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Riemannian Adaptive Optimization Algorithm and
Its Application to Natural Language Processing

Hiroyuki Sakai, Hideaki Iiduka

Abstract—This paper proposes a Riemannian adaptive opti-
mization algorithm to optimize the parameters of deep neural
networks. The algorithm is an extension of both AMSGrad in
Euclidean space and RAMSGrad on a Riemannian manifold. The
algorithm helps to resolve two issues affecting RAMSGrad. The
first is that it can solve the Riemannian stochastic optimization
problem directly, in contrast to RAMSGrad which only achieves
a low regret. The other is that it can use constant learning rates,
which makes it implementable in practice. Additionally, we apply
the proposed algorithm to Poincaré embeddings that embed the
transitive closure of the WordNet nouns into the Poincaré ball
model of hyperbolic space. Numerical experiments show that
regardless of the initial value of the learning rate, our algorithm
stably converges to the optimal solution and converges faster than
the existing algorithms.

Index Terms—Riemannian optimization, RSGD, RAdaGrad,
RAdam, Riemannian adaptive optimization algorithm, RAMS-
Grad, Natural language processing, Poincaré embeddings, Hy-
perbolic space

I. INTRODUCTION

R IEMANNIAN optimization has attracted a great deal of
attention [1]–[3] in light of developments in machine

learning and deep learning. This paper focuses on Riemannian
adaptive optimization algorithms for solving an optimization
problem on a Riemannian manifold. In the field of machine
learning, there is an important example of the Riemannian
optimization problem. Nickel and Kiela [4] proposed Poincaré
embeddings, which embed hierarchical representations of sym-
bolic data (e.g., text, graph data) into the Poincaré ball model
of hyperbolic space. In fact, experiments on transitive closure
of the WordNet noun hierarchy showed that embeddings into
a 5-dimensional Poincaré ball are better than embeddings into
a 200-dimensional Euclidean space. Since the Poincaré ball
has a Riemannian manifold structure, the problem of finding
Poincaré embeddings should be considered to be a Riemannian
optimization problem.

Bonnabel [5] proposed Riemannian stochastic gradient de-
scent (RSGD), the most basic Riemannian stochastic opti-
mization algorithm. RSGD is a simple algorithm, but its slow
convergence is problematic. In [6], Sato, Kasai, and Mishra
proposed the Riemannian stochastic variance reduced gradient
(RSVRG) algorithm and gave a convergence analysis under
some natural assumptions. RSVRG converges to an optimal
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solution faster than RSGD; however, RSVRG needs to calcu-
late the full gradient every few iterations. In Euclidean space,
adaptive optimization algorithms, such as AdaGrad [7], Adam
[8, Algorithm 1], Adadelta [9], and AMSGrad [10, Algorithm
2], [11, Algorithm 1], are widely used for training deep
neural networks. However, these adaptive algorithms cannot
be naturally extended to general Riemannian manifolds, due
to the absence of a canonical coordinate system. Therefore,
special measures are required to extend the adaptive algorithms
to Riemannian manifolds. For instance, Kasai, Jawanpuria, and
Mishra [12] proposed adaptive stochastic gradient algorithms
on Riemannian matrix manifolds by adapting the row, and
column subspaces of gradients.

In the particular case of a product of Riemannian manifolds,
Bécigneul and Ganea [13] proposed Riemannian AMSGrad
(RAMSGrad) by regarding each component of the product
Riemannian manifold as a coordinate component in Euclidean
space. However, their convergence analysis had two points
requiring improvement. First, they only performed a regret
minimization (Theorem III.2) and did not solve the Rieman-
nian optimization problem. Second, they did a convergence
analysis with only a diminishing learning rate; i.e., they did
not perform a convergence analysis with a constant learning
rate. Since diminishing learning rates are approximately zero
after a large number of iterations, algorithms that use them are
not implementable in practice. In contrast, a constant learning
rate does not cause this problem.

The motivation of this work is to identify whether or not
RAMSGrad can be modified in such a way that it can be
applied to Riemannian optimization from the viewpoints of
both theory and practice. The theoretical motivation is to show
that the modified RAMSGrad can solve directly the Rieman-
nian optimization problem, while the practical motivation is to
show that it can be applied to important problems in natural
language processing and principal component analysis.

Motivated by the above discussion, we propose modified
RAMSGrad (Algorithm 1), which is an extension of RAMS-
Grad, to solve the Riemannian optimization problem (Problem
II.1). In addition, we give a convergence analysis (Theorem
III.1) valid for both a constant learning rate (Corollary III.1)
and diminishing learning rate (Corollary III.2). The analysis
leads to the finding that the proposed algorithm can solve
directly the Riemannian optimization problem. In particular,
we emphasize that the proposed algorithm can use a constant
learning rate to solve the problem (Corollary III.1), in contrast
to the previous result [13] in which RAMSGrad with a dimin-
ishing learning rate only performed a regret minimization (see
Subsection III-B for comparisons of the proposed algorithm
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with RAMSGrad). In numerical experiments, we apply the
proposed algorithm to Poincaré embeddings and compare it
with RSGD, Riemannian AdaGrad (RAdaGrad) [13, Section
3.2], and Riemannian Adam (RAdam) [13, Section 4] (Section
IV). We show that it converges to the optimal solution faster
than the existing algorithms and that it minimizes the objective
function regardless of the initial learning rate. In particular, we
show that the proposed algorithm with a constant learning rate
is a good way of embedding the WordNet mammals subtree
into a Poincaré ball. We also applied the algorithm to principal
component analysis and found that the choice between using a
constant or a diminishing learning rate depends on the dataset.
These numerical comparisons lead to the finding that the
proposed algorithm is good for solving important problems in
natural language processing and principal component analysis.

This paper is organized as follows. Section II gives the
mathematical preliminaries and states the main problem. Sec-
tion III describes the modified RAMSGrad and gives its
convergence analysis. Section IV numerically compares the
performance of the proposed learning algorithms with the
existing algorithms. Section V concludes the paper with a brief
summary.

II. MATHEMATICAL PRELIMINARIES

A. Definitions, assumptions, and main problem

Let M be a Riemannian manifold. An exponential map at
x ∈M , written as expx : TxM →M , is a mapping from the
tangent space TxM to M with the requirement that a vector
ξ ∈ TxM is mapped to the point y := expx(ξ) ∈ M such
that there exists a geodesic γ : [0, 1] → M , which satisfies
γ(0) = x, γ(1) = y, and γ̇(0) = ξ, where γ̇ is the derivative
of γ (see [14], [15]). Moreover, logx : M → TxM denotes a
logarithmic map at a point x ∈ M , which is defined as the
inverse mapping of the exponential map at x ∈ M . For all
x, y ∈M , the existence of logx(y) is guaranteed [16, Chapter
V, Theorem 4.1] [17, Proposition 2.1].

Next, we give the definitions of a geodesically convex set
and function (see [15, Section 2]) that generalize the concepts
of a convex set and function in Euclidean space.

Definition II.1 (Geodesically convex set). Let X be a subset
of a Riemannian manifold M . X is said to be geodesically
convex if, for any two points in X , there is a unique minimizing
geodesic within X which joins those two points.

Definition II.2 (Geodesically convex function). A smooth
function f : M → R is said to be geodesically convex if, for
any x, y ∈M , it holds that

f(y) ≥ f(x) + ⟨grad f(x), logx(y)⟩x ,

where ⟨·, ·⟩x is the Riemannian metric on M , and grad f(x)
is the Riemannian gradient of f at a point x ∈M (see [14]).

For i ∈ {1, 2, · · · , N}, let Mi be a Riemannian manifold
and M be the Cartesian product of n Riemannian manifolds
Mi (i.e., M := M1 × · · · × MN ). xi ∈ Mi denotes a
corresponding component of x ∈ M , and ⟨·, ·⟩xi denotes a
Riemannian metric at a point xi ∈ Mi. Furthermore, ∥·∥xi

represents the norm determined from the Riemann metric

⟨·, ·⟩xi . For a geodesically convex set Xi ⊂ Mi, we define
the projection operator as ΠXi

: Mi → Xi; i.e., ΠXi
(xi)

is the unique point yi ∈ Xi minimizing di(xi, ·), where
di(·, ·) : Mi ×Mi → R denotes the distance function of Mi.
The tangent space at a point x = (x1, x2, · · · , xN ) ∈ M is
given by TxM = Tx1M1 ⊕ · · · ⊕ TxNMN , by considering
TxiMi to be a subspace of TxM , where ⊕ is the direct sum
of vector spaces. Then, for a point x = (x1, x2, · · · , xN ) ∈M
and a tangent vector ξ ∈ TxM , we write ξ = (ξi) =
(ξ1, ξ2, · · · , ξN ), where i ∈ {1, 2 · · · , N}, and ξi ∈ TxiMi.
Finally, for xi, yi ∈ Mi, φi

xi→yi denotes an isometry from
TxiMi to TyiMi (e.g., φi

xi→yi stands for parallel transport
from TxiMi to TyiMi).
E [X] denotes the expectation of a random variable X , and

t[n] denotes the history of the process up to time n (i.e., t[n] :=
(t1, t2, · · · , tn)). E[X|t[n]] denotes the conditional expectation
of X given t[n].

Assumption II.1. For i ∈ {1, 2, · · · , N}, let Mi be a
complete simply connected Riemannian manifold with sec-
tional curvature lower bounded by κi ≤ 0. We define M :=
M1 × · · · ×MN . Then, we assume

(A1) For all i ∈ {1, 2, · · · , N}, let Xi ⊂ Mi be
a bounded, closed, geodesically convex set 1 and
X := X1 × · · · ×XN . In addition, Xi ⊂ Mi has a
diameter bounded by D; i.e., there exists a positive
real number D such that

max
i∈{1,2,··· ,N}

sup{di(xi, yi) : xi, yi ∈ Xi} ≤ D,

where di(·, ·) denotes the distance function of Mi;
(A2) A smooth function ft : M → R is geodesically con-

vex, where t is a random variable whose probability
distribution is a uniform distribution and supported
on a set T := {1, 2, · · · , T}. The function f is
defined for all x ∈ M , by f(x) := E [ft(x)] =
(1/T )

∑T
t=1 ft(x).

Note that, when we define a positive number G as

G := sup
t∈T ,x∈X

∥grad ft(x)∥x ,

we find that G <∞ from Assumption II.1 (A1). The following
is the main problem considered here [13, Section 4]:

Problem II.1. Suppose that Assumption II.1 holds. Then, we
have

x∗ ∈ X∗ :=

{
x∗ ∈ X : f(x∗) = inf

x∈X
f(x)

}
.

B. Background and motivation

Euclidean adaptive optimization algorithms, such as Ada-
Grad, Adam, and AMSGrad, are powerful tools for train-
ing deep neural networks. However, there are optimization
problems on Riemannian manifolds in machine learning [4]
that cannot be solved by Euclidean adaptive optimization
algorithms. Accordingly, useful algorithms, such as RSGD [5,

1The closedness and geodesical convexity of Xi imply the uniqueness and
existence of ΠXi

(xi) [17, Proposition 2.4] [18, Theorem 1].
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Section 2], RAdaGrad [13, Section 3.2], RAdam [13, Section
4], and RAMSGrad [13, Figure 1(a)], have been developed
to solve Riemannian optimization problems. The algorithms,
such as RAdaGrad, RAdam, and RAMSGrad, are based on the
Euclidean adaptive optimization algorithms, AdaGrad, Adam,
and AMSGrad. Hence, we can expect that the corresponding
Riemannian adaptive optimization algorithms perform better
than RSGD, the most basic Riemannian stochastic optimiza-
tion algorithm. In fact, the numerical comparisons in [13]
showed that Riemannian adaptive optimization algorithms are
superior for the task of embedding the WordNet taxonomy in
the Poincaré ball.

Although Riemannian adaptive optimization algorithms
have been shown to be useful for Riemannian optimization
in machine learning, we have two motivations related to the
previous results in [13]. The first motivation is to identify
whether or not RAMSGrad can solve directly the Riemannian
optimization problem. This is because the previous results in
[13] only showed that RAMSGrad performs a regret mini-
mization, which does not lead to Riemannian minimization
(see Subsection III-B for details). The second motivation
is to identify whether or not RAMSGrad is applicable to
significant problems in fields such as natural language pro-
cessing and principal component analysis. This is because
the previous results in [13] only gave a convergence analysis
of RAMSGrad with a diminishing learning rate. Diminishing
learning rates are approximately zero after a large number of
iterations, which implies that algorithms with them are not
implementable in practice. In contrast, a constant learning rate
does not cause this problem (see Subsection III-B for details).

Therefore, our goal is to devise an algorithm that overcomes
the above issues. In particular, the following section proposes
an adaptive optimization algorithm (Algorithm 1) with a
constant learning rate that can solve Problem II.1 directly
(Corollary III.1).

III. RIEMANNIAN ADAPTIVE OPTIMIZATION ALGORITHM

A. Proposed algorithm and its convergence analysis

We propose the following algorithm (Algorithm 1). A small
constant ϵ > 0 in the definition of v̂in guarantees that

√
v̂in > 0

(Adam [8, Algorithm 1] and AMSGrad [10, Algorithm 2], [11,
Algorithm 1] use such a constant in practice).

Now, let us compare Algorithm 1 on a Riemannian manifold
with AMSGrad in Euclidean space. For simplicity, let us sup-
pose that Mi = Xi = R (i = 1, 2, . . . , N ). Then, Algorithm
1 defined on M = RN is as follows: given x1 ∈ RN and
m0 = v0 = v̂0 = 0 ∈ RN ,

mn = β1nmn−1 + (1− β1n)gtn ,

vn = β2vn−1 + (1− β2)gtn ⊙ gtn ,

v̂i = (v̂in)i =
(
max

{
v̂in−1, v

i
n

}
+ ϵ
)
i
,

xn+1 =

(
xi
n − αn

mi
n√
v̂in

)
i

,

where x ⊙ x := (xi2)i for x = (xi)i ∈ RN . This implies
Algorithm 1 is an extension of AMSGrad.

Algorithm 1 Modified RAMSGrad for solving Problem II.1
Require: (αn)n∈N ⊂ [0, 1), (β1n)n∈N ⊂ [0, 1), β2 ∈

[0, 1), ϵ > 0
1: n← 1, x1 ∈ X, τ0 = m0 = 0 ∈ Tx0M, vi0, v̂

i
0 = 0 ∈ R

2: loop
3: gtn = (gitn) = grad ftn(xn)
4: for i = 1, 2, · · · , N do
5: mi

n = β1nτ
i
n−1 + (1− β1n)g

i
tn

6: vin = β2v
i
n−1 + (1− β2)

∥∥gitn∥∥2xi
n

7: v̂in = max{v̂in−1, v
i
n}+ ϵ

8: xi
n+1 = ΠXi

[
expixi

n

(
−αn

mi
n√
v̂in

)]
9: τ in = φi

xi
n→xi

n+1
(mi

n)

10: end for
11: n← n+ 1
12: end loop

Our convergence analysis (Theorem III.1) allows Algorithm
1 to use both constant and diminishing learning rates. Corol-
laries III.1, and III.2 are convergence analyses of Algorithm 1
with constant and diminishing learning rates, respectively.

Theorem III.1. Suppose that Assumption II.1 holds. Let
(xn)n∈N and (v̂n)n∈N be the sequences generated by Algo-
rithm 1. We assume β1n ≤ β1,n−1 for all n ∈ N, and
(αn)n∈N is a sequence of positive learning rates, which
satisfies αn(1 − β1n) ≤ αn−1(1 − β1,n−1) for all n ∈ N.
We define G := maxt∈T ,x∈X ∥grad ft(x)∥x. Then, for all
x∗ ∈ X∗,

E

[
1

n

n∑
k=1

f(xk)− f(x∗)

]

≤ NGD2

2(1− β11)

1

nαn
+

G2

2
√
ϵ(1− β11)

N∑
i=1

ζ(κi, D)
1

n

n∑
k=1

αk

+
NGD

1− β11

1

n

n∑
k=1

β1k,

(1)

where ζ(κi, D) is defined as in Lemma A.1.

Proof. See Appendix B.

Corollary III.1 (Constant learning rate). Suppose that the
assumptions in Theorem III.1 hold, αn := α > 0, and β1n :=
β ∈ [0, 1). Then, Algorithm 1 satisfies, for all x∗ ∈ X∗,

E

[
1

n

n∑
k=1

f(xk)− f(x∗)

]
≤ O

(
1

n

)
+ C1α+ C2β,

where C1, C2 > 0 are constants.

Proof. See Appendix C.

Corollary III.2 (Diminishing learning rate). Suppose that the
assumptions in Theorem III.1 hold, αn := 1/nη , where η ∈
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[1/2, 1), and
∑∞

k=1 β1k < ∞ 2. Then, Algorithm 1 satisfies,
for all x∗ ∈ X∗,

E

[
1

n

n∑
k=1

f(xk)− f(x∗)

]
= O

(
1

n1−η

)
.

Proof. See Appendix C.

B. Comparison of Algorithm 1 with the existing algorithms

Algorithm 1 with n = t ∈ T coincides with RAMSGrad
[13, Figure 1(a)]. In [13], Bécigneul and Ganea used “regret”
to guarantee the convergence of RAMSGrad. The regret at the
end of T iterations is defined as

RT :=
∑
t∈T

ft(xt)− f∗,

where (ft)t∈T is a family of differentiable, geodesically
convex functions from M to R, f∗ := minx∈X

∑
t∈T ft(x),

and (xt)t∈T is the sequence generated by RAMSGrad. They
proved the following theorem [13, Theorem 1]:

Theorem III.2 (Convergence of RAMSGrad). Suppose that
Assumption II.1 (A1) holds and that ft is smooth and geodesi-
cally convex for all t ∈ T . Let (xt)t∈T and (v̂t)t∈T be the
sequences obtained from RAMSGrad, αt = α/

√
t, β1 = β11,

β1k ≤ β1 for all t ∈ T , α > 0, and γ := β1/
√
β2 < 1. We

then have:

RT ≤
√
TD2

2α(1− β1)

N∑
i=1

√
v̂iT +

D2

2(1− β1)

N∑
i=1

T∑
t=1

β1t

√
v̂it

αt

+
α
√
1 + log T

(1− β1)2(1− γ)
√
1− β2

N∑
i=1

ζ(κi, D) + 1

2

√√√√ T∑
t=1

∥∥git∥∥2xi
t
.

Note that Theorem III.2 asserts the regret generated by
RAMSGrad has an upper bound. We should also note that
regret minimization does not always lead to solutions of
Problem II.1. This is because, even if (xt)t∈T satisfies, for
a sufficiently large number T ,

RT =
∑
t∈T

ft(xt)− f∗ ≈ 0,

and we do not have that

Tf(xT )− f∗ =
∑
t∈T

ft(xT )− f∗ ≈ 0.

Accordingly, Theorem III.2 does not guarantee that the output
xT generated by RAMSGrad approximates the solution of
Problem II.1. Additionally, Theorem III.2 assumes a dimin-
ishing learning rate αt and does not assert anything about a
constant learning rate.

Meanwhile, Corollary III.1 implies that, if we use suffi-
ciently small constant learning rates α and β, then Algorithm
1 satisfies

E

[
1

n

n∑
k=1

f(xk)− f∗

]
≤ O

(
1

n

)
+ C1α+ C2β ≈ O

(
1

n

)
,

2αn := 1/nη (η ∈ [1/2, 1)), and β1n = λn (λ ∈ [0, 1)) satisfy∑∞
k=1 β1k < ∞, β1n ≤ β1,n−1, and αn(1− β1n) ≤ αn−1(1− β1,n−1)

(n ∈ N).

which implies that Algorithm 1 approximates the solution of
Problem II.1 in the sense of the mean value of f(xk). Although
Theorem III.2 can only use diminishing learning rates such
that αt := α/

√
t, Corollary III.1 guarantees that Algorithm 1

with a constant learning rate can solve Problem II.1.
Corollary III.2 implies that Algorithm 1 with a diminishing

learning rate can solve Problem II.1 in the sense that

E

[
1

n

n∑
k=1

f(xk)− f∗

]
= O

(
1

n1−η

)
,

while Theorem III.2 implies that RAMSGrad only minimizes
the regret in the sense of the existence of a positive real number
C such that

RT

T
≤ C

√
1 + log T

T
.

Additionally, Theorem III.2 implies RAMSGrad only works in
the case where η = 1/2, but Corollary III.2 implies Algorithm
1 works for a wider range of η.

The advantage of Corollary III.2 over Corollary III.1 is that
using a diminishing learning rate is a robust way to solve
Problem II.1. However, it is possible that Algorithm 1 with
a diminishing learning rate does not work for a sufficiently
large number S of iterations, because step 8 in Algorithm 1
with αS ≈ 0 satisfies

xi
S+1 = ΠXi

[
expixi

S

(
−αS

mi
S√
v̂iS

)]
≈ xi

S .

Such a trend was observed in [11]. The numerical results in
[11] showed that Euclidean adaptive optimization algorithms,
such as Adam and AMSGrad, with constant learning rates
(e.g., αn = β1n = 10−3) perform better than those with
diminishing ones in terms of both the training loss and
accuracy score. Moreover, we can see that the Euclidean adap-
tive optimization algorithms in torch.optim3 use constant
learning rates, such as αn = 10−3 and β1n = 0.9, 0.999.

According to [5, Section 2] and [13, Section 5], useful
constant learning rates in RAMSGrad are αn = 0.3, 0.1
and β1n = 0.9. Meanwhile, Corollary III.1 indicates that
using a small constant learning rate β1n would be good for
solving Problem II.1. Accordingly, the next section numeri-
cally compares the behavior of Algorithm 1 with β1n = 0.9
with one with β1n = 0.001 < 0.9. Corollary III.2 (see
also Theorem III.2) indicates that Algorithm 1 should use
diminishing learning rates such that αn = O(1/

√
n) and

β1n = λn (λ ∈ [0, 1)). The next section uses diminishing
learning rates to compare fairly the behaviors of Algorithm 1
with constant learning rates (see Section IV for details).

IV. NUMERICAL EXPERIMENTS

We numerically compared the following Riemannian
stochastic optimization algorithms: RSGD [5, Section 2],
RAdaGrad [13, Section 3.2], RAdam [13, Section 4], and
Algorithm 1 (modified RAMSGrad). RAdam is obtained by
removing the max operation in Algorithm 1, i.e., replacing

3https://pytorch.org/docs/stable/optim.html
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v̂in = max{v̂in−1, v
i
n} + ϵ with v̂in = vin + ϵ (see [13]).

Our experiments were conducted on a fast scalar computation
server4 at Meiji University. The environment has two Intel(R)
Xeon(R) Gold 6148 (2.4 GHz, 20 cores) CPUs, an NVIDIA
Tesla V100 (16GB, 900Gbps) GPU and a Red Hat Enterprise
Linux 7.6 operating system.

A. Poincaré embeddings

In [4], Nickel and Kiela developed Poincaré embeddings.
Before describing the numerical experiments, we will review
the fundamentals of hyperbolic geometry (see [4], [13], [19],
[20]). Bd := {x ∈ Rd : ∥x∥ < 1} denotes the open d-
dimensional unit ball, where ∥·∥ denotes the Euclidean norm.
The Poincaré ball model of hyperbolic space (Bd, ρ) is defined
by a manifold Bd equipped with the following Riemannian
metric:

ρx :=
4

(1− ∥x∥2)2
ρEx ,

where x ∈ Bd, and ρEx denotes the Euclidean metric tensor.
The Riemannian manifold (Bd, ρ) has a constant sectional
curvature,−1. We define Möbius addition [19, Definition 1.10]
of x and y in Bd as

x⊕M y :=
(1 + 2 ⟨x, y⟩ + ∥y∥2)x+ (1− ∥x∥2)y

1 + 2 ⟨x, y⟩ + ∥x∥2 ∥y∥2
,

where ⟨·, ·⟩ := ρE(·, ·). Moreover, ⊖Mx denotes the left
inverse [19, Definition 1.7] of x ∈ Bd, and the Möbius
gyrations [19, Definition 1.11] of Bd are defined as

gyr[x, y]z := ⊖M (x⊕M y)⊕M {x⊕M (y ⊕M z)},

for all x, y, z ∈ Bd.
In accordance with the above statements, the induced dis-

tance function on (Bd, ρ) (see [20, Eq. (6)]) is defined for all
x, y ∈ Bd, by

d(x, y) = 2 tanh−1 (∥(−x)⊕M y∥) . (2)

The exponential map on (Bd, ρ) (see [20, Lemma 2]) is
expressed as follows: for x ∈ Bd and ξ ̸= 0 ∈ TxBd,

expx(ξ) = x⊕M

{
tanh

(
∥ξ∥

1− ∥x∥2

)}
ξ

∥ξ∥
,

and, for x ∈ Bd and 0 ∈ TxBd,

expx(0) = x.

Parallel transport of (Bd, ρ) (see [13, Section 5]) along the
unique geodesic from x to y is given by

φx→y(ξ) =
1− ∥y∥2

1− ∥x∥2
gyr[y,−x]ξ.

The Riemannian gradient on (Bd, ρ) (see [13, Section 5]) is
expressed in terms of rescaled Euclidean gradients, i.e., for
x ∈ Bd, and the smooth function f : Bd → R,

grad f(x) =
(1− ∥x∥2)2

4
∇Ef(x),

4https://www.meiji.ac.jp/isys/hpc/ia.html

where ∇Ef(x) denotes the Euclidean gradient of f .
To compute the Poincaré embeddings for a set of N symbols

by finding the embeddings Θ = {ui}Ni=1, where ui ∈ Bd, we
solve the following optimization problem: given L : Bd×· · ·×
Bd → R,

minimize L(Θ) subject to ui ∈ Bd. (3)

The transitive closure of the WordNet mammals subtree
consists of 1,180 nouns and 6,450 hypernymy Is-A relations.
Let D = {(u, v)} be the set of observed hypernymy relations
between noun pairs. We minimize a loss function defined by

L(Θ) =
∑

(u,v)∈D

log
e−d(u,v)∑

v′∈N (u) e
−d(u,v′)

, (4)

where d(u, v) defined by (2) is the corresponding distance of
the relation (u, v) ∈ D, and N (u) = {v′ : (u, v′) ̸∈ D} ∪ {v}
is the set of negative examples for u including v (see [4], [13]).
We embed the transitive closure of the WordNet mammals
subtree into a 5-dimensional Poincaré ball (B5, ρ).

Let us define Mi := B5 and Xi := {x ∈ B5 : ∥x∥ ≤
1 − 10−5}, whose projection operator ΠXi : B5 → Xi is
computed as

ΠXi(x) :=

x if ∥x∥ ≤ 1− 10−5

(1− 10−5)
x

∥x∥
otherwise .

Moreover, the geodesically convex set Xi has a bounded
diameter; in fact, let D be the diameter of a closed disk Xi,
measured by the Riemann metric of ρ.

As in [4], we will introduce an index for evaluating the
embedding. For each observed relation (u, v) ∈ D, we com-
pute the corresponding distance d(u, v) in the embedding and
rank it among the set of negative relations for u, i.e., among
the set {d(u, v′) : (u, v′) ̸∈ D}. In addition, we assume the
reconstruction setting (see [4]); i.e., we evaluate the ranking
of all nouns in the dataset. Then, we record the mean rank of
v as well as the mean average precision (MAP) of the ranking.
Thus, we evaluate the embedding in terms of the loss function
values and the MAP rank.

We experimented with a special iteration called the “burn-
in phase” (see [4, Section 3]) for the first 20 epochs. During
the burn-in phase, the algorithm runs at a reduced learning
rate of 1/100. When we minimized the loss function (4), we
randomly sampled 10 negative relations per positive relation.
We set ϵ = 10−8 in Algorithm 1.

The experiment used the code of Facebook Research5,
and we used the NumPy 1.17.3 package and PyTorch 1.3.0
package.

1) Constant learning rate: First, we compared algorithms
with the following ten constant learning rates:

(CS1) RSGD: αn = 0.3.
(CS2) RSGD: αn = 0.1.
(CG1) RAdaGrad: αn = 0.3.
(CG2) RAdaGrad: αn = 0.1.
(CD1) RAdam: αn = 0.3, β1n = 0.9, β2 = 0.999.
(CD2) RAdam: αn = 0.1, β1n = 0.9, β2 = 0.999.

5https://github.com/facebookresearch/poincare-embeddings



6

0 100 200 300 400 500
epoch

10 1

100

tra
in

in
g 

lo
ss

CS1
CS2
CG1
CG2
CD1
CD2
CA1
CA2
CA3
CA4

Fig. 1. Loss function value versus number of epochs in the case of constant
learning rates.
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Fig. 2. Loss function value versus elapsed time in the case of constant learning
rates.

(CA1) Algorithm 1: αn = 0.3, β1n = 0.9, β2 = 0.999.
(CA2) Algorithm 1: αn = 0.3, β1n = 0.001, β2 = 0.999.
(CA3) Algorithm 1: αn = 0.1, β1n = 0.9, β2 = 0.999.
(CA4) Algorithm 1: αn = 0.1, β1n = 0.001, β2 = 0.999.

The parameter αn in (CS1) and (CS2) represents the learning
rate of RSGD [5, Section 2]. The learning rates of (CA1)–
(CA4) satisfy the assumptions of Corollary III.1. The param-
eters β2 = 0.999 and β1n = 0.9 in (CA1) and (CA3) are
used in [13, Section 5]. We used β1n = 0.001 in (CA2)
and (CA4) to compare (CA1) and (CA3) with Algorithm 1
with a small learning rate. Figs. 1–4 show the numerical
results. Fig. 1 shows the performances of the algorithms
for loss function values defined by (4) with respect to the
number of epochs, while Fig. 2 presents those with respect
to the elapsed time. Fig. 3 shows the MAP ranks of the
embeddings with respect to the number of epochs, while
Fig. 4 presents the MAP ranks with respect to the elapsed
time. We can see that Algorithm 1 outperforms RSGD and
RAdaGrad in every setting. In particular, Figs. 1–2 show that
the learning outcomes of RSGD fluctuate greatly depending
on the learning rate. In contrast, Algorithm 1 and RAdam
eventually reduce the loss function the most for any learning
rate. Moreover, these figures show that the performance of
(CA1) (resp. (CA3)) is comparable to that of (CA2) (resp.
(CA4)). Meanwhile, RAdaGrad quickly reduced the objective
function value in the early stages; however, it soon stopped
learning.
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Fig. 3. MAP rank versus number of epochs in the case of constant learning
rates.
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Fig. 4. MAP rank versus elapsed time in the case of constant learning rates.

2) Diminishing learning rate: Next, we compared algo-
rithms with the following ten diminishing learning rates:

(DS1) RSGD: αn = 30/
√
n.

(DS2) RSGD: αn = 10/
√
n.

(DG1) RAdaGrad: αn = 30/
√
n.

(DG2) RAdaGrad: αn = 10/
√
n.

(DD1) RAdam: αn = 30/
√
n, β1n = 0.5n, β2 = 0.999.

(DD2) RAdam: αn = 10/
√
n, β1n = 0.5n, β2 = 0.999.

(DA1) Algorithm 1: αn = 30/
√
n, β1n = 0.5n, β2 = 0.999.

(DA2) Algorithm 1: αn = 30/
√
n, β1n = 0.9n, β2 = 0.999.

(DA3) Algorithm 1: αn = 10/
√
n, β1n = 0.5n, β2 = 0.999.

(DA4) Algorithm 1: αn = 10/
√
n, β1n = 0.9n, β2 = 0.999.

The learning rates of (DA1)–(DA4) satisfy the assumptions of
Corollary III.2. We implemented (DA2) and (DA4) to compare
them with (CA1) and (CA3). We implemented (DA1) and
(DA3) to check how well Algorithm 1 works depending on
the choice of β1n. Figs. 5–8 show the numerical results. Fig. 5
shows the behaviors of the algorithms for loss function values
defined by (4) with respect to the number of epochs, whereas
Fig. 6 shows those with respect to the elapsed time. Fig. 7
presents the MAP ranks of the embeddings with respect to the
number of epochs, while Fig. 8 shows MAP ranks with respect
to the elapsed time. Even in the case of diminishing learning
rates, Algorithm 1 outperforms RSGD in every setting. The
learning results of RSGD fluctuate greatly depending on the
initial learning rate. In particular, (DS2) reduces the loss
function more slowly than the other algorithms do. On the
other hand, Algorithm 1 and RAdam stably reduce the loss



7

0 100 200 300 400 500
epoch

10 1

100

tra
in

in
g 

lo
ss

DS1
DS2
DG1
DG2
DD1
DD2
DA1
DA2
DA3
DA4

Fig. 5. Loss function value versus number of epochs in the case of diminishing
learning rates.
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Fig. 6. Loss function value versus elapsed time in the case of diminishing
learning rates.
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Fig. 7. MAP rank versus number of epochs in the case of diminishing learning
rates.

function, regardless of the initial learning rate. Moreover, these
figures indicate that (DA2) outperforms (DA1) and that (DA3)
performs comparably to (DA4). In addition, RAdaGrad is
better or worse than Algorithm 1 depending on how we choose
the initial learning rates.

From Figs. 2 and 6, we can see that (CA1) (resp. (CA3))
outperforms (DA2) (resp. (DA4)). The above discussion shows
that Algorithm 1 with a constant learning rate is superior to the
other algorithms at embedding the WordNet mammals subtree
into a Poincaé ball.

B. Principal component analysis

Here, we applied the algorithms to a principal component
analysis (PCA) problem. Given n data points a1, · · · , an ∈
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Fig. 8. MAP rank versus elapsed time in the case of diminishing learning
rates.

Rd, the PCA problem (see [12], [21]) is formulated as

minimize f(U) subject to U ∈ St(k, d),

where

f(U) := − 1

n

n∑
i=1

a⊤i UU⊤ai,

and St(k, d) := {U ∈ Rd×k : U⊤U = Ik} denotes the Stiefel
manifold. For this problem, we set N = 1 and M = St(k, d).
Since it is known that parallel transport has no closed-form
solution on the Stiefel manifold, we use QR-based retraction
and the associated vector transport as an approximation of the
exponential map and the parallel transport, respectively (see
[14]). The QR-based retraction is defined as

RU (ξ) := qf(U + ξ),

where U ∈ St(k, d), ξ ∈ TUSt(k, d) and qf(A) denotes the
Q factor of the QR decomposition of A. Then, the associated
vector transport is defined as

TU→V (ξ) := ξ − V sym(V ⊤ξ),

where U, V ∈ St(k, d), ξ ∈ TUSt(k, d) and sym(A) :=
(A + A⊤)/2. For this problem, the columns of the optimal
solution U∗ are known to be the top k eigenvectors of the
data covariance matrix, which can be estimated using singular
value decomposition. The performance of each algorithm in
the experiment was judged in terms of the “optimality gap”,
that is, f(U) − f(U∗). We evaluated the algorithms on the
MNIST 6 and digits 7 datasets. The MNIST dataset contains
handwritten digits data of 0–9 and has 10000 images of size
28× 28 for testing (see [22]). For the MNIST dataset, we set
(n, k, d) = (10000, 784, 10). The digits dataset is made
up of 1797 8× 8 handwritten digit images. For the digits
dataset, we set (n, k, d) = (1797, 64, 8).

1) Constant learning rate: First, we compared ten algo-
rithms (CS1)–(CA4) with constant learning rates, same as
those used in the experiments on the Poincaré embeddings.
Figs. 9–10 show the numerical results on the MNIST dataset,
while Figs. 11–12 show the numerical results on the digits

6https://keras.io/ja/datasets/
7https://scikit-learn.org/stable/auto examples/datasets/plot digits last

image.html
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Fig. 9. Optimality gap versus number of iterations in the case of constant
learning rates for the MNIST dataset
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Fig. 10. Optimality gap versus elapsed time in the case of constant learning
rates for the MNIST dataset
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Fig. 11. Optimality gap versus number of iterations in the case of constant
learning rates for the digits dataset

dataset. Figs. 9–10 indicate that Algorithm 1 performed well
in every setting for the MNIST dataset. In particular, the
behaviors of (CA2) and (CA4) are the best of all algorithms
and the behavior of (CD1) is comparable to them. Moreover,
Figs. 11–12 show that Algorithm 1 outperforms RSGD and
RAdaGrad in every setting for the digits dataset. These
figures indicate that (CD1), (CA1) and (CA3) eventually made
the optimal gap the smallest. Meanwhile, Figs. 9–12 show that
RAdaGrad often failed to reduce the optimal gap.

Moreover, we examined the supervised learning perfor-
mance. The classification model in this case was the Linear
Support Vector Machine8 (Linear SVM) provided by the

8https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Fig. 12. Optimality gap versus elapsed time in the case of constant learning
rates for the digitis dataset

scikit-learn 0.23.2 package. TABLE I shows the 5-fold cross
validation scores of the MNIST and digits dimensionally
reduced by the last point generated by each algorithm with the
constant learning rates. This table indicates that the algorithm
which sufficiently minimizes the optimality gap also has high
classification accuracy. For the MNIST dataset, since (CG1)
does not converge to the optimal solution, its classification
accuracy is also bad. Similarly, for the digits dataset, since
(CG1) and (CG2) do not minimize the optimality gap, their
classification accuracies are also bad.

TABLE I
THE CROSS VALIDATION SCORES OF THE LINEAR SVM IN THE CASE OF

CONSTANT LEARNING RATES

MNIST digits
CS1 0.8109 0.8658
CS2 0.8104 0.8720
CG1 0.5992 0.7929
CG2 0.8164 0.7022
CD1 0.7973 0.8736
CD2 0.8078 0.8764
CA1 0.8168 0.8764
CA2 0.8099 0.8664
CA3 0.7931 0.8520
CA4 0.8131 0.8698

2) Diminishing learning rate: Next, we compared ten al-
gorithms (DS1)–(DA4) with diminishing learning rates, same
as those used in the experiments of the Poincaré embeddings.
Figs. 13–14 show the numerical results on the MNIST dataset,
while Figs. 15–16 show the numerical results on the digits
dataset. Figs. 13–14 indicate that Algorithm 1 outperforms
RSGD and RAdaGrad in every setting for the MNIST dataset.
In particular, the behavior of (DD1) is the best of all and
(DA1) performs comparably to (DD1). Moreover, Figs. 15–16
also show that Algorithm 1 outperforms RSGD and RAdaGrad
in every setting for the digits dataset. In particular, the
behaviors of (DA2) and (DA4) are the best of all algorithms
and the behavior of (DD2) is comparable to them. Meanwhile,
Figs. 13–16 show that RSGD and RAdaGrad often failed to
reduce the optimal gap. Figs. 9 and 13 indicate that Algorithm
1 and RAdam with a constant learning rate are superior to
the other algorithms for the MNIST dataset. Meanwhile, Figs.
11 and 15 indicate that Algorithm 1 and RAdam with a
diminishing learning rate are superior to the other algorithms
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Fig. 13. Optimality gap versus number of iterations in the case of diminishing
learning rates for the MNIST dataset
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Fig. 14. Optimality gap versus elapsed time in the case of diminishing
learning rates for the MNIST dataset
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Fig. 15. Optimality gap versus number of iterations in the case of diminishing
learning rates for the digits dataset

for the digits dataset.

As with the constant learning rate, we examined the su-
pervised learning performance of the Linear SVM. TABLE II
shows the 5-fold cross validation scores of the MNIST and
digits dimensionally reduced by the last point generated
by each algorithm with the diminishing learning rates. This
table indicates that the algorithm which sufficiently minimizes
the optimality gap also has high classification accuracy. Since,
(DS1), (DS2), (DG1), and (DG2) for the MNIST dataset, and
(DG1) and (DG2) for the digits dataset do not minimize
the optimality gap, their classification accuracies are also bad.
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Fig. 16. Optimality gap versus elapsed time in the case of diminishing
learning rates for the digits dataset

TABLE II
THE CROSS VALIDATION SCORES OF THE LINEAR SVM IN THE CASE OF

DIMINISHING LEARNING RATES

MNIST digits
DS1 0.5719 0.8709
DS2 0.6332 0.8714
DG1 0.6546 0.7145
DG2 0.5904 0.6856
DD1 0.7955 0.8670
DD2 0.7928 0.8692
DA1 0.8133 0.8759
DA2 0.7922 0.8764
DA3 0.8239 0.8842
DA4 0.8061 0.8742

V. CONCLUSION

This paper proposed modified RAMSGrad, a Riemannian
adaptive optimization method, and presented its convergence
analysis. The proposed algorithm solves the Riemannian op-
timization problem directly, and it can use both constant and
diminishing learning rates. We applied it to Poincaré embed-
dings and a PCA problem. The numerical experiments showed
that it converges to the optimal solution faster than RSGD and
RAdaGrad, and it minimizes the objective function regardless
of the initial learning rate. In particular, an experiment showed
that the proposed algorithm with a constant learning rate is a
good way of embedding the WordNet mammals subtree into
a Poincaré subtree. Moreover, we showed that, in the PCA
problem, the choice between using a constant or a diminishing
learning rate depends on the dataset.
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APPENDIX A
LEMMAS

Zhang and Sra developed the following lemma in [15,
Lemma 5].

Lemma A.1 (Cosine inequality in Alexandrov spaces). Let
a, b, c be the sides (i.e., side lengths) of a geodesic triangle in
an Alexandrov space whose curvature is bounded by κ < 0
and A be the angle between sides b and c. Then,

a2 ≤ ζ(κ, c)b2 + c2 − 2bc cos (A),
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where

ζ(κ, c) =

√
|κ|c

tanh (
√
|κ|c)

.

We will prove the following lemma. All relations between
random variables hold almost surely.

Lemma A.2. Suppose that Assumption II.1 (A2) holds. We
define G := maxt∈T ,x∈X ∥grad ft(x)∥x. Let (xn)n∈N and
(v̂n)n∈N be the sequences generated by Algorithm 1. Then,
for all i ∈ {1, 2, · · · , N}, and k ∈ N,∥∥mi

k

∥∥2
xi
k

≤ G2, (5)

and √
v̂ik ≤ G. (6)

Proof. First, we consider (5). The proof is by induction. For
k = 1, from the convexity of ∥·∥2xi

1
, we have∥∥mi

1

∥∥2
xi
1
≤
∥∥∥β11φ

i
xi
0→xi

1
(mi

0) + (1− β11)g
i
t1

∥∥∥2
xi
1

≤ β11

∥∥∥φi
xi
0→xi

1
(mi

0)
∥∥∥2
xi
1

+ (1− β11)
∥∥git1∥∥2xi

1

= (1− β11)
∥∥git1∥∥2xi

1

≤
∥∥git1∥∥2xi

1

≤ G2,

where we have used 0 ≤ β11 < 1 and
∥∥git1∥∥xi

1
≤ G. Suppose

that
∥∥mi

k−1

∥∥2
xi
k−1

≤ G2. The convexity of ∥·∥2xi
k
, together with

the definition of mi
k, and

∥∥gitk∥∥xi
k

≤ G, guarantees that,∥∥mi
k

∥∥2
xi
k

≤ β1k

∥∥∥φi
xi
k−1→xi

k
(mi

k−1)
∥∥∥2
xi
k

+ (1− β1k)
∥∥gitk∥∥2xi

k

≤ β1k

∥∥mi
k−1

∥∥2
xi
k−1

+ (1− β1k)G
2

≤ β1kG
2 + (1− β1k)G

2

= G2.

Thus, induction ensures that, for all k ∈ N,∥∥mi
k

∥∥2
xi
k

≤ G2.

(6) can be proven in same way as (5).

APPENDIX B
PROOF OF THEOREM III.1

Proof of Theorem III.1. Note that

yik+1 := expixi
k

(
−αk

mi
k√
v̂ik

)
.

Thus, we will consider a geodesic triangle consisting of three
points xi

k, xi
∗, and yik+1. Let the length of each side be a, b,

and c, respectively, such that
a := di(yik+1, x

i
∗)

b := di(yik+1, x
i
k)

c := di(xi
k, x

i
∗)

. (7)

It follows that

cos (∠yik+1x
i
kx

i
∗) :=

〈
logixi

k
(yik+1), log

i
xi
k
(xi

∗)
〉
xi
k∥∥∥logixi

k
(yik+1)

∥∥∥
xi
k

∥∥∥logixi
k
(xi

∗)
∥∥∥
xi
k

=

〈
−αk

mi
k√
v̂ik

, logixi
k
(xi

∗)

〉
xi
k

di(yik+1, x
i
k)d

i(xi
k, x

i
∗)

.

Using Lemma A.1 with (7) and the definition of ΠXi
, we have

di(xi
k+1, x

i
∗)

2

≤ di(yik+1, x
i
∗)

2

≤ ζ(κi, di(xi
k, x

i
∗))d

i(yik+1, x
i
k)

2 + di(xi
k, x

i
∗)

2

− 2di(yik+1, x
i
k)d

i(xi
k, x

i
∗)

〈
−αk

mi
k√
v̂ik

, logixi
k
(xi

∗)

〉
xi
k

di(yik+1, x
i
k)d

i(xi
k, x

i
∗)

,

which, together with the definition of yik+1, implies that

〈
−mi

k, log
i
xi
k
(xi

∗)
〉
xi
k

≤
√
v̂ik

2αk
(di(xi

k, x
i
∗)

2 − di(xi
k+1, x

i
∗)

2)

+ ζ(κi, di(xi
k, x

i
∗))

αk

2
√

v̂ik

∥∥mi
k

∥∥2
xi
k

.

Plugging mi
k = β1kφ

i
xi
k−1→xi

k
(mi

k−1) + (1− β1k)g
i
tk

into the
above inequality and using (A1), we obtain〈

−gitk , logxi
k
(xi

∗)
〉
xi
k

≤
√
v̂ik

2αk(1− β1k)

(
di(xi

k, x
i
∗)

2 − di(xi
k+1, x

i
∗)

2
)

+
ζ(κi, D)

2(1− β1k)

αk√
v̂ik

∥∥mi
k

∥∥2
xi
k

+
β1k

1− β1k

〈
φi
xi
k−1→xi

k
(mi

k−1), logxi
k
(xi

∗)
〉
xi
k

.

(8)

Since (A2) implies that f is geodesically convex with g(x) =(
gi(xi)

)
:= grad f(x), we have

f(xk)− f(x∗) ≤
〈
−g(xk), logxk

(x∗)
〉
xk

=

N∑
i=1

〈
−gi(xi

k), log
i
xi
k
(xi

∗)
〉
xi
k

.

Summing the above equality from k = 1 to n, we obtain

1

n

n∑
k=1

f(xk)− f(x∗) ≤
1

n

n∑
k=1

N∑
i=1

〈
−gi(xi

k), log
i
xi
k
(xi

∗)
〉
xi
k

.

(9)
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Furthermore, the linearity of the Riemannian gradient ensures
that

E
[〈
−gitk , log

i
xi
k
(xi

∗)
〉
xi
k

]
= E

[
E
[〈
−gitk , log

i
xi
k
(xi

∗)
〉
xi
k

∣∣∣∣ t[k−1]

]]
= E

[〈
−E

[
gitk
∣∣ t[k−1]

]
, logixi

k
(xi

∗)
〉
xi
k

]
= E

[〈
−gi(xi

k), log
i
xi
k
(xi

∗)
〉
xi
k

]
,

which, together with (9), implies that

E

[
1

n

n∑
k=1

f(xk)− f(x∗)

]

≤ 1

n
E

[
n∑

k=1

N∑
i=1

〈
−gi(xi

k), log
i
xi
k
(xi

∗)
〉
xi
k

]

=
1

n
E

[
n∑

k=1

N∑
i=1

〈
−gitk , log

i
xi
k
(xi

∗)
〉
xi
k

]
.

From (8) and the above inequality, we have

E

[
1

n

n∑
k=1

f(xk)− f(x∗)

]

≤ 1

n
E

[
n∑

k=1

N∑
i=1

√
v̂ik

2αk(1− β1k)

(
di(xi

k, x
i
∗)

2 − di(xi
k+1, x

i
∗)

2
)]

+
1

n
E

[
n∑

k=1

N∑
i=1

ζ(κi, D)

2(1− β1k)

αk√
v̂ik

∥∥mi
k

∥∥2
xi
k

]

+
1

n
E

[
n∑

k=1

N∑
i=1

β1k

1− β1k

〈
φi
xi
k−1→xi

k
(mi

k−1), logxi
k
(xi

∗)
〉
xi
k

]
.

(10)

Here, let us consider the first term of the left-hand side
of (10). We note that from the assumption for all k ∈ N,
αk(1− β1k) ≤ αk−1(1− β1,k−1), and β1k ≤ β1,k−1,

αk(1− β1k) ≤ αk−1(1− β1,k−1) ≤ αk−1(1− β1k),

which implies αk ≤ αk−1. Using β1k ≤ β11, αk ≤ αk−1,√
v̂ik ≥

√
v̂ik−1, and αk(1− β1k) ≤ αk−1(1− β1,k−1) for all

k ∈ N, together with (A1), we have that

n∑
k=1

N∑
i=1

√
v̂ik

2αk(1− β1k)
(di(xi

k, x
i
∗)

2 − di(xi
k+1, x

i
∗)

2)

≤ 1

2(1− β11)

N∑
i=1

 n∑
k=2

√v̂ik
αk
−

√
v̂ik−1

αk−1

 di(xi
k, x

i
∗)

2

+

√
v̂i1

α1
di(xi

1, x
i
∗)

2

]

≤ 1

2(1− β11)

N∑
i=1

 n∑
k=2

√v̂ik
αk
−

√
v̂ik−1

αk−1

D2 +

√
v̂i1

α1
D2



=
D2

2(1− β11)

N∑
i=1

√
v̂in

αn

≤ NGD2

2αn(1− β11)
,

where the last inequality is guaranteed by Lemma A.2.
Namely,

E

[
n∑

k=1

N∑
i=1

√
v̂ik

2αk(1− β1k)
(di(xi

k, x
i
∗)

2 − di(xi
k+1, x

i
∗)

2)

]

≤ NGD2

2αn(1− β11)
.

(11)

Next, let us consider the second term of the left-hand side of
(10). From

√
ϵ ≤

√
v̂ik and Lemma A.2, we have

n∑
k=1

N∑
i=1

ζ(κi, D)

2(1− β1k)

αk√
v̂ik

∥∥mi
k

∥∥2
xi
k

≤ G2

2
√
ϵ(1− β11)

N∑
i=1

ζ(κi, D)

n∑
k=1

αk.

Namely,

E

[
n∑

k=1

N∑
i=1

ζ(κi, D)

2(1− β1k)

αk√
v̂ik

∥∥mi
k

∥∥2
xi
k

]

≤ G2

2
√
ϵ(1− β11)

N∑
i=1

ζ(κi, D)

n∑
k=1

αk.

(12)

Now, let us consider the third term of the left-hand side of
(10). Applying the Cauchy-Schwarz inequality to the term and
using (A1) and Lemma A.2, it follows that

n∑
k=1

N∑
i=1

β1k

1− β1k

〈
φi
xi
k−1→xi

k
(mi

k−1), logxi
k
(xi

∗)
〉
xi
k

≤
n∑

k=1

N∑
i=1

β1k

1− β1k

∥∥∥φi
xi
k−1→xi

k
(mi

k−1)
∥∥∥
xi
k

∥∥∥logxi
k
(xi

∗)
∥∥∥
xi
k

≤ NGD

1− β11

n∑
k=1

β1k.

Namely,

E

[
n∑

k=1

N∑
i=1

β1k

1− β1k

〈
φi
xi
k−1→xi

k
(mi

k−1), logxi
k
(xi

∗)
〉
xi
k

]

≤ NGD

1− β11

n∑
k=1

β1k.

(13)

Finally, together with (10), (11), (12), and (13), we have

E

[
1

n

n∑
k=1

f(xk)− f(x∗)

]

≤ NGD2

2(1− β11)

1

nαn
+

G2

2
√
ϵ(1− β11)

N∑
i=1

ζ(κi, D)
1

n

n∑
k=1

αk

+
NGD

1− β11

1

n

n∑
k=1

β1k.
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This complete the proof.

APPENDIX C
PROOF OF COROLLARY III.1 AND III.2

Proof of Corollary III.1. The learning rates αn := α and
β1n := β satisfy for all n ∈ N, β1n ≤ β1,n−1 and
αn(1− β1n) ≤ αn−1(1− β1,n−1). Let us define

C1 :=
G2

√
ϵ(1− β11)

N∑
i=1

ζ(κi, D) > 0,

and

C2 :=
NGD

1− β11
.

Using the definitions of C1 and C2, (1) can be written as

E

[
1

n

n∑
k=1

f(xk)− f(x∗)

]
≤ NGD2

2α(1− β11)

1

n
+ C1α+ C2β.

This complete the proof.

Proof of Corollary III.2. Let αn = 1/nη (η ∈ [1/2, 1))
and (β1n)n∈N satisfies β1n ≤ β1,n−1 and αn(1 − β1n) ≤
αn−1(1 − β1,n−1) for all n ∈ N, and

∑∞
k=1 β1k < ∞. First,

we obviously have

lim
n→∞

1

n

n∑
k=1

β1k ≤ lim
n→∞

B1

n
= 0, (14)

where B1 :=
∑∞

k=1 β1k <∞. We have that

lim
n→∞

1

nαn
= lim

n→∞

1

n1−η
= 0.

Furthermore, we have

1

n

n∑
k=1

αk ≤
1

n

(
1 +

∫ n

1

dt

tη

)
≤ 1

1− η

1

n1−η
. (15)

This, together with (1), (14), and (15), proves the assertion of
Corollary III.2.
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