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Abstract

This paper presents the Hager–Zhang (HZ)-type Riemannian conjugate gra-

dient method that uses the exponential retraction. We also present global

convergence analyses of our proposed method under two kinds of assump-

tions. Moreover, we numerically compare our proposed methods with the

existing methods by solving two kinds of Riemannian optimization problems

on the unit sphere. The numerical results show that our proposed method

has much better performance than the existing methods, i.e., the FR, DY,

PRP and HS methods. In particular, they show that it has much higher

performance than existing methods including the hybrid ones in computing

the stability number of graphs problem.

Keywords: Riemannian optimization, Riemannian manifold, conjugate

gradient method, Hager–Zhang method

∗Corresponding author
Email addresses: sakai0815@cs.meiji.ac.jp (Hiroyuki Sakai),

hsato@i.kyoto-u.ac.jp (Hiroyuki Sato), iiduka@cs.meiji.ac.jp (Hideaki Iiduka)

Preprint submitted to Applied Mathematics and Computation October 27, 2022



1. Introduction

Riemannian optimization has been widely researched along with the de-

velopments of real-world applications in various fields, such as natural lan-

guage processing [7, 10], signal processing [3], and computer vision [4, 5], in

which large-scale problems can be expressed as certain optimization problems

on Riemannian manifolds.

Many useful gradient methods [1, 15] have been developed for Riemannian

optimization that can be obtained by extending the existing methods in

Euclidean space to a Riemannian manifold. However, such extension is not

always easy. For example, in the Euclidean space setting, the (k + 1)-th

approximation of optimal solutions is xk+1 = xk + αkηk, where αk > 0,

xk ∈ Rn is a point at the k-th iteration, and ηk is the search direction.

However, such an update cannot be defined for general Riemannian manifolds

because of nonlinear Riemannian geometric structure. We can generalize

Riemannian gradient methods using retractions and vector transports that

are divided into various types, as described below.

Smith [17] proposed using exponential retraction and parallel transport to

generalize the optimization methods from Euclidean space to a Riemannian

manifold. Absil, Mahony, and Sepulchre [1] proposed using a general re-

traction that approximates the exponential retraction and a vector transport

which approximates the parallel transport. Note that a general retraction

(resp. vector transport) is a generalization of the exponential retraction

(resp. parallel transport).

We focus on Riemannian conjugate gradient (RCG) methods as they offer

both theoretical and practical benefits. A theoretical benefit of RCGmethods
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is that we can show that they generate sufficient descent search directions,

which decrease an objective function value at every iteration, and converge

globally, i.e., without depending on the choice of the initial point. A practical

benefit of RCG methods is that they have efficient numerical performances,

as shown in the previous studies [1, 15].

1.1. Previous results

The results for RCG methods that satisfy the sufficient descent condition

and global convergence are summarized as in Table 1.

Ring andWirth [8] presented a Fletcher–Reeves (FR) type of RCGmethod

using a general retraction and vector transport, which is defined by the differ-

entiated retraction, under the strong Wolfe conditions. The vector transport

they used in [8] is assumed not to increase the norm of the search direction

vector, which would be unnatural in both theory and practice. To over-

come this limitation, Sato and Iwai [16] defined a scaled vector transport and

showed convergence of the FR-type RCG method using a general retraction

and scaled vector transport.

Sato [13] also investigated a Dai–Yuan (DY) type of RCG method using a

general retraction and scaled vector transport and showed that it generates a

sufficient descent direction and converges globally under the Wolfe conditions

(“DY” row in Table 1). Comparison of the results in [16] with those in

[13] reveals that the DY-type RCG method has a better global convergence

than the FR-type one because it is based on the assumption of the Wolfe

conditions, which are weaker than the strong Wolfe conditions.

A recently introduced hybrid RCG method [9] is defined by combining the

good global convergence of the DY-type RCG method (see description above)
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with the efficient numerical performance of a Hestenes–Stiefel (HS) type of

RCG method. This hybrid method generates a sufficient descent direction

and converges globally under the strong Wolfe conditions (“HS-DY hybrid”

row in Table 1). Another recently introduced hybrid method [11] combines

the FR-type RCG method with a Polak–Ribière–Polyak (PRP) type of RCG

method. This hybrid method also generates a sufficient descent direction and

converges globally under the strong Wolfe conditions (“FR-PRP hybrid” row

in Table 1).

1.2. Goals

As described in Section 1.1, and shown in Table 1, existing RCG methods

are capable for solving Riemannian optimization problems. Nevertheless,

there are other powerful conjugate gradient methods in Euclidean space that

could be generalized to Riemannian manifolds. A particularly interesting

Euclidean conjugate gradient (ECG) method is the Hager–Zhang (HZ) type1

[3] of conjugate gradient method, which is a very efficient conjugate gradient

method for Euclidean optimization. Accordingly, the first goal of this paper

is to clarify whether or not the HZ-type ECG method can be theoretically

extended to a Riemannian manifold so as to guarantee its global convergence.

Sakai and Iiduka [11] showed that the HZ-type RCG method using a general

retraction and scaled vector transport generates a sufficient descent direction

(“HZ” row in Table 1). This sufficient descent property does not depend on

the line search conditions. However, the global convergence of the HZ-type

RCG method has not been determined.

1http://users.clas.ufl.edu/hager/papers/Software/
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The second goal is to determine whether the HZ-type RCG method per-

forms better than the existing RCG methods listed in Table 1. The HZ-type

ECG method tends to perform better in the Euclidean space setting than

other ECG methods. Therefore, it would be useful to know whether the HZ-

type RCG method has the same performance as the HZ-type ECG method.

1.3. Contributions

This paper makes two contributions. The first contribution is to show

that the HZ-type RCG method using the exponential retraction and vec-

tor transport converges globally under the Wolfe conditions (Theorem 3.3).

This contribution is an extension of Theorem 2.2 in [3] to a Riemannian

manifold and shows theoretically for the first time the global convergence of

the HZ-type RCG method. The second contribution is to provide numerical

comparisons of the HZ-type RCG method with the existing RCG methods.

The numerical results of this paper indicate that the HZ-type RCG method

performs better than the existing ones in computing the stability number of

graphs problem.

1.4. Difficulty to prove Theorem 3.3

A way to guarantee the global convergence property of the HZ-type ECG

method in the Euclidean space is to assume the strong convexity of the

objective function f . We thus assume that there exists a constant µ > 0

such that

(∇f(x)−∇f(y))⊤(x− y) ≥ µ ∥x− y∥2 (1)

holds for any x,y ∈ Rn, which is equivalent to the condition that the small-

est eigenvalue of the Hessian ∇2f(x) for any x ∈ Rn is not less than µ.
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Expression (1) is more useful in convergence analysis.

However, (1) cannot be directly generalized to the Riemannian case. In-

stead, a natural definition of the strong convexity of f on a Riemannian

manifold M is that there exists a constant µ > 0 such that, for any x ∈ M ,

the smallest eigenvalue of the Riemannian Hessian Hess f(x) is not less than

µ. In Theorem 3.3, we have to start with this condition and without a

Riemannian counterpart of (1).

Noting that (1) is used to prove (∇f(xk+1) − ∇f(xk))
⊤(xk+1 − xk) ≥

µαk ∥ηk∥2 in Euclidean space, we need to show the Riemannian counterpart

of this inequality, not that of (1). Fortunately, by imposing the Wolfe con-

ditions on the step length, we can directly prove the desired inequality (26)

from the assumption of the strong convexity of f , i.e., the condition that the

eigenvalue of the Riemannian Hessian is uniformly lower bounded.

The remainder of this paper is organized as follows. Section 2 gives

the mathematical preliminaries, including descriptions of retraction, vector

transport, and existing RCG methods. Section 3 presents our results for the

HZ-type RCG method. Section 4 provides numerical comparisons. Section

5 briefly summarizes the key points.
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2. Mathematical Preliminaries

2.1. Notation, definitions, and lemma

Let (M, ⟨·, ·⟩) be a connected geodesically complete Riemannian manifold,

where ⟨·, ·⟩x : TxM × TxM → R is a Riemannian metric at a point x ∈ M .

Here, TxM is a tangent space at a point x ∈M , and TM is a tangent bundle

of M ; i.e., TM :=
⋃

x∈M TxM . Let expx : TxM →M be the exponential map

at x ∈M and ⊕ be the Whitney sum defined as follows (see [12, Subchapter

I.3 (p.16 (II))]):

TM ⊕ TM := {(ξ, η) : ξ, η ∈ TxM,x ∈M}.

An unconstrained optimization problem on M is expressed as follows (see

[1, 9, 11, 13, 16]):

Problem 2.1. Let f : M → R be smooth. Then, we would like to

minimize f(x) subject to x ∈M.

To generalize line search optimization algorithms to Riemannian mani-

folds, the notions of a retraction and a vector transport are used.

Definition 2.1 (Retraction). A retraction (see [1, Chapter 4, Definition

4.1.1]) is a smooth map R : TM→M that has the following properties.

• Rx(0x) = x;

• With the canonical identification T0xTxM ≃ TxM , Rx satisfies

(dRx)0x(ξ) = ξ
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for all ξ ∈ TxM ,

where 0x denotes the zero element of TxM and Rx denotes the restriction of

R to TxM .

Definition 2.2 (Vector transport). A vector transport (see [1, Chapter 8,

Definition 8.1.1]) is a smooth map T : TM ⊕ TM → TM that has the

following properties.

• There exists a retraction R, called the retraction associated with T ,

such that Tη(ξ) ∈ TRx(η)M for all x ∈M and for all η, ξ ∈ TxM ;

• T0x(ξ) = ξ for all ξ ∈ TxM ;

• Tη(aξ+ bζ) = aTη(ξ)+ bTη(ζ) for all a, b ∈ R and for all η, ξ, ζ ∈ TxM .

Lemma 2.1 (The Gauss lemma [12]). For any point p ∈M , any X ∈ TpM

and any Y ∈ TX(TpM) ≃ TpM ,

〈
(d expp)X(X), (d expp)X(Y )

〉
expp(X)

= ⟨X, Y ⟩p .

2.2. Existing RCG Methods and Wolfe conditions

The RCG method [1, 9, 11, 13, 16] is described as

xk+1 = Rxk
(αkηk), (2)

ηk =

−gk k = 0,

−gk + βkTαk−1ηk−1
(ηk−1) k ≥ 1,

(3)
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where gk is the Riemannian gradient of f at xk, denoted by grad f(xk), αk > 0

is the positive step size, and βk+1 ∈ R is a parameter chosen suitably. The

βk+1 ∈ R parameters used in existing RCG methods are

βFR
k+1 =

∥gk+1∥2xk+1

∥gk∥2xk

, (4)

βPRP
k+1 =

⟨gk+1, yk⟩xk+1

∥gk∥2xk

, (5)

βHS
k+1 =

⟨gk+1, yk⟩xk+1

⟨gk+1, Tαkηk(ηk)⟩xk+1
− ⟨gk, ηk⟩xk

, (6)

βDY
k+1 =

∥gk+1∥2xk+1

⟨gk+1, Tαkηk(ηk)⟩xk+1
− ⟨gk, ηk⟩xk

, (7)

β
Hybrid(HS−DY)
k+1 = max

{
0,min

{
βHS
k+1, β

DY
k+1

}}
, (8)

β
Hybrid(FR−PRP)
k+1 = max

{
0,min

{
βFR
k+1, β

PRP
k+1

}}
, (9)

where yk := gk+1 − Tαkηk(gk). To determine step size αk in (2), we use line

searches that satisfy the Wolfe conditions (see [9, 11, 13, 16]),

f(Rxk
(αkηk)) ≤ f(xk) + c1αk ⟨gk, ηk⟩xk

, (10)

⟨gk+1, Tαkηk(ηk)⟩xk+1
≥ c2 ⟨gk, ηk⟩xk

, (11)

where 0 < c1 < c2 < 1. When (11) is replaced with

∣∣∣⟨gk+1, Tαkηk(ηk)⟩xk+1

∣∣∣ ≤ c2
∣∣⟨gk, ηk⟩xk

∣∣ , (12)

(10) and (12) are called strong Wolfe conditions.

Search directions ηk defined by (3) are said to be sufficient descent direc-

10



tions if there exists κ > 0 such that, for all k = 0, 1, . . .,

⟨gk, ηk⟩ ≤ −κ∥gk∥2xk
.

Let us first consider the FR-type RCG method, i.e., the RCG method (2)

and (3), using a general retraction and scaled vector transport, with (4). It is

guaranteed to generate a sufficient descent direction and to converge globally

under strong Wolfe conditions [(10) and (12)] [8, 16] (see also Table 1).

Next, let us consider the DY-type RCG method, i.e., the RCG method (2)

and (3), using a general retraction and scaled vector transport, with (7). It is

guaranteed to generate a sufficient descent direction and to converge globally

under Wolfe conditions [(10) and (11)] [13] (see also Table 1). A hybrid

method using either (8) or (9) also generates a sufficient descent direction

and converges globally [9, 11] (see also Table 1).

3. HZ-type RCG Method

3.1. Assumptions

The parameter βk+1 used in the HZ-type RCG method [9, 11] is defined

by

βHZ
k+1 = βHS

k+1 − µ
∥yk∥2xk+1

⟨gk+1, Tαkηk(ηk)⟩xk+1(
⟨gk+1, Tαkηk(ηk)⟩xk+1

− ⟨gk, ηk⟩xk

)2 , (13)

where µ > 1/4 and yk := gk+1 − Tαkηk(gk).

In this paper, we use the exponential map as a retraction, i.e., R :=

exp. Moreover, we use the vector transport defined by the differential of the
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exponential retraction; i.e.,

T : TM ⊕ TM → TM : (η, ξ) 7→ Tη(ξ) := (d expx)η(ξ),

for η, ξ ∈ TxM . From the Gauss lemma (Lemma 2.1), we have

⟨gk, ηk⟩xk
= ⟨Tαkηk(gk), Tαkηk(ηk)⟩xk+1

. (14)

This means that (13) and (6) can be written as

βHZ
k+1 = βHS

k+1 − µ
∥yk∥2xk+1

⟨gk+1, Tαkηk(ηk)⟩xk+1

⟨yk, Tαkηk(ηk)⟩
2
xk+1

, (15)

βHS
k+1 =

⟨gk+1, yk⟩xk+1

⟨yk, Tαkηk(ηk)⟩xk+1

, (16)

respectively. Therefore, the HZ-type RCG method with the exponential re-

traction can be described as Algorithm 3.1. In addition, we also consider the

modified HZ method (see [3, (1.6)]), by replacing βHZ
k+1 in step 6 of Algorithm

3.1 by

β̂HZ
k+1 := max{βHZ

k+1, ζk+1}, ζk+1 := −
1

∥ηk+1∥xk+1
min{ζ, ∥gk+1∥xk+1

}
, (17)

where ζ > 0 is a constant.

We consider Algorithm 3.1 under Assumption 3.1 (see [8, Theorem 2])

and Assumption 3.2 described below.

Assumption 3.1. The objective function f : M → R in Problem 2.1 is

smooth and bounded below, and f ◦ expxk
: Txk

M → R is Lipschitz continu-

12



Algorithm 3.1 HZ-type RCG method with exponential retraction for solv-
ing Problem 2.1 [1, 9, 11]

Require: Initial point x0 ∈M , convergence tolerance ϵ > 0.
Ensure: Sequence {xk}k=0,1,··· ⊂M .
1: Set η0 = −g0 := − grad f(x0).
2: k ← 0.
3: while ∥gk∥xk

> ϵ do
4: Compute αk > 0 satisfying Wolfe conditions (10) and (11).
5: Set

xk+1 = expxk
(αkηk),

6: Compute gk+1 := − grad f(xk+1) and βk+1 as (15) and set search di-
rection

ηk+1 = −gk+1 + βk+1(d expxk
)αkηk(ηk).

7: k ← k + 1.
8: end while

ously differentiable on span{ηk} with uniform Lipschitz constant L > 0.

The following is Zoutendijk’s theorem (Theorem 3.1) for Riemannian

manifolds under Assumption 3.1.

Theorem 3.1 (Zoutendijk). Let {xk}k=0,1,··· ⊂M be a sequence generated by

Algorithm 3.1. Suppose that Assumption 3.1 holds. If each step size αk > 0

satisfies Wolfe conditions (10) and (11), then

∞∑
k=0

⟨gk, ηk⟩2xk

∥ηk∥2xk

<∞. (18)

Assumption 3.2. The objective function f : M → R in Problem 2.1 is
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smooth, and there exists a constant L > 0 such that, for all x, y ∈M ,

∥grad f(x)− TX(grad f(y))∥x ≤ Ld(x, y), (19)

where X ∈ TyM satisfies x = expy(X). Furthermore, f is strongly convex,

i.e., there exists a constant µ > 0 such that, for all x ∈ M , the smallest

eigenvalue of the Riemannian Hessian Hess f(x) is not less than µ.

3.2. Convergence results

Our first result is that Algorithm 3.1 including the HZ-type RCG method

generates a sufficient descent direction without depending on the line search

conditions.

Theorem 3.2. Let {xk}k=0,1,··· ⊂ M be a sequence generated by Algorithm

3.1 with βk ∈ [βHZ
k ,max{βHZ

k , 0}] 2. If ⟨yk, Tαkηk(ηk)⟩xk+1
̸= 0, we have

⟨gk, ηk⟩xk
≤ −

(
1− 1

4µ

)
∥gk∥2xk

. (20)

Proof. For k = 0, (20) clearly holds from ⟨g0, η0⟩x0
= −∥g0∥2x0

. Subsequently,

we assume k ≥ 1. If βk = βHZ
k , from [11, Theorem 3.4], (20) follows. On the

other hand, if βk ̸= βHZ
k , then βHZ

k ≤ βk ≤ 0. From (3), we have

⟨gk, ηk⟩xk
= −∥gk∥2xk

+ βk

〈
gk, Tαk−1ηk−1

(ηk−1)
〉
xk
.

If
〈
gk, Tαk−1ηk−1

(ηk−1)
〉
xk
≥ 0, then (20) follows immediately since βk ≤ 0. If

2The modified HZ (17) satisfies β̂HZ
k ∈ [βHZ

k ,max{βHZ
k , 0}].
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〈
gk, Tαk−1ηk−1

(ηk−1)
〉
xk

< 0, then

⟨gk, ηk⟩xk
= −∥gk∥2xk

+ βk

〈
gk, Tαk−1ηk−1

(ηk−1)
〉
xk

≤ −∥gk∥2xk
+ βHZ

k

〈
gk, Tαk−1ηk−1

(ηk−1)
〉
xk
,

since βHZ
k ≤ βk ≤ 0. Hence, (20) follows by analysis as in [11, Theorem

3.4].

The following is the main theorem indicating that the HZ-type RCG

method converges globally.

Theorem 3.3. Let {xk}k=0,1,··· ⊂ M be a sequence generated by Algorithm

3.1 with βk+1 = βHZ
k+1 under Assumptions 3.1 and 3.2. Suppose that each step

size αk > 0 satisfies Wolfe conditions (10) and (11). Then either ∥gk0∥xk0
=

0 for some k0 ∈ N, or

lim
k→∞
∥gk∥xk

= 0. (21)

Proof. If gk0 = 0 for some k0 ∈ N, then (21) obviously follows. Assume that

gk ̸= 0 for all k ∈ N. From (14) and (11), we have

(c2 − 1) ⟨gk, ηk⟩xk
≤ ⟨gk+1 − Tαkηk(gk), Tαkηk(ηk)⟩xk+1

.

15



Moreover, (19) and the Cauchy–Schwarz inequality imply

⟨gk+1 − Tαkηk(gk), Tαkηk(ηk)⟩xk+1
≤ ∥gk+1 − Tαkηk(gk)∥xk+1

∥Tαkηk(ηk)∥xk+1

= ∥gk+1 − Tαkηk(gk)∥xk+1
∥ηk∥xk

≤ Lαk ∥ηk∥2xk
.

Therefore, we obtain

(c2 − 1) ⟨gk, ηk⟩xk
≤ Lαk ∥ηk∥2xk

,

which with Theorem 3.2 implies

αk ≥
1− c2
L

∣∣⟨gk, ηk⟩xk

∣∣
∥ηk∥2xk

. (22)

Moreover,

⟨yk, Tαkηk(ηk)⟩xk+1
= ⟨gk+1 − Tαkηk(gk), Tαkηk(ηk)⟩xk+1

= ⟨gk+1, Tαkηk(ηk)⟩xk+1
− ⟨Tαkηk(gk), Tαkηk(ηk)⟩xk+1

= ⟨gk+1, Tαkηk(ηk)⟩xk+1
− ⟨gk, ηk⟩xk

≥ c2 ⟨gk, ηk⟩xk
− ⟨gk, ηk⟩xk

= (c2 − 1) ⟨gk, ηk⟩xk
, (23)

where the third equation comes from (14), and the inequality comes from

(11). Furthermore, we define ϕx,µ(t) := f(expx(tµ)). From Taylor’s theorem,

16



we have

f(xk+1)− f(xk) = f(expxk
(αkηk))− f(xk)

= ϕxk,
ηk

∥ηk∥xk
(αk ∥ηk∥xk

)− ϕxk,
µk

∥ηk∥xk
(0)

= ϕ′
xk,

ηk
∥ηk∥xk

(0)αk ∥ηk∥xk
+

1

2
ϕ′′
xk,

ηk
∥ηk∥xk

(θ)(αk ∥ηk∥xk
)2,

for some θ ∈ [0, αk ∥ηk∥xk
]. Moreover, by defining cx,µ(t) := expx(tµ), we

have

ϕ′′
xk,

ηk
∥ηk∥xk

(θ) =

〈
Hess f(xk)

[
c′
xk,

ηk
∥ηk∥xk

(θ)

]
, c′

xk,
ηk

∥ηk∥xk
(θ)

〉
c
xk,

ηk
∥ηk∥xk

(θ)

≥ µ

∥∥∥∥∥c′xk,
ηk

∥ηk∥xk
(θ)

∥∥∥∥∥
2

c
xk,

ηk
∥ηk∥xk

(θ)

= µ

∥∥∥∥∥ ηk
∥ηk∥xk

∥∥∥∥∥
2

xk

= µ

from the strong convexity of f . Using this evaluation of ϕ′′, we obtain

f(xk+1)− f(xk) ≥

〈
gk,

ηk
∥ηk∥xk

〉
xk

αk ∥ηk∥xk
+

µ

2
(αk ∥ηk∥xk

)2

= αk ⟨gk, ηk⟩xk
+

µ

2
(αk ∥ηk∥xk

)2. (24)

17



From (10) and (24), we have

⟨gk, ηk⟩xk
≤ µ

2(c1 − 1)
αk ∥ηk∥2xk

. (25)

Therefore, from (23) and (25), we obtain

⟨yk, Tαkηk(ηk)⟩xk+1
≥ γαk ∥ηk∥2xk

, (26)

where

γ :=
µ(1− c2)

2(1− c1)
.

The assumption gk ̸= 0 implies that ηk ̸= 0, which together with αk > 0

yield ⟨yk, Tαkηk(ηk)⟩xk+1
̸= 0. From (10) and the lower boundedness of f ,

∞∑
k=0

c1αk ⟨gk, ηk⟩xk
≥

∞∑
k=0

(f(xk+1)− f(xk))

= lim
j→+∞

f(xj)− f(x0) > −∞,

which implies

∞∑
k=0

αk ⟨gk, ηk⟩xk
> −∞.

Combining this with the lower bound for αk given in (22) and the sufficient

18



descent property in Theorem 3.2 gives

∞∑
k=0

∥gk∥4xk

∥ηk∥2xk

<∞. (27)

From (19), we obtain

∥yk∥xk+1
= ∥gk+1 − Tαkηk(gk)∥xk+1

≤ Lαk ∥ηk∥xk
. (28)

From (15), (16), (26) and (28), we have

∣∣βHZ
k+1

∣∣ = ∣∣∣∣∣ ⟨gk+1, yk⟩xk+1

⟨yk, Tαkηk(ηk)⟩xk+1

− µ
∥yk∥2xk+1

⟨gk+1, Tαkηk(ηk)⟩xk+1

⟨yk, Tαkηk(ηk)⟩
2
xk+1

∣∣∣∣∣
≤
∥gk+1∥xk+1

∥yk∥xk+1

γαk ∥ηk∥2xk

+ µ
∥yk∥2xk+1

∥gk+1∥xk+1
∥ηk∥xk

γ2α2
k ∥ηk∥

4
xk

≤
Lαk ∥ηk∥xk

∥gk+1∥xk+1

γαk ∥ηk∥2xk

+ µ
L2α2

k ∥ηk∥
3
xk
∥gk+1∥xk+1

γ2α2
k ∥ηk∥

4
xk

=

(
L

γ
+

µL2

γ2

) ∥gk+1∥xk+1

∥ηk∥xk

.

Hence, we have

∥ηk+1∥xk+1
=

∥∥−gk+1 + βHZ
k+1Tαkηk(ηk)

∥∥
xk+1

≤ ∥gk+1∥+
∣∣βHZ

k+1

∣∣ ∥ηk∥xk

≤
(
1 +

L

γ
+

µL2

γ2

)
∥gk+1∥xk+1

.

19



Combining this upper bound with (27), we obtain

∞∑
k=0

∥gk∥2xk
<∞,

which completes the proof.

3.3. Comparison of HZ-type ECG method with HZ-type RCG method

Let us consider M = Rn. Then, βHZ
k+1 defined by (15) can be expressed

βHZ
k+1 = βHS

k+1 − µ
∥yk∥2xk+1

⟨gk+1, Tαkηk(ηk)⟩xk+1

⟨yk, Tαkηk(ηk)⟩
2
xk+1

=
y⊤
k gk+1

η⊤
k yk

− µ
∥yk∥2g⊤

k+1ηk

(y⊤
k ηk)2

=
1

η⊤
k yk

(
yk − µ

∥yk∥2

η⊤
k yk

ηk

)⊤

gk+1,

which implies that βHZ
k+1 defined by (15) with µ = 2 coincides with (1.3) in [3]

used in the HZ-type ECG method. Inequality (20) with µ = 2 (see Theorem

3.2) is the sufficient descent property of the HZ-type RCG method; i.e.,

⟨gk, ηk⟩xk
≤ −7

8
∥gk∥2xk

,

which, together with M = Rn, implies (1.9) in Theorem 1.1 of [3]:

g⊤
k ηk ≤ −

7

8
∥gk∥2 .

Accordingly, Theorem 3.2 is a natural extended result of Theorem 1.1 in [3]

to a Riemannian manifold.
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Theorem 2.2 in [3] implies that the HZ-type ECG method converges glob-

ally if the Wolfe conditions hold and if

• f : Rn → R is strongly convex with a constant c > 0 and ∇f : Rn → Rn

is Lipschitz continuous with Lipschitz constant L > 0 on the level set

L := {x ∈ Rn : f(x0) ≤ f(x)}.

Theorem 3.3 in this paper is satisfied under the Wolfe conditions and As-

sumptions 3.1 and 3.2, i.e.,

(i) f : M → R is smooth and bounded below; f ◦expxk
: Txk

M → R is Lip-

schitz continuously differentiable on span{ηk} with uniform Lipschitz

constant L > 0;

(ii) There exists a constant L > 0 such that, for all x, y ∈M ,

∥grad f(x)− TX(grad f(y))∥x ≤ Ld(x, y), (29)

where X ∈ TyM satisfies x = expy(X). Furthermore, f is strongly

convex; i.e., there exists constant µ > 0 such that, for all x ∈ M ,

the smallest eigenvalue of the Riemannian Hessian Hess f(x) is not less

than µ.

Under the Euclidean space setting, f is strongly convex with a constant

c if and only if the smallest eigenvalue of ∇2f(x) for any x ∈ Rn is not less

than c. Moreover, (29) in the Euclidean space setting is the same as the

existence of L > 0 such that, for all x,y ∈ Rn,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, (30)
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that is, ∇f is Lipschitz continuous. Obviously, the strong convexity of f

implies that f is bounded below. Following Assumption 4.1 and Remark

4.1 in [14], we can see that, in the Euclidean space setting, the Lipschitz

continuity of f ◦ expxk
(see (i)) is equivalent to (30). Therefore, Theorem 3.3

is a natural extended result of Theorem 2.2 in [3] to a Riemannian manifold.

4. Numerical Experiments

We compared the performances of the HZ method with existing RCG

methods, i.e., the FR, DY, PRP, HS, HS–DY hybrid, and FR–PRP hybrid

methods. We solved two Riemannian optimization problems (Problems 4.1

and 4.2) on the unit sphere on a MacBook Air laptop computer (2020) with

a 1.1-GHz Intel Core i3 CPU, 8-GB 3733-MHz LPDDR4X memory, and the

Catalina 10.15.7 OS. The algorithms were written in Python 3.9.12. Python

implementations of the methods used in the numerical experiments are avail-

able at https://github.com/iiduka-researches/202209-hz. Each prob-

lem was solved 100 times with each algorithm, that is, 200 times in total.

We used a line search algorithm [11, Algorithm 3] for the strong Wolfe

conditions (10) and (12) with c1 = 10−4 and c2 = 0.9. If

∥grad f(xk)∥xk
< 10−6

was satisfied, we determined that the sequence had converged to an optimal

solution.

For comparison, we calculated performance profile Ps : R→ [0, 1] [2], de-

fined as follows. Let P and S be the set of problems and solvers, respectively.
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For each p ∈ P and s ∈ S, we define

tp,s := (iterations or time required to solve problem p by solver s).

We define performance ratio rp,s as

rp,s :=
tp,s

mins′∈S tp,s′

and define the performance profile for all τ ∈ R as

Ps(τ) :=
|{p ∈ P : rp,s ≤ τ}|

|P|
,

where |A| denotes the number of elements in set A.

4.1. The Rayleigh quotient minimization problem on the unit sphere

Problem 4.1 is the Rayleigh-quotient minimization problem on the unit

sphere. The optimal solutions are the unit eigenvectors of A associated with

the smallest eigenvalue (see [1, Chapter 4.6]).

Problem 4.1. For a symmetric positive-definite matrix A,

minimize f(x) := x⊤Ax,

subject to x ∈ Sn−1 := {x ∈ Rn : ∥x∥ = 1},

where ∥·∥ denotes the Euclidean norm.

In the experiments, we generated a matrix A randomly with n = 100 by

using sklearn.datasets.make spd matrix.
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Figure 1 plots the performance profile of each algorithm versus the num-

ber of iterations. It shows that the HZ method had much better performance

than the FR, DY, PRP, and HS methods. Figure 2 plots the performance

profile of each algorithm versus the elapsed time. It also shows that the per-

formance of the HZ method was much better than those of the FR, DY, PRP,

and HS methods. The two hybrid methods had even better performance. In

particular, the figures show that they are suitable for solving Problem 4.1.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
τ (iteration)

0.0

0.2

0.4

0.6

0.8

1.0

P s
(τ

)

FR
DY
PRP
HS
Hybrid1
Hybrid2
HZ

Figure 1: Performance profile versus number of iterations for Problem 4.1.

4.2. Computation of stability number

We define the stability number S(G) of an undirected graph G = (E, V )

as the size of the maximum stable set in G. Motzkin and Straus showed

that solving the stability number of graphs problem is equivalent to solving

Problem 4.2 [6].
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Figure 2: Performance profile versus elapsed time for Problem 4.1.

Problem 4.2. For an undirected graph G = (E, V ),

minimize f(x) :=
n∑

i=1

x4
i +

∑
(i,j)∈E

x2
ix

2
j ,

subject to x ∈ Sn−1 := {x ∈ Rn : ∥x∥ = 1},

where n := |V | and ∥·∥ denotes the Euclidean norm.

In the experiments, we generated a graph G = (E, V ) randomly with

n = 100 by using networkx.fast gnp random graph. We set the probability

for edge creation to 0.1.

Figure 3 plots the performance profile of each algorithm versus the num-

ber of iterations. It shows that the HZ method had much better performance
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than the existing methods. Figure 4 plots the performance profile of each

algorithm versus the elapsed time. It also shows that the performance of the

HZ method was much better than those of the existing methods. In partic-

ular, the figures show that the HZ method is suitable for solving Problem

4.2.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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HS
Hybrid1
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HZ

Figure 3: Performance profile versus number of iterations for Problem 4.2.

5. Conclusion

We have presented a Hager–Zhang (HZ)-type Riemannian conjugate gra-

dient method that uses exponential retraction and presented a global conver-

gence property. We numerically compared the performance of the proposed

method with those of existing Riemannian conjugate gradient methods for

two Riemannian optimization problems on the unit sphere. The results show
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Figure 4: Performance profile versus elapsed time for Problem 4.2.

that the HZ method has much better performance than the FR, DY, PRP,

and HS methods. In particular, we showed that the HZ method is suitable

for the stability number of graphs problem. It had much better performance

than existing methods, including hybrid methods, for computing the stability

number.

In a future paper, we will present the HZ method using a general retrac-

tion and its convergence analyses.
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