does not satisfy (10).

However, Algorithm 1 with αn := 1/
√
n and βn := λn achieves a

convergence rate of O(1/
√
n).
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most surely belongs to X⋆, and Algorithm 1 has convergences
such that, for all n ∈ N,

E [f(x̃n)− f⋆] ≤
D
∑d

i=1 Bi

2b̃nθ
+

B̃2M̃2

2b̃γ̃2θnθ
+

M̃λ̃
√
Dd

b̃n
,

min
k∈[n]

E [f(xk)− f⋆] ≤
D
∑d

i=1 Bi

2b̃nθ
+

B̃2M̃2

2b̃γ̃2θnθ
+

M̃λ̃
√
Dd

b̃n
,

where D, b̃, M̃ , B̃, and γ̃ are the same as in Theorem III.1,
λ̃ := λ/(1− λ), and θ := 1− η. Finally, for problem (1), the
regret for Algorithm 1 satisfies the following relation:

R(T )

T
≤

D
∑d

i=1 Bi

2b̃T θ
+

B̃2M̃2

2b̃γ̃2θT θ
+

M̃λ̃
√
Dd

b̃T
.

C. Comparison between Algorithm 1 and existing algorithms

Table II summarizes the results of the existing algorithms
discussed in Section II-A and our results presented in Sections
III-A and III-B for convex and nonconvex optimization. The
following are detailed comparisons for adaptive-learning-rate
optimization algorithms, such as AMSGrad and Algorithm 1.

1) Convex case: AMSGrad [13] with αn := 1/
√
n has

convergence satisfying (4). In comparison, Propositions III.1
and III.2 indicate that AMSGrad (i.e., Algorithm 1 with Hn

defined by (3)) has convergence satisfying

R(T )

T
≤

{
O
(
1
T

)
+ C1α+ C2β (Proposition III.1),

O
(

1
T 1−η

)
(Proposition III.2),

where C1 and C2 are constants independent of T . In particular,
AMSGrad with αn := 1/

√
n (i.e., η = 1/2) has convergence

satisfying

R(T )

T
≤ O

(
1√
T

)
,

which is better than (4). Proposition III.1 shows that Algorithm
1 with constant sub-learning rates α and β satisfies

lim inf
n→+∞

E [f(xn)− f⋆] ≤ C1α+ C2β.

This result resembles (6) for the parallel SGD, indicating that
there exists C > 0 such that, for some n, E[f(wn) − f⋆] ≤
Cα.

2) Nonconvex case: AMSGrad [17] with αn := 1/
√
n

satisfies that, for all n ∈ N,

min
k∈[n]

E
[
∥∇f(xk)∥2

]
= O

(
lnn√
n

)
(11)

(see also (8)). Meanwhile, Theorem III.2 indicates AMSGrad
(i.e., Algorithm 1 with Hn defined by (3)) with αn := 1/nη ,
where η ∈ [1/2, 1], satisfies that, if η ∈ (1/2, 1], then, for all
x ∈ X ,

lim sup
n→+∞

E [⟨x− xn,∇f(xn)⟩] ≥ 0, (12)

and if η ∈ [1/2, 1), then, for all x ∈ X and all n ∈ N,

1

n

n∑
k=1

E [⟨x− xk,∇f(xk)⟩] ≥ −O
(

1

n1−η

)
,

max
k∈[n]

E [⟨x− xk,∇f(xk)⟩] ≥ −O
(

1

n1−η

)
. (13)

Unlike (11), η = 1/2 is not allowed for (12) to hold.
However, (12) guarantees that Algorithm 1 with diminishing
sub-learning rates converges to a point in X⋆ in the sense that
an accumulation point of (xn)n∈N belonging to X⋆ exists. If
X = Rd, then for all η ∈ [1/2, 1) and all n ∈ N, (13) implies
that AMSGrad (3) satisfies

min
k∈[n]

E
[
∥∇f(xk)∥2

]
= O

(
1

n1−η

)
, (14)

which, for the case of η = 1/2, is better than (11).

IV. NUMERICAL EXPERIMENTS

We examined the behavior of Algorithm 1 for different
sub-learning rates. The adaptive-learning-rate optimization al-
gorithms with δ = 0.999 [12], [13] and the default values
in torch.optim3 were as follows, where the initial points
initialized automatically by PyTorch were used.

Algorithm 1 with constant sub-learning rates:
• ADAM-C1: Algorithm 1 with (9), γ = 0.9, αn = 10−3,

and βn = 0.9
• ADAM-C2: Algorithm 1 with (9), γ = 0.9, αn = 10−3,

and βn = 10−3

• ADAM-C3: Algorithm 1 with (9), γ = 0.9, αn = 10−2,
and βn = 10−2

• AMSG-C1: Algorithm 1 with (3), γ = 0, αn = 10−3,
and βn = 0.9

• AMSG-C2: Algorithm 1 with (3), γ = 0, αn = 10−3,
and βn = 10−3

• AMSG-C3: Algorithm 1 with (3), γ = 0, αn = 10−2,
and βn = 10−2

• MAMSG-C1: Algorithm 1 with (3), γ = 0.1, αn = 10−3,
and βn = 0.9

• MAMSG-C2: Algorithm 1 with (3), γ = 0.1, αn = 10−3,
and βn = 10−3

• MAMSG-C3: Algorithm 1 with (3), γ = 0.1, αn = 10−2,
and βn = 10−2

Algorithm 1 with diminishing sub-learning rates:
• ADAM-D1: Algorithm 1 with (9), γ = 0.9, αn = 1/

√
n,

and βn = 1/2n

• ADAM-D2: Algorithm 1 with (9), γ = 0.9, αn = 1/n3/4,
and βn = 1/2n

• ADAM-D3: Algorithm 1 with (9), γ = 0.9, αn = 1/n,
and βn = 1/2n

• AMSG-D1: Algorithm 1 with (3), γ = 0, αn = 1/
√
n,

and βn = 1/2n

• AMSG-D2: Algorithm 1 with (3), γ = 0, αn = 1/n3/4,
and βn = 1/2n

• AMSG-D3: Algorithm 1 with (3), γ = 0, αn = 1/n, and
βn = 1/2n

• MAMSG-D1: Algorithm 1 with (3), γ = 0.1, αn =
1/
√
n, and βn = 1/2n

• MAMSG-D2: Algorithm 1 with (3), γ = 0.1, αn =
1/n3/4, and βn = 1/2n

• MAMSG-D3: Algorithm 1 with (3), γ = 0.1, αn = 1/n,
and βn = 1/2n

3https://pytorch.org/docs/stable/optim.html
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TABLE II: Convergence rates of stochastic optimization algorithms for convex and nonconvex optimization

Convex optimization Nonconvex optimization
Constant learning rate Diminishing learning rate Constant learning rate Diminishing learning rate

SGD [19] O
(

1

T

)
+ C O

(
1

√
T

)
O
(
1

n

)
+ C O

(
1
√
n

)
SGD with SPS [21] ——— O

(
1

T

)
+ C ——— O

(
1

n

)
+ C

Minibatch SGD [20] ——— O
(

1

T

)
+ C ——— O

(
1

n

)
+ C

Adam [12] ——— O
(

1
√
T

)(∗)
——— ———

AMSGrad [13] ——— O
(√

1 + lnT

T

)
——— ———

GWDC [24] ——— O
(

1
√
T

)
——— ———

AMSGWDC [24] ——— O
(

1
√
T

)
——— ———

AMSGrad [17] ——— O
(
lnT
√
T

)
——— O

(
lnn
√
n

)
AdaBelief [26] ——— O

(
lnT
√
T

)
——— O

(
lnn
√
n

)
Algorithm 1 (presented herein) O

(
1

T

)
+ C1α+ C2β O

(
1

√
T

)
O
(
1

n

)
+ C1α+ C2β O

(
1
√
n

)
Note: C, C1, and C2 are constants independent of learning rates α, β, number of training examples T , and number of iterations n. The convergence rate

for convex optimization is measured in terms of regret as R(T )/T , and the convergence rate for nonconvex optimization is measured as the expectation of
the squared gradient norm mink∈[n] E[∥∇f(x)∥2]. In the case of using constant learning rates, SGD [19] and Algorithm 1 can be applied to not only

convex but also nonconvex optimization. In the case of using diminishing learning rates, SGD [19] and Algorithm 1 had the best convergence rates,
O(1/

√
n). (*) Theorem 1 in [13] shows that a counter-example to the [12] results exists.

ADAM-C1 (Algorithm 1 with (9)) is a modification of
Adam [12], using the same parameters, that guarantees con-
vergence. AMSG-C1 coincides with AMSGrad [13]. We im-
plemented ADAM-Ci (resp. AMSG-Ci) (i = 2, 3) so that
we could compare ADAM-C1 (resp. AMSG-C1) with the
proposed algorithms with small constant sub-learning rates.
Their performances are compared to those using diminishing
sub-learning rates as specified in Theorem III.2, referred to
as ADAM-Di and AMSG-Di. Finally, MAMSG-Ci (resp.
MAMSG-Di) (i = 1, 2, 3) with γ = 0.1 is a modification
of AMSG-Ci (resp. AMSG-Di) with γ = 0.

All experiments were performed on a fast scalar compu-
tation server running at Meiji University. The experimental
environment is as follows: two Intel(R) Xeon(R) Gold 6148
at 2.4 GHz CPUs with 20 cores, 16 GB NVIDIA Tesla V100
at 900 Gbps GPU, Red Hat Enterprise Linux 7.6. The code
was all written in Python 3.8.2 using the NumPy 1.17.3 and
PyTorch 1.3.0 packages.

A. Text classification

Text classification was performed using long short-term
memory (LSTM), which is an artificial recurrent neural net-
work (RNN) architecture developed in the field of deep
learning for natural language processing. The LSTM imple-
mentation included an affine layer and at the output employed
a sigmoid function as the activation function. For the text
classification tasks, the IMDb dataset4 was used. This dataset
comprises 50,000 movie reviews and the associated binary
sentiment polarity labels, and these were split evenly (i.e.,
25,000 and 25,000 movie reviews) into training and test sets.

4https://datasets.imdbws.com/

The classification of the dataset employed a multilayer neural
network, and binary cross-entropy (BCE) was used as the loss
function.

In the experiment, constant sub-learning rates yielded better
performance with Algorithm 1 than did diminishing sub-
learning rates for both training loss and accuracy score (panels
(a) and (b), respectively, of Figures 1 and 2). For classification
scores, a box-plot comparison is included as Figure 5, where
the boxes represent the upper and lower quartiles and the
interior horizontal lines are the medians. Looking at the me-
dian, we can see that constant sub-learning rates yielded better
results than did diminishing sub-learning rates. We believe that
the reason for the inferior performance with diminishing sub-
learning rates was they became approximately zero after a
number of iterations, versus with constant sub-learning rates,
for which the learning rates never became zero.

B. Image classification

Image classification was performed using a Residual Net-
work (ResNet), which is a relatively deep model based on
a convolutional neural network (CNN). Specifically, a 20-
layer ResNet (ResNet-20) was employed and comprised 19
convolutional layers with 3×3 filters and a single 10-way fully
connected layer with a softmax function. Following common
practice in image classification, for fitting ResNet, the cross-
entropy was used as the loss function. The model on ResNet-
20 used batch normalization (nn.BatchNorm2d) based on
torchvision.models.ResNet5 [28]. As the database
this task, the CIFAR-10 dataset6 was used, which is considered

5https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.
py

6https://www.cs.toronto.edu/∼kriz/cifar.html
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a benchmark and is commonly used for image classification.
This dataset comprises 60,000 32× 32 color images assigned
equally to 10 classes (i.e., 6,000 images to each class). In the
experiment, 50,000 images were used as the training set and
the remaining 10,000 images constituted the test set. The test
batch comprised 1,000 randomly selected images from each
class.

In the experiment, constant sub-learning rates again yielded
better performance with Algorithm 1 than did diminishing sub-
learning rates for both training loss and accuracy score (panels
(a) and (b), respectively, of Figures 3 and 4). For classification
scores, a box-plot comparison is included as Figure 6. In
this case, diminishing sub-learning rates yielded mixed results
relative to constant sub-learning rates. In particular, as shown
in Figure 6(a), Algorithm 1 with constant sub-learning rates
yielded good classification scores in terms of the median, the
same as in the case of text classification (Figure 5). Figure 6(b)
shows that the accuracy scores for the image classification task
were less than 20% with diminishing sub-learning rates for all
algorithms except AMSG-D1 and AMSG-D2. Therefore, we
conclude that using of constant sub-learning rates is superior
for training neural networks.

V. CONCLUSION

Looking at a particular adaptive-learning-rate optimization
algorithm used for solving the stationary point problems
associated with nonconvex stochastic optimization problems in
the field of deep learning, the present study examined constant
versus diminishing sub-learning rates by performing separate
convergence and convergence rate analyses. For the algorithm
with constant sub-learning rates, it was found that the algo-
rithm can solve the problem. In the case of the algorithm with
diminishing sub-learning rates, O(1/

√
n) convergence can

be achieved. In the numerical experiments on the stochastic
optimization of text and image classification tasks, it was
found that the algorithm was successful, whereas Adam and
AMSGrad with diminishing sub-learning rates were not. In
particular, it was found that the algorithm with constant sub-
learning rates is sufficiently suitable for the training of neural
networks.

APPENDIX A
PROOFS OF THEOREMS III.1 AND III.2 AND PROPOSITIONS

III.1 AND III.2

Lemma A.1 Under assumptions (A1), (A2), (C1), and (C2),
if x ∈ X and n ∈ N, then

E
[
∥xn+1 − x∥2Hn

]
≤ E

[
∥xn − x∥2Hn

]
+ 2αn

{
1− βn

1− γn+1
E [⟨x− xn,∇f(xn)⟩]

+
βn

1− γn+1
E [⟨x− xn,mn−1⟩]

}
+ α2

nE
[
∥dn∥2Hn

]
.

Proof: For any x ∈ X and n ∈ N, the definition
of xn+1 and nonexpansivity of PX,Hn

(i.e., ∥PX,Hn
(x) −

PX,Hn
(y)∥Hn

≤ ∥x − y∥Hn
(x,y ∈ Rd)) imply that, almost

surely,

∥xn+1 − x∥2Hn

≤ ∥xn − x∥2Hn
+ 2αn ⟨xn − x,dn⟩Hn

+ α2
n ∥dn∥

2
Hn

.

Moreover, the definitions of dn, mn, and m̂n ensure that

⟨xn − x,dn⟩Hn
=

1

γ̃n
⟨x− xn,mn⟩

=
βn

γ̃n
⟨x− xn,mn−1⟩+

1− βn

γ̃n
⟨x− xn,G(xn, ξn)⟩ ,

where γ̃n := 1− γn+1. Hence, almost surely,

∥xn+1 − x∥2Hn

≤ ∥xn − x∥2Hn
+ 2αn

{
βn

γ̃n
⟨x− xn,mn−1⟩

+
1− βn

γ̃n
⟨x− xn,G(xn, ξn)⟩

}
+ α2

n ∥dn∥
2
Hn

.

(15)

Denote the history of process ξ0, ξ1, . . . to time step n by
ξ[n] = (ξ0, ξ1, . . . , ξn). The condition xn = xn(ξ[n−1]) (n ∈
N), (C1), and (C2) guarantee that

E [⟨x− xn,G(xn, ξn)⟩] = E
[
E
[
⟨x− xn,G(xn, ξn)⟩ |ξ[n−1]

]]
= E

[〈
x− xn,E

[
G(xn, ξn)|ξ[n−1]

]〉]
= E [⟨x− xn,∇f(xn)⟩] .

Therefore, the lemma follows by taking the expectation of
(15). 2

Lemma A.2 Under assumption (C3), E[∥mn∥2] ≤ M̃2 :=
max{∥m−1∥2,M2} for all n ∈ N. Under the additional
assumption (A3), E[∥dn∥2Hn

] ≤ B̃2M̃2/(1−γ)2 for all n ∈ N,
where B̃ := sup{maxi=1,2,...,d h

−1/2
n,i : n ∈ N} < +∞.

Proof: The convexity of ∥ · ∥2, together with the definition
of mn and (C3), guarantees that, for all n ∈ N, E[∥mn∥2] ≤
βnE[∥mn−1∥2] + (1 − βn)M

2. Induction thus ensures that,
for all n ∈ N,

E
[
∥mn∥2

]
≤ M̃2 := max

{
∥m−1∥2 ,M2

}
< +∞. (16)

For n ∈ N, Hn ≻ O guarantees the existence of a
unique matrix Hn ≻ O such that Hn = H

2

n [29, Theorem
7.2.6]. The relation ∥x∥2Hn

= ∥Hnx∥2 for all x ∈ Rd

and the definitions of dn and m̂n imply that E[∥dn∥2Hn
] =

E[∥H−1

n Hndn∥2] ≤ (1/γ̃2
n)E[∥H

−1

n ∥2∥mn∥2], for all n ∈ N,
where ∥H−1

n ∥ = ∥diag(h−1/2
n,i )∥ = maxi=1,2,...,d h

−1/2
n,i and

γ̃n := 1 − γn+1 ≥ 1 − γ . Bound (16) and B̃ :=
sup{maxi=1,2,...,d h

−1/2
n,i : n ∈ N} ≤ maxi=1,2,...,d h

−1/2
0,i <

+∞ (by (A3)) imply E[∥dn∥2Hn
] ≤ B̃2M̃2/(1 − γ)2, for all

n ∈ N, completing the proof. 2

The following theorem is a convergence rate analysis of
Algorithm 1.

Theorem A.1 Under assumptions (A1)–(A5) and (C1)–(C3),
suppose that (γn)n∈N defined by γn := αn(1−βn)/(1−γn+1)
and (βn)n∈N satisfy the relations γn+1 ≤ γn (n ∈ N) and
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Fig. 1: (a) Training loss function value, (b) training classification accuracy score, and (c) test classification accuracy score for
Algorithm 1 with constant sub-learning rates versus number of epochs on the IMDb dataset
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Fig. 2: (a) Training loss function value, (b) training classification accuracy score, and (c) test classification accuracy score for
Algorithm 1 with diminishing sub-learning rates versus number of epochs on the IMDb dataset

0 25 50 75 100 125 150 175 200
epoch

10−4

10−3

10−2

10−1

100

tra
in
in
g 
lo
ss

ADAM-C1
ADAM-C2
ADAM-C3
AMSG-C1
AMSG-C2
AMSG-C3
MAMSG-C1
MAMSG-C2
MAMSG-C3

(a)

25 50 75 100 125 150 175 200
epoch

0.950

0.960

0.970

0.980

0.990

1.000

ac
cu
ra
cy
 sc

or
e 
fo
r t
ra
in
in
g

ADAM-C1
ADAM-C2
ADAM-C3
AMSG-C1
AMSG-C2
AMSG-C3
MAMSG-C1
MAMSG-C2
MAMSG-C3

(b)

0 25 50 75 100 125 150 175 200
epoch

0.450

0.500

0.550

0.600

0.650

0.700

0.750

ac
cu
ra
cy
 sc

or
e

ADAM-C1
ADAM-C2
ADAM-C3
AMSG-C1
AMSG-C2
AMSG-C3
MAMSG-C1
MAMSG-C2
MAMSG-C3

(c)

Fig. 3: (a) Training loss function value, (b) training classification accuracy score, and (c) test classification accuracy score for
Algorithm 1 with constant sub-learning rates versus number of epochs on the CIFAR-10 dataset
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Fig. 4: (a) Training loss function value, (b) training classification accuracy score, and (c) test classification accuracy score for
Algorithm 1 with diminishing sub-learning rates versus number of epochs on the CIFAR-10 dataset
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Fig. 5: (a) Box-plot comparison of Algorithm 1 with constant sub-learning rates and (b) box-plot comparison of Algorithm 1
with diminishing sub-learning rates in terms of training classification accuracy scores on the IMDb dataset
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Fig. 6: (a) Box-plot comparison of Algorithm 1 with constant sub-learning rates and (b) box-plot comparison of Algorithm 1
with diminishing sub-learning rates in terms of training classification accuracy scores on the CIFAR-10 dataset

lim supn→+∞ βn < 1. For x ∈ X and n ∈ N, define Vn(x) =
Vn := E [⟨xn − x,∇f(xn)⟩] over all X and N. Then

1

n

n∑
k=1

Vk ≤
D
∑d

i=1 Bi

2b̃nαn

+
B̃2M̃2

2b̃γ̃2n

n∑
k=1

αk +
M̃
√
Dd

b̃n

n∑
k=1

βk,

for all x ∈ X and all n ≥ 1, where b̃ := 1 − b, γ̃ := 1 − γ,
(βn)n∈N ⊂ (0, b] ⊂ (0, 1), M̃ and B̃ are as defined in Lemma
A.2, and D and Bi are as defined in Assumption III.1.

Proof: Fix x ∈ X arbitrarily. Lemma A.1 guarantees that,
for all n ≥ 1,
n∑

k=1

Vk ≤
1

2

n∑
k=1

1

γk

{
E
[
∥xk − x∥2Hk

]
− E

[
∥xk+1 − x∥2Hk

]}
︸ ︷︷ ︸

Γn

+

n∑
k=1

βk

β̃k

E [⟨x− xk,mk−1⟩]︸ ︷︷ ︸
Bn

+
1

2b̃

n∑
k=1

αkE
[
∥dk∥2Hk

]
︸ ︷︷ ︸

An

,

(17)

where β̃n := 1 − βn (n ∈ N). From the definition of Γn and
E[∥xn+1 − x∥2Hn

]/γn ≥ 0,

Γn ≤
E
[
∥x1 − x∥2H1

]
γ1

(18)

+

n∑
k=2

E
[
∥xk − x∥2Hk

]
γk

−
E
[
∥xk − x∥2Hk−1

]
γk−1

︸ ︷︷ ︸
Γ̃n

.

Since Hk ≻ O exists such that Hk = H
2

k, we have ∥x∥2Hk
=

∥Hkx∥2 for all x ∈ Rd. Accordingly, we have

Γ̃n = E

[
n∑

k=2

{∥∥Hk(xk − x)
∥∥2

γk
−
∥∥Hk−1(xk − x)

∥∥2
γk−1

}]
.

Assumption III.1 ensures that we can express Hk as Hk =
diag(hk,i), where hk,i > 0 (k ∈ N, i = 1, 2, . . . , d). Hence,
for all k ∈ N and all x := (xi) ∈ Rd,

Hk = diag
(√

hk,i

)
and

∥∥Hkx
∥∥2 =

d∑
i=1

hk,ix
2
i . (19)

Hence, for all n ≥ 2,

Γ̃n = E

[
n∑

k=2

d∑
i=1

(
hk,i

γk
− hk−1,i

γk−1

)
(xk,i − xi)

2

]
.

From γk ≤ γk−1 (k ≥ 1) and (A3), we have hk,i/γk −
hk−1,i/γk−1 ≥ 0 (k ≥ 1, i = 1, 2, . . . , d). Moreover,
from (A5), D := maxi=1,2,...,d sup{(xn,i − xi)

2 : n ∈
N} < +∞. Accordingly, for all n ≥ 2, Γ̃n ≤
DE[

∑d
i=1(hn,i/γn − h1,i/γ1)]. Therefore, (18), E[∥x1 −

x∥2H1
]/γ1 ≤ DE[

∑d
i=1 h1,i/γ1], and (A4) imply, for all

n ∈ N,

Γn ≤
D

γn
E

[
d∑

i=1

hn,i

]
≤ D

γn

d∑
i=1

Bi,

which, together with γn := αn(1− βn)/(1− γn+1) and b̃ :=
1− b, implies

Γn ≤
D
∑d

i=1 Bi

b̃αn

. (20)
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From the Cauchy-Schwarz inequality and bounds D :=
maxi=1,2,...,d sup{(xn,i − xi)

2 : n ∈ N} < +∞ (by (A5))
and E[∥mn∥] ≤ M̃ (n ∈ N) (by Lemma A.2), we have that

Bn ≤
√
Dd

b̃

n∑
k=1

βkE [∥mk−1∥] ≤
M̃
√
Dd

b̃

n∑
k=1

βk, (21)

for all n ∈ N. It follows from E[∥dn∥2Hn
] ≤ B̃2M̃2/(1− γ)2

(n ∈ N) (by Lemma A.2) that

An :=

n∑
k=1

αkE
[
∥dk∥2Hk

]
≤ B̃2M̃2

(1− γ)2

n∑
k=1

αk, (22)

for all n ∈ N. Then the assertion of Theorem A.1 follows
from (17) and (20)–(22), completing the proof. 2

Lemmas A.1 and A.2 and Theorem A.1 lead to Theorem
III.1, as follows.

Proof of Theorem III.1: Let x ∈ X , αn := α ∈ (0, 1), and
βn := β = b ∈ (0, 1). We show that, for all ϵ > 0,

lim inf
n→+∞

Vn ≤
B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃γ̃
β +

Ddϵ

2b̃
+ ϵ. (23)

If (23) does not hold for all ϵ > 0, then there exists ϵ0 > 0
such that

lim inf
n→+∞

Vn >
B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃γ̃
β +

Ddϵ0

2b̃
+ ϵ0. (24)

Because (A3) and (A4) hold, there exists n0 ∈ N such that
n ∈ N with n ≥ n0 implies

E

[
d∑

i=1

(hn+1,i − hn,i)

]
≤ dαϵ0

2
. (25)

From (19), (25), (A3), and (A5), for all n ≥ n0,

Xn+1 − E
[
∥xn+1 − x∥2Hn

]
≤ Ddαϵ0

2
, (26)

where the bounds Xn := E[∥xn − x∥2Hn
] ≤ D

∑d
i=1 Bi <

+∞ hold for all n ∈ N from (A4) and (A5). Also, since
γ ∈ [0, 1), it follows that there exists n1 ∈ N such that n ∈ N,
n ≥ n1, implies

Xn+1γ
n+1 ≤ Ddαϵ0

2
. (27)

The definition of the limit inferior of (Vn)n∈N guarantees the
existence of n2 ∈ N such that lim infn→+∞ Vn − ϵ0/2 ≤ Vn,
for all n ≥ n2. By combining this with (24), we obtain that

Vn >
B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃γ̃
β +

Ddϵ0

2b̃
+

1

2
ϵ0, (28)

for all n ≥ n1. Thus, (26) taken with Lemmas A.1 and
A.2 implies that the following holds for all n ≥ n3 :=
max{n0, n1, n2}:

Xn+1 ≤ Xn +
Ddαϵ0

2
− 2αb̃

1− γn+1
Vn +

2M̃
√
Dd

γ̃
αβ

+
B̃2M̃2

γ̃2
α2,

where b̃ := 1−b and γ̃ := 1−γ. Hence, from (27), 1−γn+1 ≤
1, and (Xn+1 − Xn)γ

n+1 ≤ Xn+1γ
n+1 (n ∈ N), we have

that, for all n ≥ n3,

Xn+1 ≤ Xn +Ddαϵ0 − 2αb̃Vn +
2M̃
√
Dd

γ̃
αβ

+
B̃2M̃2

γ̃2
α2.

(29)

Therefore, (28) ensures that, for all n ≥ n3,

Xn+1 < Xn +Ddαϵ0 − 2αb̃

{
B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃γ̃
β

+
Ddϵ0

2b̃
+

1

2
ϵ0

}
+

2M̃
√
Dd

γ̃
αβ +

B̃2M̃2

γ̃2
α2

= Xn − αb̃ϵ0 < Xn3 − αb̃ϵ0(n+ 1− n3).

Note that the right-hand side of the final inequality approaches
minus infinity as n approaches positive infinity, producing
a contradiction. It follows that (23) holds for all ϵ > 0.
Given this arbitrariness of ϵ, we have that lim infn→+∞ Vn ≤
(B̃2M̃2/2b̃γ̃2)α + (M̃

√
Dd/b̃γ̃)β. Theorem A.1 implies the

assertions in Theorem III.1. This completes the proof. 2

Lemmas A.1 and A.2 and Theorem A.1 lead to Theorem
III.2, as follows.

Proof of Theorem III.2: By an argument similar to that
which obtained (29), Lemmas A.1 and A.2 guarantee that

2αkVk ≤ Xk −Xk+1 +DE

[
d∑

i=1

(hk+1,i − hk,i)

]
+

B̃2M̃2

γ̃2
α2
k

+ 2

(
M̃
√
Dd

γ̃
+ F

)
αkβk +D

d∑
i=1

Biγ
k+1,

for all k ∈ N, where F := sup{|Vn| : n ∈ N} < +∞ follows
from (A2) and (A5). By summing the above inequality from
k = 0 to k = n, we obtain

2

n∑
k=0

αkVk ≤ X0 +DE

[
d∑

i=1

(hn+1,i − h0,i)

]
+

B̃2M̃2

γ̃2

n∑
k=0

α2
k

+ 2

(
M̃
√
Dd

γ̃
+ F

)
n∑

k=0

αkβk +DB̂

n∑
k=0

γk+1,

where B̂ :=
∑d

i=1 Bi. Let (αn)n∈N and (βn)n∈N satisfy∑+∞
n=0 αn = +∞,

∑+∞
n=0 α

2
n < +∞, and

∑+∞
n=0 αnβn <

+∞. From (A4) and γ ∈ [0, 1), we have

+∞∑
k=0

αkVk < +∞. (30)

Next we show by contradiction that lim infn→+∞ Vn ≤ 0.
Suppose not. Then there must exist ζ > 0 and m0 ∈ N
such that Vn ≥ ζ for all n ≥ m0. It follows from
(30) and

∑+∞
n=0 αn = +∞ that +∞ = ζ

∑+∞
k=m0

αk ≤∑+∞
k=m0

αkVk < +∞, which is the contradiction. Therefore,
lim infn→+∞ Vn ≤ 0 must hold.

Letting αn := 1/nη (η ∈ [1/2, 1)) and βn := λn

(λ ∈ (0, 1)), it follows that γn+1 ≤ γn (n ∈ N)
and lim supn→+∞ βn < 1. Also, limn→+∞ 1/(nαn) =
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limn→+∞ 1/n1−η = 0 and (1/n)
∑n

k=1 αk ≤ (1/n)(1 +∫ n

1
dt
tη ) ≤ 1/((1 − η)n1−η). Furthermore,

∑n
k=1 βk ≤∑+∞

k=1 βk = λ/(1 − λ). These with Theorem A.1 imply that
mink∈[n] Vk, (1/n)

∑n
k=1 Vk ≤ O(1/n1−η), completing the

proof. 2

Proof of Proposition III.1: It follows form the assump-
tion that F (·, ξ) is convex for ξ ∈ Ξ that E[f(xn) −
f⋆] ≤ Vn and mink∈[n] E[f(xk) − f⋆], E[f(x̃n) − f⋆] ≤
(1/n)

∑n
k=1 E[f(xk)− f⋆] ≤ (1/n)

∑n
k=1 Vk. In the case of

problem (1), the relation R(T ) =
∑

t∈T (ft(xt)− ft(x
⋆)) ≤∑

t∈T ⟨xt − x⋆,G(xt, ξt)⟩ also holds. Thus, Proposition III.1
follows from Theorems III.1 and A.1. 2

Proof of Proposition III.2: We need only show that any
accumulation point of (x̃n)n∈N belongs to X⋆ almost surely.
We obtain limn→+∞ E[f(x̃n)− f⋆] = 0 from Theorem III.2
and the proof of Proposition III.1. If we let x̂ ∈ X be
an arbitrary accumulation point of (x̃n)n∈N ⊂ X , then the
existence of (x̃ni)i∈N ⊂ (x̃n)n∈N is guaranteed such that
(x̃ni)i∈N converges almost surely to x̂. The continuity of f
and the limit limn→+∞ E[f(x̃n)−f⋆] = 0 give us the relation
E [f(x̂)− f⋆] = 0 and thus that x̂ ∈ X⋆. 2
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