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Stochastic Fixed Point Optimization Algorithm for
Classifier Ensemble

Hideaki Iiduka

Abstract—This paper considers a classifier ensemble problem
with sparsity and diversity learning, which arises in the field of
machine learning, and shows that the classifier ensemble problem
can be formulated as a convex stochastic optimization problem
over the fixed point set of a quasi-nonexpansive mapping.
Specifically, for such a problem, the present work proposes an
algorithm referred to as the stochastic fixed point optimization
algorithm and performs a convergence analysis for three types of
step size: constant step size, decreasing step size, and a step size
computed by line searches. In the case of a constant step size,
the results indicate that a sufficiently small constant step size
allows a solution to the problem to be approximated. In the case
of a decreasing step size, conditions are shown under which the
algorithm converges in probability to a solution. For the third
case, a variation of the basic proposed algorithm also achieves
convergence in probability to a solution. The high classification
accuracies of the proposed algorithms are demonstrated through
numerical comparisons with the conventional algorithm.

Index Terms—convex stochastic optimization, classifier en-
semble, fixed point, quasi-nonexpansive mapping, sparsity and
diversity learning, stochastic fixed point optimization algorithm

I. INTRODUCTION

THE classifier ensemble problem (see [1], [2], [3], [4], [5],
[6], [7], [8] and references therein) is a significant, inter-

esting problem that arises in the field of machine learning. One
way of solving the classifier ensemble problem is to formulate
it as a constrained convex optimization problem in which the
objective function is the expectation of convex functions [9,
Section 3]. Classically, the technique used to solve the problem
is the stochastic approximation (SA) method [10, (5.4.1)], [11],
which is applicable when unbiased estimates of (sub)gradients
of an objective function are available. The usefulness of the
method for stochastic optimization has already been proved
[12], [13], [14], [15].

In this paper, we focus on the classifier ensemble problem
with sparsity and diversity learning. This classifier ensemble
problem can be restated as a convex stochastic optimization
problem over the intersection of a half-space and the level sets
of convex functions [4, (10)], [5, (15)]. Unfortunately, it would
be difficult to apply the SA method and its variations to this
classifier ensemble problem. This is because the constraint set
of the problem is complicated in the sense that the projection
onto the constraint set cannot be computed efficiently. The
currently used method [5] for solving the classifier ensemble
problem involves relaxing it as a convex quadratic program-
ming problem and computing the closed-form solution to the
relaxation problem.
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One way of addressing a convex optimization problem
with a complicated constraint set—such as the intersection of
level sets of convex functions [4], [5]—is to reformulate the
constraint set as a fixed point set of a computable nonexpansive
mapping. Then fixed point algorithms [16], [17], [18] for solv-
ing the problem can be developed based on the nonexpansive
mapping. Sparsity and diversity learning methods [19] based
on a previous fixed point algorithm [18] have been reported;
however, unfortunately, these methods are suitable only for the
deterministic case and need that an appropriate step size be
chosen in order for the method to converge to a solution to
the problem sufficiently quickly for practical use. Choosing an
appropriate step size ahead of time is difficult because what
step size is appropriate depends on, for example, the numbers
of instances and attributes in the dataset. In particular, this
difficulty means that these methods are unsuitable for many
classifier ensemble problems, including multiclass classifier
ensemble problems and classifier ensemble problems with
multiple instances. Therefore, one goal of the present study
is to fulfill the need for a stochastic optimization method that
does not require setting the step sizes in advance in order to
solve the classifier ensemble problem directly.

In particular, for the present study, an iterative algorithm
was developed, which is referred to as the stochastic fixed
point optimization algorithm (Algorithm 1), for solving the
classifier ensemble problem that can be reformulated as a
convex stochastic optimization problem over the fixed point
set of a quasi-nonexpansive mapping (Problem II.1). The
algorithm proposed herein combines the SA method [10,
(5.4.1)], [11] and an existing fixed point algorithm [18]. We
analyze the convergence of the proposed algorithm for three
types of step size, as follows. For a constant step size, if the
step size is sufficiently small, then the proposed algorithm
approximates a solution to the problem (Theorem III.1). For a
sequence of decreasing step sizes, the algorithm converges in
probability to a solution to the problem (Theorem III.2). The
main issue when using iterative algorithms is how to determine
the appropriate step size in order to guarantee sufficiently
fast convergence. Therefore, a variation of the basic proposed
algorithm (Algorithm 2) is also presented that allows the step
size to be computed by line searches. For this variation of the
algorithm, we are able to show that the algorithm converges in
probability to a solution to the problem (Corollary III.1). Since
the algorithm is able to determine an appropriate step size
separately for each iteration according to the current situation,
it is able to obtain faster convergence.

Another contribution of the present study, in addition to
the above-described convergence analysis, is that we show
that sparsity and diversity learning methods based on the
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proposed algorithm can be applied to classifier ensemble
learning with sparsity and diversity. Considering the concrete
classifier ensemble problems with LIBSVM datasets [20] and
the UCI Machine Learning Repository datasets [21], we show
that the proposed learning methods have higher classification
accuracies than that of the conventional method [5], especially
in the case of the variation using the Armijo line search
algorithm (Section IV).

This paper is organized as follows. Section II gives the
mathematical preliminaries and provides the main problem.
Section III presents the stochastic fixed point optimization
algorithm for solving the main problem and analyzes its
convergence. Section IV numerically compares the behaviors
of the proposed learning algorithms with those of the existing
ones. Section V concludes the paper with a brief summary.

II. MATHEMATICAL PRELIMINARIES

A. Definitions and Notation

We use the standard notation N for the natural numbers
(positive integers) and RN for the N -dimensional Euclidean
space, for which we use 〈·, ·〉 for the inner product and ‖·‖ for
the associated norm. We define RN+ := {(xi)Ni=1 ∈ RN : xi ≥
0 (i = 1, 2, . . . , N)}. Further, for a matrix Z, we use notation
Z> to indicate its transpose. For a random variable Y , we
use E[Y ] to indicate its expectation and P[Ŷ ] to indicate the
probability of a realization Ŷ . Finally, the identity mapping
on the Euclidean space is written as Id. A function g : RN →
R is strictly convex [22, Definition 8.6] if x 6= y implies
g(αx+ (1−α)y) < αg(x) + (1−α)g(y) for any x,y ∈ RN
and α ∈ (0, 1). For the same function, the subdifferential [22,
Definition 16.1], [23, Section 23] at any x ∈ RN is defined as
∂g(x) := {u ∈ RN : g(y) ≥ g(x) + 〈y − x,u〉 (y ∈ RN )}.
The elements u of ∂g(x) for a given x ∈ RN comprise the
subgradients of g at x. When g is differentiable at x ∈ RN ,
the subdifferential reduces to the gradient: {∇g(x)} = ∂g(x).

A mapping Q : RN → RN is quasi-nonexpansive [22,
Definition 4.1(iii)] if, for all x ∈ RN and all y ∈ Fix(Q),
‖Q(x)− y‖ ≤ ‖x− y‖, where Fix(Q) is defined by

Fix(Q) :=
{
x ∈ RN : Q(x) = x

}
,

and called the fixed point set of Q. The fixed point set of a
quasi-nonexpansive mapping with at least one fixed point is
closed and convex [24, Proposition 2.6]. If ‖Q(x) − y‖2 +
‖(Id − Q)(x)‖2 ≤ ‖x − y‖2 for all x ∈ RN and all
y ∈ Fix(Q), then Q is said to be a quasi-firmly nonex-
pansive mapping [25, Section 3]. It has been shown that Q
is quasi-firmly nonexpansive if and only if R := 2Q − Id
is quasi-nonexpansive [22, Proposition 4.2], which is equiv-
alent to saying that R being quasi-nonexpansive implies that
(1/2)(Id + R) is quasi-firmly nonexpansive. If f : RN → R
is a convex function, then the subgradient projection [24,
Proposition 2.3], [26, Subchapter 4.3],

Qsp,f (x) :=

x−
f(x)

‖u‖2
u if f(x) > 0,

x otherwise,
(1)

where u is any vector in ∂f(x), is quasi-firmly nonexpansive
[25, Lemma 3.1]. Moreover, the fixed point set is simply

Fix (Qsp,f ) = lev≤0f :=
{
x ∈ RN : f(x) ≤ 0

}
.

A particularly interesting example of f in (1) is f(x) =
‖x‖1 − α (x ∈ RN ), where α ∈ R and ‖ · ‖1 denotes the
`1 norm, that is, ‖x‖1 :=

∑N
i=1 |xi| (x := (xi)

N
i=1 ∈ RN ).

In this case, u ∈ ∂(‖ · ‖1 − α)(x) (x ∈ RN ) can be
efficiently computed, so Qsp,‖·‖1−α can also be computed.
Then Fix(Qsp,‖·‖1−α) = {x ∈ RN : ‖x‖1 ≤ α}.

A mapping Q : RN → RN is nonexpansive [22, Definition
4.1(ii)] when it satisfies ‖Q(x) − Q(y)‖ ≤ ‖x − y‖ for
arbitrary x,y ∈ RN . All nonexpansive mappings are also
quasi-nonexpansive. If C (⊂ RN ) is a nonempty, closed
subset, then a metric projection onto C, denoted PC , is defined
for all x ∈ RN such that PC(x) ∈ C and ‖x − PC(x)‖ =
infy∈C ‖x − y‖. Projection PC is nonexpansive and is such
that Fix(PC) = C [22, Proposition 4.8, (4.8)].

A mapping T : RN → RN is said to be fixed-point closed
if, for an arbitrary sequence (xn)n∈N (⊂ RN ), convergence
of (xn)n∈N to some x ∈ RN together with limn→+∞ ‖xn −
T (xn)‖ = 0 imply x ∈ Fix(T ). The mapping Qsp,g defined
by (1) is fixed-point closed [25, Lemma 3.1].

B. Classifier Ensemble Problem and Its Existing Method
The classifier ensemble problem with sparsity and diversity

learning [4], [5] features prominently in machine learning.
The problem of optimizing sparsity and diversity has been
expressed as a complex quadratic problem. In this formulation,
errors are minimized with a least-squares loss function and
diversity is measured using Yule’s Q statistic. We state the
mathematical model [4], [5] of the classifier ensemble prob-
lem. In the case of ensemble learning used in classification
problems, there is a one-to-one association between instances
i with labels l. Suppose N classifiers (hn)Nn=1 are used
to classify the instances i into K classes. Classifiers hn

(n = 1, 2, . . . , N) each output a discriminant measure zn for
a given process instance i, written as vector z := (zn)Nn=1.
These outputs are fused to create the combined class sim-
ilarity measure from which the classification for each i is
determined. Specifically, a weighted measure [4, (1)], [5, (1)]
is computed for each instance i by H(i) = 〈z,x〉, where
xn (n = 1, 2, . . . , N) are the weights for the corresponding
classifiers and x := (xn)Nn=1.

For N classifiers and a sample set {(im, lm)}Mm=1, which
comprises M samples, we obtain a training set S :=
{(zm, lm)}Mm=1, where zm := (znm)Nn=1 (m = 1, 2, . . . ,M)
and znm (n = 1, 2, . . . , N,m = 1, 2, . . . ,M) is the measure
corresponding to the mth sample in the sample set and the nth
classifier in an ensemble. The basic learning algorithm for a
classifier ensemble seeks to minimize the empirical loss as a
function of the classifier weights x = (xn)Nn=1. Therefore, the
general optimization problem [4, (2), (3)], [5, (2), (4)] seeks
the classifier weights x that minimize the least-squares loss
function

f(x) = E
[
F (x, (z, l)︸ ︷︷ ︸

ξ

)
]

:= E
[

1

2
(〈z,x〉 − l)2

]
(2)
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over

C1 := RN+ , (3)

where (zm, lm) ∈ S are independent and identically dis-
tributed.

The objective of sparsity learning [4, Subsection 2.2.2],
[5, Subsection 3.2.2] in the context of combining multiple
classifiers is minimizing f in (2) over the intersection of
C1 := RN+ and

C2 :=
{
x ∈ RN : ‖x‖1 ≤ t1

}
, (4)

where t1 is the sparsity control parameter. Thus, for sparsity
learning, the learning of the classifier weights utilizes the `1-
norm ‖ · ‖1. In the case of diversity learning [5, Subsections
3.2.3 and 4.1], the objective is still minimizing f , but this time
over the intersection of C1 := RN+ and

C3 :=

{
x ∈ RN :

M∑
m=1

{
〈[zm],x〉 − 〈zm,x〉2

}
︸ ︷︷ ︸

fdiv(x)

≥ t2

}
, (5)

where [zm] := ((z1m)2, (z2m)2, . . . , (zNm)2)> and t2 is the
diversity control parameter. For details on how to derive
ensemble diversity measure fdiv, see Subsection 4.1 in [5].

Using the notation above, the classifier ensemble problem
with both sparsity and diversity learning [4, (10)], [5, (15)] can
be represented in terms of f defined in (2) and Ci (i = 1, 2, 3)
defined in (3), (4), and (5), as follows:

Minimize f(x) subject to x ∈
⋂

i=1,2,3

Ci. (6)

The existing approach [5] for the classifier ensemble prob-
lem is to reformulate problem (6) as the following relaxation
problem [5, (16)]:

minimize
1

2

M∑
m=1

(〈zm,x〉 − lm)2 + ᾱ‖x‖1 − β̄fdiv(x)

subject to x ∈ C1.

(7)

Here, ᾱ is a control parameter for sparsity regularization and
β̄ is that for the diversity calculation. To compute these, the
grid search algorithm in [5, Figure 2] is applied. The closed-
form solution x∗ [5, (18)] to relaxation problem (7) is then
obtained as

x∗> :=
1

1 + 2β̄

(
M∑
m=1

(
lmzm + β̄[zm]

)
− ᾱI

)>
Z, (8)

where I := (1, 1, . . . , 1)> ∈ RN and Z :=
(
∑M
m=1(zmz

>
m))−1, unless

∑M
m=1(zmz

>
m) is singular, in

which case the pseudo-inverse matrix of
∑M
m=1(zmz

>
m) is

used in place of Z.

C. Fixed Point Problem Formulation of Classifier Ensemble

The mapping

Q1 := PC1
, (9)

where PC1
is the metric projection onto C1 defined as in (3),

satisfies the nonexpansivity condition with Fix(Q1) = C1.
From C1 := RN+ , Q1 can be easily computed within a finite
number of arithmetic operations [22, Subchapter 28.3].

Let us define f0(x) := ‖x‖1 − t1 (x ∈ RN ). Then f0 is
convex and C2 = lev≤0f0 6= ∅. The mapping Q2 defined by

Q2 = Qsp,f0 , (10)

where Qsp,f0 is the subgradient projection relative to f0,
satisfies Fix(Q2) = C2 and is quasi-firmly nonexpansive [25,
Lemma 3.1]. Since the subgradient of f0(·) := ‖ · ‖1 − t1 at
any point in RN can be efficiently calculated [22, Example
16.25], it is easy to compute Qsp,f0 .

Let us define g0(x) := t2−fdiv(x). Then g0 is convex with
C3 = lev≤0g0. Hence,

Q3 := Qsp,g0 (11)

is computable and quasi-firmly nonexpansive with Fix(Q3) =
C3.

Define Q : RN → RN by

Q :=
1

2

[
Id +

3∑
i=1

ωiQi

]
, (12)

where (ωi)i=1,2,3 ⊂ (0,+∞) satisfies
∑
i=1,2,3 ωi = 1 and

Qi (i = 1, 2, 3) are defined as in (9), (10), and (11). From
[22, Proposition 4.34], we have

Fix(Q) = Fix

(
3∑
i=1

ωiQi

)
=

⋂
i=1,2,3

Fix(Qi) =
⋂

i=1,2,3

Ci.

Therefore, it is shown that the classifier ensemble problem (6)
can be expressed as the following problem:

Problem II.1 Suppose that f is defined by (2) and Q is
defined by (12). Then

find x? ∈ X? :=

{
x? ∈ Fix(Q) : f(x?) = inf

x∈Fix(Q)
f(x)︸ ︷︷ ︸

f?

}
.

The following proposition lists the properties of Q and f .
The proof is given in Appendix A.

Proposition II.1 We have the following:
(i) Q defined by (12) is quasi-firmly nonexpansive and

fixed-point closed;
(ii) There exists a bounded, closed convex set C such that

Fix(Q) ⊂ C and PC can be efficiently computed;
(iii) f defined by (2) is well defined and strictly convex. There

exists a unique solution of Problem II.1.

Problem II.1 is considered under the basic conditions (see,
e.g., [14, (A1), (A2)]) for machine learning:
(B1) There is an independent and identically distributed sam-

ple ξ0, ξ1, . . . of realizations of the random vector ξ;
(B2) There is an oracle which, for a given input point (x, ξ) ∈

RN × S, returns a stochastic gradient G(x, ξ) :=
∇xF (x, ξ).
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III. STOCHASTIC FIXED POINT OPTIMIZATION ALGORITHM

Algorithm 1 is the proposed algorithm for solving Problem
II.1 under (B1) and (B2). Algorithm 1 is based on the stochas-
tic approximation (SA) method [10, (5.4.1)], [11] defined as
follows: given x0 ∈ RN and (λn)n∈N ⊂ (0,+∞),

xn+1 = PFix(Q) (xn − λnG(xn, ξn)) (n ∈ N). (13)

The SA method needs to use the metric projection onto
Fix(Q), which is the constraint set of Problem II.1, and hence,
the method can be applied only to cases where Fix(Q) is
simple in the sense that PFix(Q) can be efficiently computed
(e.g., Fix(Q) is a closed ball, a half-space, or a hyperslab
[22, Chapter 28]). Since Fix(Q) in Problem II.1 is equal
to the complicated set

⋂
i=1,2,3 Ci, it would be difficult to

apply the SA method to Problem II.1. Meanwhile, Algorithm
1 uses a computable quasi-firmly nonexpansive mapping Q
(see Proposition II.1(i)), which implies Algorithm 1 can be
applied to Problem II.1.

Algorithm 1 Stochastic fixed point optimization algorithm for
Problem II.1
Require: α ∈ (0, 1), Qα := αId + (1 − α)Q, (λn)n∈N ⊂

(0,+∞)
1: n← 0, x0 ∈ RN
2: loop
3: xn+1 := PC [Qα(xn)− λnG(Qα(xn), ξn)]
4: n← n+ 1
5: end loop

The stopping condition of Algorithm 1 can be, for example,
any of the following: n = 10a (a ∈ N), ‖xn −Q(xn)‖ < ε,
and ‖xn+1 − xn‖ < ε, where ε > 0 is sufficiently small.

A. Constant step-size rule

Let us perform a convergence analysis of Algorithm 1 with
a constant step size.

Theorem III.1 Suppose that (λn)n∈N in Algorithm 1 satisfies
that, for all n ∈ N, λn := λ ∈ (0,+∞). Then there exists a
positive real number K1 such that

lim inf
n→+∞

E
[
‖xn −Q(xn)‖2

]
≤ K1λ

α(1− α)
.

Moreover, if limn→+∞ E[‖xn − Q(xn)‖2] exists, then there
exist positive real numbers B and K2 such that

lim inf
n→+∞

E [f(xn)− f?] ≤ B2λ+K2

√
(1− α)K1λ

α
.

Theorem III.1 indicates that Algorithm 1 with a small
constant step size λ may find a solution of Problem II.1. The
proof of Theorem III.1 is given in Appendix B.

B. Diminishing step-size rule

The following theorem establishes a convergence analysis
of Algorithm 1 under a diminishing step size. The proof of
Theorem III.2 is given in Appendix B.

Theorem III.2 Suppose that (λn)n∈N in Algorithm 1 satisfies
that (S1) limn→+∞ λn = 0 and (S2)

∑+∞
n=0 λn = +∞. Then

the sequence (xn)n∈N generated by Algorithm 1 converges in
probability to a unique solution to Problem II.1.

C. Line search step-size rule
Although the simplest step size satisfying (S1) and (S2) is

λn = c/(n + 1) (n ∈ N), where c > 0 is a constant, it is
too difficult to select a constant in advance that guarantees
sufficiently quick convergence. This is because what constant
is appropriate depends on various factors, such as the number
of iterations, the number of dimensions, the shapes of objective
functions and constraint sets, and the selection of subgradients.
This subsection develops line search methods that can deter-
mine an appropriate step size at each iteration to make the
convergence of Algorithm 1 faster.

The step size λn satisfying (S1) and (S2) must be decided
before Algorithm 1 is executed. In contrast, in this subsection,
we consider the selection of a step range [λn, λn] satisfying
the following:
(SR) The sequences (λn)n∈N and (λn)n∈N are such that, for

all n ∈ N, λn ≤ λn, limn→+∞ λn = 0, and
∑+∞
n=0 λn =

+∞.
For an example of the selection of a step range, see Section

IV. Algorithm 2 is obtained by replacing λn in Algorithm 1
with λn ∈ [λn, λn]. When λn = λn, Algorithm 2 coincides
with Algorithm 1.

Algorithm 2 Modified stochastic fixed point optimization
algorithm for Problem II.1

Require: α ∈ (0, 1), Qα := αId + (1 − α)Q,
(λn)n∈N, (λn)n∈N ⊂ (0,+∞)

1: n← 0, x0 ∈ RN
2: loop
3: λn ∈ [λn, λn]
4: xn+1 := PC [Qα(xn)− λnG(Qα(xn), ξn)]
5: n← n+ 1
6: end loop

Since λn ∈ [λn, λn] (n ∈ N) satisfies limn→+∞ λn = 0
and

∑+∞
n=0 λn = +∞, Theorem III.2 implies the following

corollary:

Corollary III.1 Suppose that (SR) holds. Then the sequence
(xn)n∈N generated by Algorithm 2 converges in probability
to a unique solution to Problem II.1.

Step 3 in Algorithm 2 is implemented as line searches. A
popular line search condition is the Armijo condition [27], [28,
Subchapter 3.1, (3.4)] defined as follows: for some constant
c ∈ (0, 1),

H(zn + λdn) ≤ H(zn) + cλ〈∇H(zn),dn〉, (14)

where H : RN → R is differentiable, zn+1 := zn+λndn (n ∈
N), z0 ∈ RN , dn is the search direction, and λn > 0 (n ∈ N).
Algorithm 3 is a line search algorithm based on (14) with
H(·) := F (·, ξn), zn := Qα(xn), dn := −G(Qα(xn), ξn),
and ∇H(zn) := G(Qα(xn), ξn). If Algorithm 3 fails (step
8), then we set λn := λn.
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Algorithm 3 Armijo line search algorithm

Require: a > 0, c ∈ (0, 1), K ∈ N\{0}
1: for I = 1, 1/a, . . . , 1/aK do
2: λn ← Iλn + (1− I)λn
3: yn := PC [Qα(xn)− λnG(Qα(xn), ξn)]
4: if F (yn, ξn) ≤ F (Qα(xn), ξn) −

cλn〈G(Qα(xn), ξn)),G(Qα(xn), ξn)〉 then
5: stop (success)
6: end if
7: end for
8: stop (failed, λn := λn)

IV. NUMERICAL COMPARISONS

Let us compare the existing sparsity and diversity learning
method [5] using x∗ defined by (8) with the proposed learning
methods using solutions to Problem II.1 with ti (i = 1, 2)
given by the discussion in [4, Sections 2 and 3]. Problem II.1
can be solved by Algorithms 1 and 2 with a closed ball C
(⊃ C2), α := 1/2, x0 = 0, and ωi := 1/3 (i = 1, 2, 3) in
(12). The algorithms used in the experiments are as follows:

CF: The closed-from solution defined by (8) [5]
C1: Algorithm 1 with λn := 10−1

C2: Algorithm 1 with λn := 10−2

C3: Algorithm 1 with λn := 10−3

D1: Algorithm 1 with λn := 10−1/(n+ 1)
D2: Algorithm 1 with λn := 10−2/(n+ 1)
D3: Algorithm 1 with λn := 10−3/(n+ 1)
LS: Algorithm 2 with λn ∈ [10−3/(n + 1), 1/(n + 1)]

computed by Algorithm 3 with a = 2, K = 7, and
c = 10−4 [27, Subsection 6.1], [28, Subchapter 3.1]

Although the sparsity and diversity learning methods were
presented in [19], they are examples of Algorithm 1 with
diminishing step sizes (i.e., D1, D2, and D3). Hence, the
experiments compared the performances between the sparsity
and diversity learning methods using the above algorithms.
The previously reported results (see, e.g., [18], [19], [29],
[30]) for fixed point algorithms used λn := 10−3/(n + 1)
empirically. Accordingly, it would be natural to implement
D3, which is Algorithm 1 with λn := 10−3/(n + 1). To
check whether Algorithm 1 with λn > 10−3/(n+1) performs
better than D3, we implemented D1 and D2. We also used
constant step sizes λn = 10−1, 10−2, 10−3 and a step range
[10−3/(n + 1), 1/(n + 1)] satisfying (SR) to compare fairly
the performances of D1, D2, and D3 with the ones of the
proposed methods using constant step sizes and step range.

The experiments used Mac Pro (Late 2013) with a 3 GHz
8-core Intel Xeon E5 CPU, 32 GB 1800 MHz DDR3 memory,
and macOS Mojave version 10.14.3 operating system. The
algorithms used in the experiments were written in Python
3.6.8 with the NumPy 1.15.4 package. The Moore-Penrose
pseudo-inverse provided as linalg.pinv in the NumPy
package was used to compute the (pseudo-)inverse matrix in
CF. The experiments used the datasets from the LIBSVM [20]
and the UCI Machine Learning Repository [21] for which
information is shown in Table I. In this experiments, stratified
10-fold cross-validation for the datasets was performed. For

this validation, the StratifiedKFold class in the scikit-
learn 0.20.1 package was used.

Ensembles of support vector classifiers were constructed by
the BaggingClassifier class in the scikit-learn 0.20.1
package. The number of base estimators was set as the default
value of the scikit-learn package. For learning multiclass
classification tasks with the classifiers used in the experiments,
the one-vs-the-rest (OvR) multiclass classification strategy
implemented as the OneVsRestClassifier class in the
scikit-learn 0.20.1 package was used. The stopping condition
for Algorithms 1 and 2 was any of the following: n = M̂ and
n = 2M̂ , where M̂ is the number of training data needed for
each classifier to learn the weights.

TABLE I: Datasets used for classification

Dataset Classes Instances Attributes
australian 2 690 14
breast-cancer 2 683 10
diabetes 2 768 8
ionosphere 2 351 34
leukemia 2 72 7129
madelon 2 2600 500
splice 2 3175 60
iris 3 150 4
svmguide2 3 391 20
wine 3 178 13
vehicle 4 846 18
glass 6 214 9
segment 7 2310 19
digits 10 1797 64
usps 10 9298 256

The performances of the methods in the experiments were
verified from the classification accuracy and elapsed time.
In particular, for each dataset, the experiments compared the
accuracy of the existing sparsity and diversity learning method
using (8) (CF) with the accuracies of the proposed learning
methods using Algorithm 1 (C1, C2, C3, D1, D2, and D3) and
Algorithm 2 (LS) by using the T.TEST function in Microsoft
Excel. The function value is the probability associated with
a t-test, and the significance level is set at 5%; i.e., if the
value of the function is less than 0.05, then there is a sig-
nificant difference between the existing learning method and
the proposed learning methods, and hence, the performance of
the existing learning method is significantly different from the
performances of the proposed learning methods.

Tables II and III show the classification accuracies and the
elapsed times for the methods when the stopping conditions
of the proposed algorithms were n = M̂ and n = 2M̂ .
Let us consider the results of the binary classification. The
performances of the methods using C1, C2, C3, D1, D2, and
D3 were sometimes good and sometimes not. For example,
for the “leukemia” dataset, the performance of the existing
learning method using CF was significantly different from
that of the proposed learning methods using C3 and D3
(the values of the T.TEST function for C3 and D3 when
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the stopping condition was n = M̂ were 0.004 and 0.001,
respectively). For the “breast-cancer” dataset, the performance
of the existing learning method using CF was not significantly
different from that of the proposed learning methods using
C3 and D3 (the values of the T.TEST function for C3 and
D3 when the stopping condition was n = M̂ were 0.447
and 0.785, respectively). This is because the selection of a
suitable step size depends on the instances and the attributes
of the datasets (see also Subsection III-C). Moreover, these
tables show that, for the “madelon” dataset, the values of the
T.TEST function for the learning methods using C1, D1, and
D2 when n = M̂ were less than 0.05, while those when
n = 2M̂ were greater than 0.05. Meanwhile, it can be seen
that the learning method using LS was robust for the cases
of both n = M̂ and n = 2M̂ . This is because Algorithm
2 with a step size computed by Algorithm 3 can determine
an appropriate step size at each iteration. When the datasets
except for the “leukemia” dataset were used, the elapsed time
for the existing learning method using CF was shorter than the
elapsed time for the proposed learning methods. Meanwhile,
since the “leukemia” dataset has larger attributes than other
datasets, the existing learning method using CF was time-
consuming. This is because the method using CF needs to
compute the inverses of large matrices.

Next, let us consider the results of the multiclass clas-
sification. For all of the datasets, the elapsed time for the
proposed learning methods was longer than the elapsed time
for the existing learning method. For the datasets except for
the “iris”, “wine”, and “digits” datasets, the performance of the
existing learning method using CF was significantly different
from that of the proposed learning methods. For the “iris”
and “wine” datasets, all of the learning methods used in the
experiments had high classification accuracies. The step size
λn = 10−3/(n+1) was useful for solving fixed point problems
faster (see, e.g., [18], [19], [29], [30]). In fact, when the
“iris” dataset was used and n = 2M̂ , only the value of the
T.TEST function for the proposed learning method for D3
using λn = 10−3/(n+ 1) was less than 0.05 (the value of the
T.TEST function for D3 when n = 2M̂ was 0.002). However,
when the “digits” dataset was used, the values of the T.TEST
function for the proposed learning methods except for D3
using λn = 10−3/(n + 1) were less than 0.05 (the values of
the T.TEST function for D3 when n = M̂ and n = 2M̂ were
0.085 and 0.113, respectively). This result implies that a use
of λn = 10−3/(n + 1) was not always desirable, in contrast
to [18], [19], [29], [30] and that it is too difficult to select
suitable step sizes of learning methods for each dataset before
implementing them. Meanwhile, the learning method using LS
was robust for the multiclass classification. In particular, the
learning method using LS had high accuracies, and for almost
the datasets, the performance of the existing learning method
using CF was significantly different from that of the learning
method using LS. This is because Algorithm 2 with a step size
computed by Algorithm 3 can determine an appropriate step
size at each iteration and because the learning method using
LS (Algorithm 2) can find solutions to the classifier ensemble
problems at an early stage.

The above discussion shows that the performances of the

learning methods using constant and diminishing step sizes
were sometimes good and sometimes not, while the perfor-
mance of the learning method using a step size computed
by line searches is reliably good. Therefore, the sparsity and
diversity learning method using LS is superior for solving
Problem II.1.

V. CONCLUSION

This paper presented a stochastic fixed point algorithm
for solving the classifier ensemble problem to minimize the
expectation of convex functions over the fixed point set of
a quasi-nonexpansive mapping and showed its convergence.
This proposed algorithm and a variation with a line search
step size were compared numerically with the existing learning
method with respect to the classifier ensemble problem with
sparsity and diversity learning for LIBSVM and UCI Machine
Learning Repository datasets. The results demonstrated the
optimality and efficiency of the proposed algorithms. In partic-
ular, the learning method using the algorithm with a line search
step size is well suited for this classifier ensemble problem.
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APPENDIX A
PROOFS OF PROPOSITION II.1 AND LEMMAS

For the random process ξ0, ξ1, . . ., let E[X|ξ[n]] denote the
conditional expectation of X given ξ[n] = (ξ0, ξ1, . . . , ξn).
Unless stated otherwise, all relations between random vari-
ables are supported to hold almost surely.

We first prove Proposition II.1.
Proof of Proposition II.1: (i) The mapping Qi (i = 1, 2, 3)

defined by one of (9), (10), and (11) is computable and
quasi-firmly nonexpansive (see Subsection II-C). The quasi-
nonexpansivity of Qi (i = 1, 2, 3) implies that

∑3
i=1 ωiQi

is quasi-nonexpansive [22, Exercise 4.11]. Accordingly, Q
defined by (12) is computable and quasi-firmly nonexpansive.
The continuity of Q1 := PC1 ensures that Q1 is fixed-
point closed. Since Qi (i = 2, 3) is fixed-point closed (see
Subsection II-A), Q is also fixed-point closed.

(ii) The boundedness condition of C2 defined by (4) guar-
antees that Fix(Q) (⊂ C2) is bounded. From the closed form
of C2, we can choose a simple, closed convex set C such
that C ⊃ C2 ⊃ Fix(Q) (e.g., C is a closed ball with a large
enough radius).

(iii) Theorems 7.47 and 7.51 in [31] and the continuity and
convexity of F (·, ξ) (ξ ∈ S) guarantee that the function f
defined by (2) is well defined and convex. Moreover, it can be
shown that, for a given ξ ∈ RN\{0} × R, F (·, ξ) is strictly
convex. Since at least one of xnm (n = 1, 2, . . . , N,m =
1, 2, . . . ,M) is not equal to 0, we have that f defined by (2)
is strictly convex. The continuity of f and the boundedness of
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Fix(Q) ensure the nonempty condition of the solution set of
Problem II.1. Moreover, the strict convexity of f guarantees
the uniqueness of the solution to Problem II.1. 2

Proposition II.1 leads to the following lemma.

Lemma A.1 Under (B1) and (B2), we have the following:

(i) For a given (x, ξ) ∈ C × S, g(x) := E[G(x, ξ)] is well
defined and g(x) = ∇f(x);

(ii) There exists B ∈ R such that, for all x ∈ C and all
n ∈ N, E[‖G(x, ξn)‖2] ≤ B2.

Proof: (i) Theorem 7.49 in [31], the boundedness of C2

defined by (4), and the definition of F (·, ξ) (ξ ∈ S) ensure
that there exists a bounded set C ⊃ C2 ⊃ Fix(Q) such that
f(·) = E[F (·, ξ)] is differentiable on C. Moreover, for all x ∈
C, g(x) = E[∇xF (x, ξ)] = ∇f(x) [31, Theorem 7.49(c)].

(ii) Given ξ ∈ S, the subdifferential of F (·, ξ) is bounded
on a bounded set C [32, Theorem 4.1.3], [22, Propositions
16.14(ii), (iii)]. Hence, Lemma A.1(ii) holds. 2

The following lemma lists the basic properties of Algorithm
1.

Lemma A.2 Suppose that (xn)n∈N is the sequence generated
by Algorithm 1 and x ∈ Fix(Q) and define Xn := ‖xn−x‖2,
Gn := G(Qα(xn), ξn), and g̃n := g(Qα(xn)) for all n ∈ N.
Then, for all n ∈ N,

(i) E[Xn+1] ≤ E[Xn]− 2α (1− α)E
[
‖Q(xn)− xn‖2

]
+ 2λn

{
λnE

[
‖Gn‖2

]
+ E [〈x− xn, g̃n〉]

}
,

(ii) E[Xn+1] ≤ E[Xn] + 2λn
{
λnE

[
‖Gn‖2

]
+ E [f(x)− f(xn)]

+ E [〈xn −Qα(xn),∇f(xn)− g̃n〉]
}
.

Proof: (i) Let n ∈ N be fixed arbitrarily. Set yn :=
Qα(xn)−λnGn. The equation −2〈x,y〉 = ‖x−y‖2−‖x‖2−
‖y‖2 (x,y ∈ RN ) implies that

2 〈yn − xn + λnGn,xn − x〉
=− 2 〈xn − yn,xn − x〉+ 2λn 〈Gn,xn − x〉
= ‖yn − x‖2 − ‖xn − yn‖2 −Xn + 2λn 〈Gn,xn − x〉 .

From [18, Proposition 2.1], we have that, for all x ∈ RN and
all y ∈ Fix(Q), 〈x−Qα(x),x− y〉 ≥ (1−α)‖x−Q(x)‖2.
Accordingly,

−2(1− α) ‖Q(xn)− xn‖2 ≥ 2 〈Qα(xn)− xn,xn − x〉
= 2 〈yn − xn + λnGn,xn − x〉 .

The nonexpansivity of PC with x = PC(x) implies that
‖xn+1 − x‖ = ‖PC(yn)− PC(x)‖ ≤ ‖yn − x‖. Hence,

Xn+1 ≤ Xn + ‖xn − yn‖2 − 2(1− α) ‖Q(xn)− xn‖2

− 2λn 〈Gn,xn − x〉 . (15)

From ‖x − y‖2 ≤ 2‖x‖2 + 2‖y‖2 (x,y ∈ RN ) and the
definition of yn,

‖yn − xn‖2 ≤ 2 ‖Qα(xn)− xn‖2 + 2λ2n ‖Gn‖
2
. (16)

Accordingly, (15), (16), and the definition of Qα guarantee
that

Xn+1 ≤ Xn − 2α(1− α) ‖Q(xn)− xn‖2 + 2λ2n ‖Gn‖
2

+ 2λn 〈x− xn,Gn〉 . (17)

The definition of the expectation and the condition xn =
xn(ξ[n−1]) (n ∈ N) ensure that, for all n ∈ N,

E [〈x− xn,Gn〉] = E
[
E
[
〈x− xn,Gn〉 |ξ[n−1]

]]
= E

[〈
x− xn,E

[
Gn|ξ[n−1]

]〉]
= E [〈x− xn, g(Qα(xn))〉] .

(18)

Therefore, taking the expectation of (17), together with (18),
we have the result that

E [Xn+1] ≤ E [Xn]− 2α (1− α)E
[
‖Q(xn)− xn‖2

]
+ 2λnBn,

(19)

where

Bn := λnE
[
‖Gn‖2

]
+ E [〈x− xn, g(Qα(xn))〉] . (20)

(ii) Let n ∈ N be fixed arbitrarily and define g̃n :=
g(Qα(xn)). Then, we have that

E [〈x− xn, g̃n〉]
=E [〈x−Qα(xn), g̃n〉] + E [〈Qα(xn)− xn, g̃n〉]
≤E [f(x)− f(Qα(xn))] + E [〈Qα(xn)− xn, g̃n〉] ,

where the second inequality comes from {∇f(x)} = ∂f(x)
(x ∈ RN ) and the definition of ∂f . Moreover, we have that
f(xn)−f(Qα(xn)) ≤ 〈xn−Qα(xn),∇f(xn)〉. Accordingly,

E [〈x− xn, g̃n〉] ≤ E [f(x)− f(xn)] + B̄n, (21)

where

B̄n := E [〈xn −Qα(xn),∇f(xn)− g̃n〉] . (22)

Hence, (19), (20), (21), and (22) lead to Lemma A.2(ii). This
completes the proof. 2

APPENDIX B
PROOFS OF THEOREMS III.1 AND III.2

Proof of Theorem III.1: Fix x ∈ Fix(Q) arbitrarily. Since
Proposition II.1(i) and (ii) imply the almost sure boundedness
of (Qα(xn))n∈N, (g(Qα(xn)))n∈N is almost surely bounded,
where g(Qα(xn)) = ∇f(Qα(xn)) (n ∈ N). The Cauchy-
Schwarz inequality ensures that there exists B̄ ∈ R such that,
for all n ∈ N, E[〈x − xn, g(Qα(xn))〉] ≤ B̄. Accordingly,
Lemma A.1(ii) implies that, for all n ∈ N,

Bn ≤ B2λn + B̄, (23)

where Bn (n ∈ N) is defined as in (20). Hence, Lemma A.2(i)
(see also (19)) and (23) imply that, for all n ∈ N,

E [Xn+1] ≤ E [Xn]− 2α (1− α)E
[
‖Q(xn)− xn‖2

]
+ 2K1λ,

(24)

where K1 := B2λ+ B̄ < +∞.
Define qn := E[‖xn − Q(xn)‖2] for all n ∈ N. Let us

assume that α(1− α) lim infn→+∞ qn ≤ K1λ does not hold,
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i.e., α(1−α) lim infn→+∞ qn > K1λ. Then there exists δ > 0
such that

α(1− α) lim inf
n→+∞

qn > K1λ+ 2δ.

The definition of the limit inferior of (qn)n∈N thus guarantees
that there exists n0 ∈ N such that, for all n ≥ n0,

α(1− α) lim inf
n→+∞

qn − δ ≤ α(1− α)qn.

Accordingly, for all n ≥ n0,

α(1− α)qn > K1λ+ δ. (25)

Hence, from (24) and (25), for all n ≥ n0,

E [Xn+1] < E [Xn]− 2δ < E [Xn0 ]− 2δ (n+ 1− n0) ,

which leads to a contradiction since the right-hand side of the
above inequality approaches minus infinity when n diverges.
Therefore,

lim inf
n→+∞

E
[
‖xn −Q(xn)‖2

]
≤ K1λ

α(1− α)
. (26)

If the limit of (qn)n∈N exists, then (26) and Jensen’s
inequality guarantee that, for all ε > 0, there exists n1 ∈ N
such that, for all n ≥ n1,

E [‖xn −Q(xn)‖] ≤

√
K1λ

α(1− α)
+ ε. (27)

From the Cauchy-Schwarz inequality and the boundedness
conditions of (g(Qα(xn)))n∈N and (∇f(xn))n∈N, there exists
K2 ∈ R such that, for all n ∈ N,

B̄n ≤ K2E [‖xn −Qα(xn)‖]
= (1− α)K2E [‖xn −Q(xn)‖] ,

(28)

where B̄n (n ∈ N) is defined as in (22). Accordingly, Lemma
A.2(ii) (see also (19), (20), and (21)) and (28) imply that, for
all n ∈ N,

E [Xn+1] ≤ E [Xn] + 2B2λ2 + 2λE [f(x)− f(xn)]

+ 2(1− α)K2λE [‖xn −Q(xn)‖] .
(29)

Let us show that, for all ε > 0,

lim inf
n→+∞

E [f(xn)− f?] ≤ (1− α)K2

√
K1λ

α(1− α)
+ ε+ ε

+B2λ. (30)

Suppose that (30) does not hold for all ε > 0; that is, there
exists ε0 > 0 such that

lim inf
n→+∞

E [f(xn)− f?] > (1− α)K2

√
K1λ

α(1− α)
+ ε0 + ε0

+B2λ. (31)

Since the definition of the limit inferior of (E[f(xn)−f?])n∈N
ensures the existence of n2 ∈ N such that, for all n ≥ n2,

lim inf
n→+∞

E [f(xn)− f?]− 1

2
ε0 ≤ E [f(xn)− f?] ,

(31) implies that, for all n ≥ n2,

E [f(xn)− f?] > B2λ+ (1− α)K2

√
K1λ

α(1− α)
+ ε0 +

1

2
ε0.

(32)

Therefore, from (29) with x := x? ∈ X?, (27), and (32), for
all n ≥ n3 := max{n1, n2},

E [Xn+1]

<E [Xn] + 2(1− α)K2λ

√
K1λ

α(1− α)
+ ε0 + 2B2λ2

− 2λ

{
B2λ+ (1− α)K2

√
K1λ

α(1− α)
+ ε0 +

1

2
ε0

}
=E [Xn]− λε0,

which implies that

E [Xn+1] < E [Xn3 ]− λε0 (n+ 1− n3) .

Since the right-hand side of the above inequality approaches
minus infinity when n diverges, we have a contradiction.
Hence, (30) holds for all ε > 0. The lack of restriction on
ε leads to the assertions in Theorem III.1. This completes the
proof. 2

Proof of Theorem III.2: Suppose that there exists m0 ∈ N
such that, for all n ≥ m0, E[X?

n+1] ≤ E[X?
n], where {x?} =

X? and X?
n := ‖xn − x?‖ (n ∈ N). In this case, there exists

limn→+∞ E[X?
n]. Lemma A.2(i) (see (19) and (20)) implies

that, for all n ≥ m0,

2α (1− α)E
[
‖Q(xn)− xn‖2

]
≤ E [X?

n]− E
[
X?
n+1

]
+ 2λn(B2λn + B̄),

where B̄ is defined as in (23). Accordingly, from Jensen’s
inequality and limn→+∞ λn = 0,

lim
n→+∞

E [‖xn −Q(xn)‖] = 0. (33)

Furthermore, Lemma A.2(ii), (22), and (28) guarantee that, for
all n ≥ m0 and all x ∈ Fix(Q),

2λnDn(x) ≤ E [Xn(x)]− E [Xn+1(x)] , (34)

where Xn(x) and Dn(x) are defined for all n ∈ N and all
x ∈ Fix(Q) by Xn(x) := ‖xn − x‖2 and

Dn(x) := −B2λn + E [f(xn)− f(x)]

− (1− α)K2E [‖Q(xn)− xn‖] .
(35)

Summing (34) from n = 0 to n = k (k ∈ N) yields that, for
all x ∈ Fix(Q),

2

k∑
n=0

λnDn(x) ≤ E [X0(x)]− E [Xk+1(x)]

≤ E [X0(x)] < +∞.
(36)

Let us prove that, for all x ∈ Fix(Q),

lim inf
n→+∞

Dn(x) ≤ 0. (37)
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If there exists x̄ ∈ Fix(Q) such that lim infn→+∞Dn(x̄) > 0,
then there exist m0 ∈ N and γ > 0 such that, for all n ≥ m0,
Dn(x̄) ≥ γ. Hence, from (36) and

∑+∞
n=0 λn = +∞,

+∞ = 2γ

+∞∑
n=m0

λn ≤ 2

+∞∑
n=m0

λnDn(x̄) < +∞,

which is a contradiction. Accordingly, for all x ∈ Fix(Q),
(37) holds, which implies that, for all x ∈ Fix(Q),

lim inf
n→+∞

E [f(xn)− f(x)]

≤ lim sup
n→+∞

{
B2λn + (1− α)K2E [‖Q(xn)− xn‖]

}
.

Hence, from (33) and limn→+∞ λn = 0,

lim inf
n→+∞

E [f(xn)− f(x)] ≤ 0 for all x ∈ Fix(Q). (38)

Moreover, (38) guarantees the existence of a subsequence
(xni

)i∈N of (xn)n∈N such that

lim
i→+∞

E [f(xni
)− f?] = lim inf

n→+∞
E [f(xn)− f?] ≤ 0. (39)

Since (xn)n∈N is almost surely bounded, there exists S̄ ⊂ S
such that P[S̄] = 1 and for all ξ ∈ S̄, (xni

(ξ))i∈N is
bounded. Let ξ ∈ S̄ be chosen arbitrarily. Then there exists
(xnij

(ξ))j∈N ⊂ (xni(ξ))i∈N such that (xnij
(ξ))j∈N con-

verges to x∗(ξ). Proposition II.1(i) and (33) guarantee that
E[‖x∗ −Q(x∗)‖] = 0, i.e., x∗ ∈ Fix(Q). Proposition II.1(iii)
guarantees the continuity of f . Accordingly, (39) and the
definition of f? allow us to deduce that

0 ≤ E [f(x∗)− f?] = lim
j→+∞

E
[
f
(
xnij

)
− f?

]
= lim
i→+∞

E [f(xni
)− f?] ≤ 0,

which implies that f(x∗) = f?. The uniqueness condition
of the solution to Problem II.1 thus ensures that x∗ = x?.
Let (xnik

(ξ))k∈N be another subsequence of (xni
(ξ))i∈N

which converges to x∗. A discussion similar to the one for
obtaining x∗ = x? leads to x∗ = x?. This implies that any
subsequence of (xni

(ξ))i∈N converges to x?. Furthermore, the
uniqueness condition of the solution to Problem II.1 guarantees
that (xn(ξ))n∈N admits a unique cluster point x?. Therefore,
(xn(ξ))n∈N converges to x?; i.e., (xn)n∈N converges almost
surely to x?.

Suppose that, for all n ∈ N, there exists m(n) ≥ n,
E[X?

m+1] > E[X?
m]. This implies that there exists (xnl

)l∈N ⊂
(xn)n∈N such that, for all l ∈ N, E[X?

nl+1] > E[X?
nl

].
Lemma 2.1 in [33] thus guarantees that there exists m1 ∈ N
such that, for all n ≥ m1, E[X?

τ(n)] ≤ E[X?
τ(n)+1], where

τ(n) := max{k ≤ n : E[X?
k ] < E[X?

k+1]} (n ∈ N) satisfies
limn→+∞ τ(n) = +∞. Since Lemma A.2 implies that, for all
n ≥ m1,

α (1− α)E
[∥∥Q (xτ(n))− xτ(n)∥∥2] ≤ λτ(n)(B2λτ(n) + B̄),

we find that

lim
n→+∞

E
[∥∥xτ(n) −Q (xτ(n))∥∥] = 0. (40)

Inequality (34) with x = x? ensures that, for all n ≥ m1,
2λτ(n)Dτ(n)(x

?) ≤ E[X?
τ(n)] − E[X?

τ(n)+1] ≤ 0. Hence, for
all n ≥ m1,

Dτ(n)(x
?) ≤ 0, (41)

which implies that

lim sup
n→+∞

E
[
f
(
xτ(n)

)
− f?

]
≤ lim sup

n→+∞

{
B2λτ(n) + (1− α)K2E

[∥∥xτ(n) −Q (xτ(n))∥∥]} .
Accordingly, (40) and limn→+∞ λτ(n) = 0 lead to

lim sup
n→+∞

E
[
f
(
xτ(n)

)
− f?

]
≤ 0. (42)

Let (xτ(nj))j∈N be an arbitrary subsequence of (xτ(n))n≥m1
.

Then (42) implies that

lim sup
j→+∞

E
[
f
(
xτ(nj)

)
− f?

]
≤ lim sup

n→+∞
E
[
f
(
xτ(n)

)
− f?

]
≤ 0. (43)

Proposition II.1(ii) guarantees that there exists Ŝ ⊂ S such that
P[Ŝ] = 1 and for all ξ ∈ Ŝ, (xτ(nj)(ξ))j∈N is bounded. Let
ξ ∈ Ŝ. Then there exists (xτ(njk

)(ξ))k∈N ⊂ (xτ(nj)(ξ))j∈N
such that (xτ(njk

)(ξ))k∈N converges to x?(ξ). The discussion
for the proof of x∗ ∈ Fix(Q), together with (40), implies
x? ∈ Fix(Q). The continuity of f and (43) yield that

0 ≤ E [f(x?)− f?] = lim sup
k→+∞

E
[
f
(
xτ(njk

)

)
− f?

]
≤ lim sup

j→+∞
E
[
f
(
xτ(nj)

)
− f?

]
≤ 0,

which, together with the uniqueness condition of the so-
lution to Problem II.1, implies that x? = x?. Choose
(xτ(njl

)(ξ))l∈N ⊂ (xτ(nj)(ξ))j∈N. A discussion similar to
the one for showing the convergence of (xτ(njk

)(ξ))k∈N to
x? ensures that (xτ(njl

)(ξ))l∈N converges to the same x?.
This implies that (xτ(nj)(ξ))j∈N converges to x?. Since any
subsequence of (xτ(n))n≥m1 converges almost surely to x?,
it is guaranteed that (xτ(n))n≥m1

converges almost surely
to x?, which implies that limn→+∞ E[X?

τ(n)] = 0. Since
Lemma 2.1 in [33] guarantees that, for all n ≥ m1, E[X?

n] ≤
E[X?

τ(n)+1], we find that lim supn→+∞ E[‖xn − x?‖2] ≤
lim supn→+∞ E[‖xτ(n)+1 − x?‖2] = 0, i.e.,

lim
n→+∞

E
[
‖xn − x?‖2

]
= 0.

Therefore, (xn)n∈N converges in probability to x?. This
completes the proof. 2
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