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Abstract This paper presents Riemannian conjugate gradient methods and global
convergence analyses under the strong Wolfe conditions. The main idea of the
proposed methods is to combine the good global convergence properties of the
Dai-Yuan method with the efficient numerical performance of the Hestenes-Stiefel
method. One of the proposed algorithms is a generalization to Riemannian mani-
folds of the hybrid conjugate gradient method of the Dai and Yuan in Euclidean
space. The proposed methods are compared well numerically with the existing
methods for solving several Riemannian optimization problems. Python implemen-
tations of the methods used in the numerical experiments are available at https:
//github.com/iiduka-researches/202008-hybrid-rcg.

Keywords conjugate gradient method · Riemannian optimization · hybrid conjugate
gradient method · global convergence · strong Wolfe conditions

1 Introduction

This paper focuses on the conjugate gradient method. Nonlinear conjugate gradient
methods in Euclidean space are a class of important methods for solving uncon-
strained optimization problems. In [10], Hestenes and Stiefel developed a conjugate
gradient method for solving linear systems with a symmetric positive-definite matrix
of coefficients. In [7], Fletcher and Reeves extended the conjugate gradient method to
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unconstrained nonlinear optimization problems. Theirs is the first nonlinear conjugate
gradient method in Euclidean space. Al-Baali [3] indicated that the Fletcher-Reeves
method converges globally and generates the descent direction with an inexact line
search when the step size satisfies the strong Wolfe conditions [22,23]. Polak and
Ribière [13] introduced a conjugate gradient method with good numerical perfor-
mance. Dai and Yuan [4] introduced a conjugate gradient method with a better global
convergence property than that of the Fletcher-Reeves method. The Hestenes-Stiefel
and Polak-Ribière-Polyak methods do not always converge under the strong Wolfe con-
ditions, and for this reason, hybrid conjugate gradient methods have been presented in
[5,11,19]. Touati-Ahmed and Storey [19], and Hu and Storey [11] proposed methods
combining the Fletcher-Reeves and Polak-Ribière-Polyak methods. Moreover, Dai and
Yuan [5] proposed the hybrid conjugate gradient method, which combines the Dai-
Yuan method and the Hestenes-Stiefel method. These nonlinear conjugate gradient
methods in Euclidean space are summarized by Hager and Zhang in [8].

The conjugate gradient method in Euclidean space is applicable to a Riemannian
manifold. In [18], Smith introduced the notion of Riemannian optimization using
the exponential map and parallel translation. However, using the exponential map
or parallel translation on a Riemannian manifold is generally not computationally
efficient. Absil, Mahony, and Sepulchre [2] proposed to use a mapping called a
retraction that approximates the exponential map. Moreover, they introduced the
notion of vector transport, which approximates parallel transport. In addition, Ring
and Wirth [14] introduced generalized line search methods (e.g., the Wolfe conditions
[22,23]) on Riemannian manifolds.

Using the retraction and vector transport, Ring and Wirth [14] presented a Fletcher-
Reeves type of nonlinear conjugate gradient method on Riemannian manifolds. They
indicated that the Fletcher-Reeves methods have a global convergence property under
the strong Wolfe conditions. However, their convergence analysis assumed that the
vector transport does not increase the norm of the search direction vector, which is not
the standard assumption (see [16, Section 5]). To remove this unnatural assumption,
Sato and Iwai [16] introduced the notion of scaled vector transport [16, Definition
2.2]. They proved that by using scaled vector transport, the Fletcher-Reeves method on
a Riemannian manifold generates a descent direction at every iteration and converges
globally without impractical assumptions. Similarly, in [15], Sato used scaled vector
transport in a convergence analysis. He indicated that the Dai-Yuan-type Riemannian
conjugate gradient method generates a descent direction at every iteration and con-
verges globally under the Wolfe conditions. This means that the Dai-Yuan method
has a better global convergence property than that of the Fletcher-Reeves method on
Riemannian manifolds, since the latter has to resort to the strong Wolfe conditions,
whereas the former only requires the Wolfe conditions.

In this paper, we propose hybrid Riemannian conjugate gradient methods exploit-
ing the idea used in the paper [5]. One of the methods we propose has already been used
in numerical experiments (e.g., [9, (43)], [17, Table 1]), but no convergence analysis
has yet been presented for it. Our methods combine the good numerical performance
of the Hestenes-Stiefel method with the efficient global convergence property of the
Dai-Yuan method. Moreover, we present convergence analyses of our methods. The
proofs are along the lines of [5, Theorem 2.3], except that the step-size assumption
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is stronger than that of the Euclidean case. This is due to the use of scaled vector
transport. Our hybrid methods converge globally if the size of the parameter, which
is used to determine the search direction, with respect to that of the Dai-Yuan method
is in a certain range (Theorem 2). We provide two examples which satisfy such a
condition. In numerical experiments, we show that our hybrid methods outperform
the Dai-Yuan and Polak-Ribière-Polyak methods.

This paper is organized as follows. Section 2 reviews the fundamentals of Rieman-
nian geometry and Riemannian optimization. Section 3 proposes the hybrid Rieman-
nian conjugate gradient methods and presents global convergence analyses for them.
Section 4 compares our methods with the existing Riemannian conjugate gradient
methods through numerical experiments. Section 5 concludes the paper with mention
of future work.

2 Riemannian Conjugate Gradient Methods

Let us start by reviewing the nonlinear conjugate gradient methods in Euclidean space.
The search direction ηk of the nonlinear conjugate gradient method is determined by
η0 = −∇ f (x0) and

ηk+1 = −∇ f (xk+1) + βk+1ηk, (1)

where x0 ∈ Rn, β0 = 0, and βk is a parameter to be suitably defined. Well-known
formulas for βk are the Fletcher-Reeves (FR) [7], Dai-Yuan (DY) [4], Polak-Ribière-
Polyak (PRP) [13], and Hestenes-Stiefel (HS) [10] formulas, given by

βFR
k =

‖∇ f (xk)‖2

‖∇ f (xk−1)‖2 , (2)

βDY
k =

‖∇ f (xk)‖2

η>
k−1yk−1

, (3)

βPRP
k =

∇ f (xk)>yk−1

‖∇ f (xk−1)‖2 , (4)

βHS
k =

∇ f (xk)>yk−1

η>
k−1yk−1

, (5)

respectively, where yk−1 = ∇ f (xk) − ∇ f (xk−1).
In the Euclidean space setting, a line search optimization algorithm updates the

current iterate xk to the next iterate xk+1 with the updating formula,

xk+1 = xk + αkηk, (6)

where αk > 0 is a positive step size. One often chooses a step size αk > 0 to satisfy
the Wolfe conditions [22,23], namely,

f (xk + αkηk) ≤ f (xk) + c1αk∇ f (xk)>ηk, (7)
∇ f (xk + αkηk)>ηk ≥ c2∇ f (xk)>ηk, (8)
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where 0 < c1 < c2 < 1. When the step size satisfies the following condition, which is
a substitute of (8):

|∇ f (xk + αkηk)>ηk | ≤ c2 |∇ f (xk)>ηk |, (9)

we call (7) and (9) the strong Wolfe conditions.
In [5], Dai and Yuan proved that the method defined by (1) and (6) produces

a descent search direction at every iteration and converges globally if the step size
αk > 0 satisfies (7) and (8), and βk satisfies

−σ ≤ βk

βDY
k

≤ 1,

where σ := (1 − c2)/(1 + c2) and c2 is a constant in the second condition (8). In this
paper, we extend these choices of the parameter βk to Riemannian manifolds.

Now we will briefly outline Riemannian optimization, especially the Riemannian
conjugate gradient method, by summarizing [2]. Moreover, we will introduce relevant
notation of Riemannian geometry.

Let (M,g) be a Riemannian manifold with a Riemannian metric g, and let TxM be
the tangent vector space of M at a point of x ∈ M . In addition, let T M be the tangent
bundle of M , which is defined by T M =

⋃
x∈M TxM . Let f : M → R be a smooth

objective function. Throughout this paper, to simplify the notation, we will write the
Riemannian metric g(·, ·) as 〈·, ·〉. Given a smooth function f : M → R, the gradient
of f at a point x ∈ M , denoted by grad f (x), is defined as the unique element of TxM
that satisfies

dfx(ξ) = 〈grad f (x), ξ〉x (ξ ∈ TxM).

An unconstrained optimization problem on a Riemannian manifold M is expressed
as follows:

Problem 1 Let f : M → R be smooth. Then, we would like to

minimize f (x),
subject to x ∈ M .

In order to generalize line search optimization algorithms to Riemannian mani-
folds, we will use the notions of a retraction and vector transport (see [2]), which are
defined as follows:

Definition 1 (Retraction) Let M be a manifold and T M be a tangent bundle of a
manifold M . Any smooth map R : T M→M is called a retraction on M , if it has the
following properties.

– Rx(0x) = x, where 0x denotes the zero element of TxM;
– With the canonical identification T0xTxM ' TxM , Rx satisfies DRx(0x)[ξ] = ξ

for all ξ ∈ TxM ,

where Rx denotes the restriction of R to TxM and DR is the differential of R (see [2,
Section 3]).
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Definition 2 (Vector transport) Let M be a manifold and T M be a tangent bundle
of M . Any smooth map T : T M⊕T M→T M , where ⊕ denotes the Whitney sum, is
called vector transport on M , if it has the following properties.

– There exists a retraction R, called the retraction associated with T , such that
Tη(ξ) ∈ TRx (η)M for all x ∈ M , and for all η, ξ ∈ TxM;

– T0x (ξ) = ξ for all ξ ∈ TxM;
– Tη(aξ + bζ) = aTη(ξ) + bTη(ζ) for all a, b ∈ R, and for all η, ξ, ζ ∈ TxM .

where Tη(ξ) denotes T(η, ξ).

In this paper, we will focus on the differentiated retraction TR as a vector transport,
defined by

T R
η (ξ) := DRx(η)[ξ] (ξ ∈ TxM), (10)

where x ∈ M and η ∈ TxM . It is easy to prove that T R satisfies the properties of
Definition 1 (see [2, Chapter 8]).

In Riemannian optimization, by using a retraction R and vector transport T on M ,
we can generalize the updating formula (6) and the search direction of the conjugate
gradient method (1) to, respectively,

xk+1 = Rxk (αkηk), (11)
ηk+1 = −grad f (xk+1) + βk+1Tαkηk

(ηk), (12)

where αk > 0 is a positive step size (see [2]). We call the search direction ηk a descent
direction if ηk satisfies

〈grad f (xk), ηk〉xk < 0.

Moreover, the line search conditions (7) and (8) can be generalized to Riemannian
manifolds as follows:

f (Rxk (αkηk)) ≤ f (xk) + c1αk 〈grad f (xk), ηk〉xk , (13)〈
grad f (Rxk (αkηk)),DRxk (αkηk)[ηk]

〉
Rxk

(αkηk ) ≥ c2 〈grad f (xk), ηk〉xk , (14)

where 0 < c1 < c2 < 1 (see [15,16]). We call (13) the Armijo condition. Moreover,
the second of the strong Wolfe conditions (9) can be rewritten as���〈grad f (Rxk (αkηk)),DRxk (αkηk)[ηk]

〉
Rxk

(αkηk )

��� ≤ c2
��〈grad f (xk), ηk〉xk

�� . (15)

Sato and Iwai [16] introduced the notion of scaled vector transport. A scaled
vector transport of the k-th iterate T (k) associated with T R is defined by

T (k)
αkηk

(ηk) :=


T R
αkηk

(ηk), if


T R

αkηk
(ηk)




xk+1

≤ ‖ηk ‖xk ,
‖ηk ‖xk

T R

αkηk
(ηk)




Rαk ηk

(ηk )
T R
αkηk

(ηk), otherwise.

(16)
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Note that scaled vector transport does not satisfy the properties of Definition 2.
Thus, we cannot call this vector transport with mathematical exactitude; however, by
using scaled vector transport, we often obtain good convergence properties for the
Riemannian conjugate gradient methods.

Scaled vector transport T (k) satisfies the following inequalities:����〈grad f (xk+1),T (k)
αkηk

(ηk)
〉
xk+1

���� ≤ ���〈grad f (xk+1),T R
αkηk

(ηk)
〉
xk+1

��� (17)

and 


T (k)
αkηk

(ηk)




xk+1

≤ ‖ηk ‖xk . (18)

Now, we would like to verify that inequality (17) holds. From the definition of scaled
vector transport (16), we obtain����〈grad f (xk+1),T (k)

αkηk
(ηk)

〉
xk+1

���� = ����〈grad f (xk+1), s(k)T R
αkηk

(ηk)
〉
xk+1

���� ,
where s(k) denotes

s(k) := min

{
1,

‖ηk ‖xk
‖T R

αkηk
(ηk)‖xk+1

}
≤ 1.

Therefore, it follows that����〈grad f (xk+1),T (k)
αkηk

(ηk)
〉
xk+1

���� = s(k)
���〈grad f (xk+1),T R

αkηk
(ηk)

〉
xk+1

���
≤
���〈grad f (xk+1),T R

αkηk
(ηk)

〉
xk+1

��� ,
which leads to (17). Obviously, (16) implies (18).

Throughout this paper, we will replace vector transport T by scaled vector trans-
portT (k) in (12). Therefore, the (k+1)-th search direction of the Riemannian conjugate
gradient method is determined by

ηk+1 = −grad f (xk+1) + βk+1T (k)
αkηk

(ηk). (19)

In (19), βk+1 is also given by generalizations of the formulas (2), (3), (4), and (5), i.e.,

βFR
k =

‖grad f (xk)‖2
xk

‖grad f (xk−1)‖2
xk−1

, (20)

βDY
k =

‖grad f (xk)‖2
xk〈

grad f (xk),T (k−1)
αk−1ηk−1 (ηk−1)

〉
xk

− 〈grad f (xk−1), ηk−1〉xk−1

, (21)

βPRP
k =

〈
grad f (xk),grad f (xk) − T (k−1)

αk−1ηk−1 (grad f (xk−1)
〉
xk

‖grad f (xk−1)‖2
xk−1

, (22)

βHS
k =

〈
grad f (xk),grad f (xk) − T (k−1)

αk−1ηk−1 (grad f (xk−1)
〉
xk〈

grad f (xk),T (k−1)
αk−1ηk−1 (ηk−1)

〉
xk

− 〈grad f (xk−1), ηk−1〉xk−1

. (23)
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We call these formulas the Fletcher-Reeves, Dai-Yuan, Polak-Ribière-Polyak and
Hestenes-Stiefel formulas, respectively. In the next section, we propose a new choice
of βk .

In [16], Sato and Iwai proved that by using the scaled vector transport T (k)

substitute of T in (12) and a step size which satisfies the strong Wolfe conditions (13)
and (15), the Fletcher-Reeves type conjugate gradient method defined by (11), (19),
and (20) generates sequences that converge globally. Similarly, in [15], Sato indicated
that if we use scaled vector transport, with a step size satisfying the Wolfe conditions,
(13) and (14), the Dai-Yuan type conjugate gradient method defined by (11), (19), and
(21) generates globally convergent sequences.

3 Riemannian Hybrid Conjugate Gradient Method and Its Global Convergence
Analysis

3.1 Proposed hybrid Riemannian conjugate gradient method

This section describes the Riemannian conjugate gradient descent method using a
hybrid βk , which exploits the idea described in [5].

Let rk be the size of βk with respect to βDY
k

defined by (21), namely,

rk :=
βk

βDY
k

. (24)

We will prove that, for the method defined by (11) and (19), the search direction ηk
is a descent direction at every iteration and the method converges globally if the step
size αk > 0 satisfies the strong Wolfe conditions (13) and (15), and the scalar βk is
such that

−σ ≤ rk ≤ 1, (25)

where σ := (1 − c2)/(1 + c2) > 0 and c2 denotes the constant in the second of the
strong Wolfe conditions (15). Furthermore, since the following two choices of βk :

βk = max{0,min{βDY
k , β

HS
k }} (26)

and

βk = max{−σβDY,min{βDY
k , β

HS
k }} (27)

satisfy the condition (25), we can use either of these hybrid formulas βk defined by
(26) and (27) as the scalar in (19). The above two choices of βk are examples of
the hybrid methods in Euclidean space [5]. This implies that our hybrid method is
a generalization of the method in [5]. The parameter (26) is used in the numerical
experiments of [9, (43)] and [17, Table 1]. The hybrid methods using (26) and (27)
combine the good global convergence properties of the Dai-Yuan method (21) with the
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efficient numerical performance of the Hestenes-Stiefel method (23). Now, we note
that, in Euclidean space, the hybrid methods using (26) and (27) converge globally
under the Wolfe conditions (7) and (8), whereas, on a Riemannian manifold, the
hybrid methods need the strong Wolfe conditions (13) and (15) to converge globally. In
Section 4, we provide a numerical evaluation showing that the Riemannian conjugate
gradient methods with the hybrid βk defined by (26) and (27) perform better than the
Polak-Ribière-Polyak method.

3.2 Global convergence analysis

Zoutendijk’s theorem is described on Riemannian manifolds as follows:

Theorem 1 (Zoutendijk [14]) Let (M,g) be a Riemannian manifold and R be a
retraction on M . Let f : M → R be a smooth, bounded below function with the
following property: there exists L > 0 such that

|D( f ◦ Rx)(tη)[η] − D( f ◦ Rx)(0x)[η]| ≤ Lt
(
η ∈ TxM, ‖η‖x = 1, x ∈ M, t ≥ 0

)
.

Suppose that in the line search optimization algorithm (11), each step size αk > 0
satisfies the strong Wolfe conditions (13) and (15), and each search direction ηk is a
descent direction. Then the following series converges:

∞∑
k=0

〈grad f (xk), ηk〉2
xk

‖ηk ‖2
xk

< ∞. (28)

The proof of this theorem is along the lines of Zoutendijk’s theorem in Euclidean
space (see [14, Theorem 3.3]). Next, we will prove the main convergence theorem.

Theorem 2 Let f : M → R be a function satisfying the assumptions of Zoutendijk’s
theorem. If each αk > 0 satisfies the strong Wolfe conditions (13) and (15), and if
βk is such that1 −σ ≤ rk ≤ 1, then any sequence {xk} generated by the Riemannian
conjugate gradient method defined by (11) and (19) satisfies

lim inf
k→∞

‖grad f (xk)‖xk = 0. (29)

Let us start with a brief outline of the proof strategy of Theorem 2, with an
emphasis on the main difficulty that has to be overcome in order to generalize the
proof in [5, Theorem 2.3] to manifolds. The flow of our proof is the same as in [5].
First, we show that the search direction in each iteration of the hybrid methods is the
descent direction. Therefore, the assumption, "each search direction ηk is a descent
direction", of Zoutendijk’s theorem is satisfied. Then, assuming that equation (29)
does not hold, the proof is completed by deriving a contradiction.

In general Riemannian manifolds, the inner product of tangent vectors at different
points cannot be defined, so the inner product is taken using scaled vector transport.
However, the use of scaled vector transport causes a problem that does not occur in
Euclidean space. Specifically, the absolute value is required for the inequality in (36)
when generalizing to the Riemannian manifold.

1 The formulas defined by (26) and (27) satisfy −σ ≤ rk ≤ 1.
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Proof (Theorem 2) If grad f (xk0 ) = 0 for some k0, then (29) follows. Thus, it is
sufficient to prove (29) only when grad f (xk) , 0 for all k ≥ 0.

First, we prove that each search direction ηk is a descent direction by induction.
For η0 = −grad f (x0), it is obvious that η0 is a descent direction.

Assume that ηk−1 is a descent direction. Then, we find that

〈grad f (xk), ηk〉xk
=
〈
grad f (xk),−grad f (xk) + βkT (k−1)

αk−1ηk−1(ηk−1)

〉
xk

= −‖grad f (xk)‖2
xk
+ rk

‖grad f (xk)‖2
xk

〈
grad f (xk),T (k−1)

αk−1ηk−1 (ηk−1)
〉
xk〈

grad f (xk),T (k−1)
αk−1ηk−1 (ηk−1)

〉
xk

− 〈grad f (xk−1), ηk−1〉xk−1

=
〈grad f (xk−1), ηk−1〉xk−1〈

grad f (xk),T (k−1)
αk−1ηk−1 (ηk−1)

〉
xk

− 〈grad f (xk−1), ηk−1〉xk−1

‖grad f (xk)‖2
xk

+

(rk − 1)
〈
grad f (xk),T (k−1)

αk−1ηk−1 (ηk−1)
〉
xk〈

grad f (xk),T (k−1)
αk−1ηk−1 (ηk−1)

〉
xk

− 〈grad f (xk−1), ηk−1〉xk−1

‖grad f (xk)‖2
xk

(30)

where the first equation comes from (19) and the second equation comes from βk =
rk βDY

k
and (21). Accordingly, (21) ensures that

〈grad f (xk), ηk〉xk

=

{
〈grad f (xk−1), ηk−1〉xk−1

+ (rk − 1)
〈
grad f (xk),T (k−1)

αk−1ηk−1 (ηk−1)
〉
xk

}
βDY
k ,

which, together with (24), implies that

βk = rk βDY
k

=
rk 〈grad f (xk), ηk〉xk

〈grad f (xk−1), ηk−1〉xk−1
+ (rk − 1)

〈
grad f (xk),T (k−1)

αk−1ηk−1 (ηk−1)
〉
xk

.

Let lk and ξk be

lk :=

〈
grad f (xk),T (k−1)

αk−1ηk−1 (ηk−1)
〉
xk

〈grad f (xk−1), ηk−1〉xk−1

, (31)

ξk :=
rk

1 + (rk − 1)lk
. (32)

Using (31) and (32), we obtain

βk = rk βDY
k

= ξk
〈grad f (xk), ηk〉xk

〈grad f (xk−1), ηk−1〉xk−1

. (33)
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Furthermore, let ζk be

ζk :=
1 + (rk − 1)lk

lk − 1
. (34)

Then, (30) guarantees that

〈grad f (xk), ηk〉xk = ζk ‖grad f (xk)‖2
xk
. (35)

On the other hand, since αk satisfies the strong Wolfe conditions, (15) implies that���〈grad f (xk),DRxk−1 (αk−1ηk−1)[ηk−1]
〉
xk

��� ≤ c2
��〈grad f (xk−1), ηk−1〉xk−1

�� ,
which, together with (10), (17) and (31) implies that

|lk | =

����〈grad f (xk),T (k−1)
αk−1ηk−1 (ηk−1)

〉
xk

������〈grad f (xk−1), ηk−1〉xk−1

��
≤

���〈grad f (xk),T R
αk−1ηk−1

(ηk−1)
〉
xk

�����〈grad f (xk−1), ηk−1〉xk−1

��
=

���〈grad f (xk),DRxk−1 (αk−1ηk−1)[ηk−1]
〉
xk

�����〈grad f (xk−1), ηk−1〉xk−1

�� ≤ c2.

(36)

This means |lk | ≤ c2 < 1, which implies lk − 1 < 0. Similar to equation (2.18) in [5],
we obtain 1 + (rk − 1)lk > 0. Hence,

ζk =
1 + (rk − 1)lk

lk − 1
< 0,

which, together with (35), implies that ηk is a descent direction. Thus, induction shows
that each ηk is a descent direction.

Finally, we prove (29) by contradiction. Assume that

lim inf
k→∞

‖grad f (xk)‖xk > 0.

Then, noting ‖grad f (xk)‖xk , 0 for all k, there exists γ > 0 such that

‖grad f (xk)‖xk ≥ γ > 0.

for all k. Since (19) means that

ηk + grad f (xk) = βkT (k−1)
αk−1ηk−1 (ηk−1),

taking the norms of the above equation and its square, it follows that

‖ηk ‖2
xk
= β2

k ‖T
(k−1)
αk−1ηk−1 (ηk−1)‖2

xk
− 2 〈grad f (xk), ηk〉xk − ‖grad f (xk)‖2

xk
.
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Similar to equation (2.21) in [5], by dividing both sides of the above equation by
〈grad f (xk), ηk〉2

xk
, 0, (33) and (35) give,

‖ηk ‖2
xk

〈grad f (xk), ηk〉2
xk

= ξ2k
‖T (k−1)

αk−1ηk−1 (ηk−1)‖2
xk

〈grad f (xk−1), ηk−1〉2
xk−1

+
1

‖grad f (xk)‖2
xk

{
1 −

(
1 +

1
ζk

)2
}
.

(37)

Similar to equation (2.24) in [5], we obtain

|1 + (rk − 1)lk | ≥ |rk |,

which, together with (32), implies

|ξk | ≤ 1.

From the above inequality with (37) and (18), we obtain

‖ηk ‖2
xk

〈grad f (xk), ηk〉2
xk

≤
‖T (k−1)

αk−1ηk−1 (ηk−1)‖2
xk

〈grad f (xk−1), ηk−1〉2
xk−1

+
1

‖grad f (xk)‖2
xk

≤
‖ηk−1‖2

xk−1

〈grad f (xk−1), ηk−1〉2
xk−1

+
1

‖grad f (xk)‖2
xk

.

Using the above inequality recursively and noting the hypothesis, ‖grad f (xk)‖xk ≥
γ > 0, and ‖η0‖2

x0 = ‖grad f (x0)‖2
x0 , it follows that

‖ηk ‖2
xk

〈grad f (xk), ηk〉2
xk

≤
k∑
i=0

1
‖grad f (xi)‖2

xi

≤
k∑
i=0

1
γ2 =

k + 1
γ2 .

This means

〈grad f (xk), ηk〉2
xk

‖ηk ‖2
xk

≥ γ2

k + 1
,

which indicates

∞∑
k=0

〈grad f (xk), ηk〉2
xk

‖ηk ‖2
xk

≥
∞∑
k=0

γ2

k + 1
= ∞.

This contradicts (28) in Zoutendijk’s theorem and completes the proof. ut
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4 Numerical Experiments

This section compares the performances of the existing Riemannian conjugate gradi-
ent methods with those of the proposed methods. We solved 7 types of Riemann op-
timization problems (Problem 2–8) on several manifolds and objective functions. We
solved these problems 10 times with each algorithm, that is, 70 times in total. Then, we
calculated a performance profile [6] for each algorithm to show the advantages of our
algorithms. Our experiments used pymanopt (https://github.com/pymanopt,
see [20]) package. Python implementations of the methods used in the numer-
ical experiments are available at https://github.com/iiduka-researches/
202008-hybrid-rcg. In particular, the Riemannian conjugate gradient method was
implemented in pymanopt, so we changed only the parameter βk for the experiments.

4.1 The Rayleigh-quotient minimization problem on the unit sphere

Problem 2 is the Rayleigh-quotient minimization problem on the unit sphere (see
[2, Chapter 4.6]). The optimal solutions of Problem 2 are the unit eigenvectors of A
associated with the smallest eigenvalue (see [2, Chapter 2]).

Problem 2 For A ∈ Sn
++,

minimize f (x) = x>Ax,

subject to x ∈ Sn−1 := {x ∈ Rn : ‖x‖ = 1},

where Sn
++ denotes the set of all symmetric positive-definite matrices.

In the experiments, we set n = 100 and generated a matrix A ∈ Sn
++ with randomly

chosen elements by using sklearn.datasets.make_spd_matrix.

4.2 Computation of Stability Number

For an undirected graph G, a stable set in G is a set of vertices, which are mutually
nonadjacent. We define S(G) as the size of a maximum stable set in G. In [12],
Motzkin and Straus showed that the computation of the stability number of graphs
problem is equivalent to Problem 3. Specifically, the value of the objective function
in the global optimal solution of Problem 3 is equal to S(G)−1. In addition, Yuan, Gu,
Lai, and Wen [24, Section 5.3] considered the problem as a Riemannian optimization
problem.

Problem 3 Let G = (V,E) be an undirected graph.

minimize f (x) =
n∑
i=1

x4
i + 2

∑
(i, j)∈E

x2
i x2

j ,

subject to x ∈ Sn−1 := {x ∈ Rn : ‖x‖ = 1},

where n = |V | and ‖·‖ denotes the Euclidean norm.
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In the experiments, we set n = 20 and generated a graph G = (V,E) randomly by
using networkx.fast_gnp_random_graph. Here, we set the probability for edge
creationto 1/4.

4.3 The brockett-cost-function minimization problem on a Stiefel manifold

Problem 4 is the Brockett-cost-function minimization problem on a Stiefel manifold
(see [2, Chapter 4.8]).

Problem 4 For A ∈ Sn
++ and N = diag(µ0, · · · , µp) (0 ≤ µ0 ≤ · · · ≤ µp),

minimize f (X) = tr(X>AXN)
subject to X ∈ St(p,n) := {X ∈ Rn×p : X>X = Ip}.

In the experiments, we set p = 5, n = 20 and N := diag(1, · · · , p) and generated a ma-
trix A ∈ Sn

++with randomly chosen elements by usingsklearn.datasets.make_spd_matrix.

4.4 The closest unit norm column approximation problem

Problem 5 is the closest unit norm column approximation problem, whose implemen-
tation is given inpymanopt/examples/closest_unit_norm_column_approximation.py.

Problem 5 For A ∈ Rm×n,

minimize f (X) = ‖X − A‖2
F

subject to X ∈ OB(m,n) := {X ∈ Rm×n : ddiag(X>X) = Im},

where ‖·‖F denotes the Frobenius norm and ddiag(X) denotes a diagonal matrix
whose diagonal elements are those of X .

In the experiments, we set m = 10 and n = 1000 and generated a matrix A ∈ Rm×n

with randomly chosen elements by using numpy.random.randn.

4.5 Off-diagonal cost function minimization

In [1, Section 3], Absil and Gallivan introduced a cost function on oblique manifolds,
which is an off-diagonal cost function written as

f (X) :=
N∑
i=1



X>CiX − ddiag(X>CiX)


2
F
,

where Ci (i = 1,2, · · · ,N) are symmetric matrices. Problem 6 is one of minimizing
the off-diagonal cost function on an oblique manifold.
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Problem 6 For Ci ∈ Sn (i = 1, · · · ,N),

minimize f (X) =
N∑
i=1



X>CiX − ddiag(X>CiX)


2
F

subject to X ∈ OB(n, p) := {X ∈ Rn×p : ddiag(XTX) = Ip},

where Sn denotes the set of all symmetric matrices.

In the experiments, we set N = 5, n = 10 and p = 5 and generated 5 matrices Bi ∈
Rn×n (i = 1,2, · · · ,5)with randomly chosen elements by usingnumpy.random.randn.
We set symmetric matrices Ci ∈ Sn as Ci := (Bi + B>

i )/2 (i = 1,2, · · · ,5).

4.6 The low-rank matrix approximation problem

Problem 7 is the low-rank matrix approximation problem whose implementation is
given in pymanopt/examples/low_rank_matrix_approximation.py.

Problem 7 For A ∈ Rm×n,

minimize f (X) = ‖X − A‖2
F ,

subject to X ∈ Mk := {X ∈ Rm×n : rank(X) = k}.

In the experiments, we set m = 100, n = 80 and k = 4 and generated a matrix
A ∈ Rm×n with randomly chosen elements by using numpy.random.randn.

4.7 The robust matrix completion problem

Problem 8 is the robust matrix completion problem, discussed by Vandereycken [21,
Section 1.1 (1.5)].

Problem 8 For A ∈ Rm×n, and a subsetΩ of the complete set of entries {1, · · · ,m}×
{1, · · · ,n},

minimize f (X) = ‖PΩ(X − A)‖2
F ,

subject to X ∈ Mk := {X ∈ Rm×n : rank(X) = k},

where

PΩ : Rm×n → Rm×n,Xi j 7→
{

Xi j (i, j) ∈ Ω
0 (i, j) < Ω

.

In the experiments, we set m = 10, and m = 8 and k = 4, and Ω contained
each pair (i, j) ∈ {1, · · · ,m} × {1, · · · ,n} with probability 1/2. Moreover, we used
a matrix A ∈ Rm×n that was generated with randomly chosen elements by using
numpy.random.randn.
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4.8 Experimental setup

We used line search algorithms for the strong Wolfe conditions (13) and (15) with
c1 = 0.0001 and c2 = 0.9. We determined that a sequence had converged to an optimal
solution if the stopping condition,

‖grad f (xk)‖xk < 10−6

was satisfied.
The experiments used a MacBook Air (2017) with a 1.8 GHz Intel Core i5, 8 GB

1600 MHz DDR3 memory, and macOS Mojave version 10.14.5 operating system.
The algorithms were written in Python 3.7.6 with the NumPy 1.17.3 package and
the Matplotlib 3.1.1 package. We modified the strong Wolfe line search provided as
scipy.optimize.line_search in the SciPy package, to compute the step size in (11).

For comparison, we chose two Riemannian conjugate gradient methods, i.e., the
Dai-Yuan method (21) and the Polak-Ribière-Polyak method (22). Below, we call the
hybrid methods using (26) and (27), Hybrid1 and Hybrid2, respectively.

4.9 Results

Table 1 and 2 summarize the results such as the average and median values of the
above 70 experiments. In particular, Table 1 shows summary statistics for the number
of iterations and Table 2 shows those for the elapsed time. From Table 1 and 2, we
can see that the hybrid methods converge to optimal solutions in fewer iterations and
in less time than the DY and PRP methods.

Table 1 Summary statistics on the iteration of 70 experiments of the Riemannian optimization problems.

DY PRP Hybrid1 Hybrid2

mean 1438.7 399.9 212.2 235.0
std 1765.9 513.8 217.0 212.0
min 46 21 20 20

median 570.5 161 129 135
max 7061 2037 952 803

Table 2 Summary statistics on the elapsed time of 70 experiments of the Riemannian optimization prob-
lems.

DY PRP Hybrid1 Hybrid2

mean 18.70 4.39 2.56 2.91
std 26.22 4.53 2.13 2.46
min 0.43 0.14 0.15 0.14

median 10.34 2.74 2.31 2.44
max 147.46 20.95 10.74 11.42
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Then, we calculate the performance profiles [6]. The performance profile Ps : R→
[0,1] is defined as follows: let P andS be the set of problems and solvers, respectively.
For each p ∈ P and s ∈ S, we define t := (computing time required to solve problem p by solver s).
We define the performance ratio rp,s as

rp,s :=
tp,s

mins′∈S tp,s′
.

Next, we define the performance profile, for all τ ∈ R, as

Ps(τ) :=
size{p ∈ P : rp,s ≤ τ}

sizeP ,

where sizeA denotes the number of elements of a set A.
Figure 1 plots the performance profile of each algorithm versus the number of

iterations. It shows that the hybrid methods have much higher performance than the
DY method. Moreover, the hybrid methods outperform the PRP method. Also, it can
be seen that Hybrid1 is superior to Hybrid2. Figure 2 plots the performance profiles
of each algorithm versus the elapsed time. We can see that the hybrid methods are
superior to both DY and PRP. In particular, they perform much better than the DY
method. In addition, Hybrid1 is again superior to Hybrid2.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
τ

0.0

0.2

0.4

0.6

0.8

1.0

P s
(τ
)

DY
PRP
Hybrid1
Hybrid2

Fig. 1 Performance profile versus number of iterations.

5 Conclusion and Future Work

This paper presented hybrid Riemannian conjugate gradient methods and showed
their global convergence properties. It compared them numerically with the existing
Riemannian conjugate gradient methods on several Riemannian optimization prob-
lems. The results of the numerical experiments demonstrated the efficiency of the
hybrid methods.
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
τ
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0.8

1.0

P s
(τ
)

DY
PRP
Hybrid1
Hybrid2

Fig. 2 Performance profile versus elapsed time.

Various hybrid conjugate methods have been proposed for Euclidean space, such
as

βk = max{0,min{βPRP
k , β

FR
k }}.

The hybrid conjugate methods in Euclidean space are summarized in [8]. We will
present more hybrid methods and convergence analyses in a future paper.
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