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Abstract. In this paper, we consider the problem of minimizing the sum of nondifferen-
tiable, convex functions over a closed convex set in a real Hilbert space, which is simple in
the sense that the projection onto it can be easily calculated. We present a parallel subgra-
dient method for solving it and the two convergence analyses of the method. One analysis
shows that the parallel method with a small constant step size approximates a solution to
the problem. The other analysis indicates that the parallel method with a diminishing step
size converges to a solution to the problem in the sense of the weak topology of the Hilbert
space. Finally, we numerically compare our method with the existing method and state
future work on parallel subgradient methods.

1. Introduction

This paper considers the following standard nonsmooth convex minimization problem.

Problem 1.1. Let fi (i = 1, 2, . . . , K) be convex, continuous functionals on a real Hilbert
space H and let C be a nonempty, closed convex subset of H. Then,

minimize
K∑
i=1

fi(x) subject to x ∈ C.

A useful algorithm for solving Problem 1.1 is the incremental subgradient method [9, 12],
and it is defined as follows: for defining PC as the projection onto C and ∂fi(x) as the
subdifferential of fi at x ∈ H (i = 1, 2, . . . , K), an iteration (n+ 1) of the algorithm is

ψ0,n := xn,

ψi,n := PC (ψi−1,n − λngi,n) , gi,n ∈ ∂fi (ψi−1,n) (i = 1, 2, . . . , K) ,

xn+1 := ψK,n.

(1.1)

Algorithm (1.1) requires us to use PC each iteration. Hence, we assume that C is simple in
the sense that PC can be easily calculated within a finite number of arithmetic operations [1,
p.406], [2, Subchapter 28.3]. Some incremental methods that can be applied when C is not
always simple were presented in [4, 6, 7].
Meanwhile, parallel proximal algorithms [2, Proposition 27.8], [3, Algorithm 10.27], [10] are

also useful for solving Problem 1.1. They use the proximity operator of a nondifferentiable,
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convex fi which maps every x ∈ H to the unique minimizer of fi + (1/2)∥x− ·∥2, where ∥ · ∥
stands for the norm of H. The parallel gradient algorithms presented in [6, 7] work only
when fi is differentiable and convex, and C is not always simple.
This paper presents a parallel subgradient method for solving Problem 1.1. The proposed

method does not use any proximity operators, in contrast to the algorithms in [2, Proposition
27.8], [3, Algorithm 10.27], [10]. Next, we present convergence analyses for the two step-size
rules: a constant step-size rule and a diminishing step-size rule. We show that the proposed
method with a small constant step size approximates a solution to Problem 1.1. We also show
that the algorithm with a diminishing step size weakly converges to a solution to Problem
1.1.
This paper is organized as follows. Section 2 gives the mathematical preliminaries. Section

3 presents the parallel algorithm for minimizing the sum of convex functionals over a simple,
convex closed constraint set and studies its convergence properties for a constant step size
and a diminishing step size. Section 4 provides numerical examples of the algorithm. Section
5 concludes the paper and mentions future work on parallel subgradient methods.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩, and its induced norm ∥ · ∥. Let N
denote the set of all positive integers including zero.

2.1. Subdifferentiability and projection. The subdifferential [2, Definition 16.1], [11,
Section 23], [13, p.132] of f : H → R is the set-valued operator,

∂f : H → 2H : x 7→ {u ∈ H : f(y) ≥ f(x) + ⟨y − x, u⟩ (y ∈ H)} .
Suppose that f : H → R is continuous and convex with dom(f) := {x ∈ H : f(x) <∞} = H.
Then, ∂f(x) ̸= ∅ (x ∈ H) [2, Proposition 16.14(ii)].

Proposition 2.1. [2, Proposition 16.17] Let f : H → R be continuous and convex with
dom(f) = H. Then, the following are equivalent:

(i) f is bounded on every bounded subset of H.
(ii) f is Lipschitz continuous relative to every bounded subset of H.
(iii) dom(∂f) := {x ∈ H : ∂f(x) ̸= ∅} = H and ∂f maps every bounded subset of H to a

bounded set.

The metric projection [2, Subchapter 4.2, Chapter 28] onto a nonempty, closed convex set
C (⊂ H) is denoted by PC . It is defined by PC(x) ∈ C and ∥x − PC(x)∥ = infy∈C ∥x − y∥
(x ∈ H). PC is (firmly) nonexpansive with Fix(PC) := {x ∈ H : PC(x) = x} = C [2,
Proposition 4.8, (4.8)].

2.2. Main problem. This paper deals with a networked system with K users. Throughout
this paper, we assume the following.

Assumption 2.2.

(A1) C (⊂ H) is a nonempty, closed convex set, and PC can be easily calculated;
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(A2) fi : H → R (i = 1, 2, . . . , K) is continuous and convex with dom(fi) = dom(∂fi) = H,
and

∪
{∂fi(x) : x ∈ B} is bounded for a bounded set B (⊂ H);

(A3) User i (i = 1, 2, . . . , K) can use PC and ∂fi;
(A4) User i (i = 1, 2, . . . , K) can communicate with all users.

The main objective of this paper is to solve the following problem.

Problem 2.3. Under Assumption 2.2, find a minimizer of
∑K

i=1 fi over C.

3. Parallel Algorithm

We present a parallel algorithm for solving Problem 2.3.

Algorithm 3.1.
Step 0. All users set x0 ∈ H arbitrarily and {λn} ⊂ (0,∞).
Step 1. User i (i = 1, 2, . . . , K) computes yi,n ∈ H as follows:{

gi,n ∈ ∂fi (xn) ,

yi,n := PC (xn − λngi,n) .

Step 2. User i (i = 1, 2, . . . , K) shares yi,n in Step 1 with all users and calculates xn+1 ∈ H
as follows:

xn+1 :=
1

K

K∑
i=1

yi,n.

Step 3. Put n := n+ 1, and go to Step 1.

Assumption (A2) ensures that ∂fi(xn) ̸= ∅ (i = 1, 2, . . . , K, n ∈ N) [2, Proposition
16.14(ii)]. Assumption (A3) implies that user i (i = 1, 2, . . . , K) can compute yi,n. Moreover,
(A4) guarantees that all users can calculate xn in Step 2.
The convergence analyses of Algorithm 3.1 depend on the following assumption.

Assumption 3.2. For i = 1, 2, . . . , K, there exists Mi ∈ R such that

sup {∥g∥ : g ∈ ∂fi (xn) , n ∈ N} < Mi.

Suppose that C is bounded (e.g., C is a closed ball). From {yi,n} ⊂ C (i = 1, 2, . . . , K),
{yi,n} (i = 1, 2, . . . , K) is bounded. Accordingly, {xn} is bounded. Hence, (A2) (see Proposi-
tion 2.1 for the equivalent properties of (A2)) ensures that Assumption 3.2 holds. Moreover,
since (A1) and (A2) imply that C ∩dom(f) = C ̸= ∅ and C is bounded, (A2) (the continuity
and convexity of f) guarantees that Problem 2.3 has a solution [2, Proposition 11.14].
This paper uses the notation,

M := max {Mi : i = 1, 2, . . . , K} ,

f :=
K∑
i=1

fi, X :=

{
x ∈ C : f(x) = inf

y∈C
f (y)

}
.
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The following is the convergence analysis of Algorithm 3.1 when the step size is some
constant.

Theorem 3.3. Suppose that Assumption 3.2 holds. Let λ be a positive real number and let
{xn} ⊂ H be the sequence generated by Algorithm 3.1. When λn := λ for all n ∈ N, the
following holds.

lim inf
n→∞

f(xn) ≤ inf
x∈C

f(x) +
1

2
λKM2.

Proof. See [5]. □
The following theorem indicates the weak convergence of Algorithm 3.1 with a diminishing

step-size sequence.

Theorem 3.4. Suppose that Assumption 3.2 holds and {xn} ⊂ H is the sequence generated
by Algorithm 3.1, with {λn} satisfying

∞∑
n=0

λn = ∞ and
∞∑
n=0

λ2n <∞.

Then, if X is nonempty, {xn} converges weakly to some point in X.

Proof. See [5]. □

4. Numerical Examples

We applied the incremental subgradient method (1.1) and Algorithm 3.1 to the following
N -dimensional constrained nonsmooth convex optimization problem (Problem 1.1 when H =
RN and K = N).

Problem 4.1. Let fi : RN → R (i = 1, 2, . . . , N) be convex and let C be a nonempty, closed
convex subset of RN . Then,

minimize
N∑
i=1

fi(x) subject to x ∈ C.

In the experiment, we used the PC-Cluster composed of 48 Fujitsu PRIMERGY RX350
S7 computers at the Ikuta campus of Meiji University. One of those computers has two
Xeon E5-2690 (2.9GHz, 8 cores) CPUs and 32GB memory. We used 64 CPU cores of this
cluster; i.e., there were 64 users in the experiment environment that satisfied (A3) and (A4)
of the Assumption 2.2. In the implementation of Step 2 in Algorithm 3.1, we used the
MPI Allreduce function, which is categorized as an All-To-All collective operation in [8,
Chapter 5], to compute and share the sum of yi,n with all users. This means that all users
contributed to computing xn+1 in Algorithm 3.1. This operation does not violate Assumption
2.2. The experimental programs were written in C and compiled by gcc version 4.4.7 with
Intel(R) MPI Library 4.1. We used GNU Scientific Library 1.16 to express and compute
vectors.
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We set N := 64 and C := {x ∈ RN : ∥x∥ ≤ 1} in Problem 4.1. For all i = 1, 2, . . . , N , we
prepared random numbers ai ∈ (0, 1) and bi ∈ (−1, 1) and gave ai and bi to user i in advance.
The objective function of user i was defined for all x ∈ RN by fi(x) := |ai⟨x, ei⟩+ bi|, where
ei (i = 1, 2, . . . , N) stands for the natural base of RN .
In the experiment, we set λn := 1 for the constant step-size rule and λn := 1/(n + 1) for

the diminishing step-size rule. We performed 100 samplings, each starting from the different
random initial points in [0, 1)N .

Figure 1 shows the behaviors of f(x) :=
∑N

i=1 fi(x) for the incremental subgradient method
(1.1) and Algorithm 3.1 with a constant step size. The y-axis in Figures 1(a) and 1(b)
represent the value of f(x). The x-axis in Figure 1(a) represents the number of iterations
and the x-axis in Figure 1(b) represents the elapsed time. The results show that Algorithm
3.1 minimizes the value of f(x) more than the incremental subgradient method does (1.1).
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Figure 1. Behavior of f(x) for the incremental subgradient method and Al-
gorithm 3.1 with constant step size

Figure 2 shows the behaviors of f(x) for the incremental subgradient method (1.1) and
Algorithm 3.1 with the diminishing step size. The y-axis in Figures 2(a) and 2(b) represent
the value of f(x). The x-axis in Figure 2(a) represents the number of iterations, and the x-axis
in Figure 2(b) represents the elapsed time. The results show that Algorithm 3.1 converges
slower than the incremental subgradient method. However, it shows that Algorithm 3.1 with
a constant step size behaves roughly to the same as the incremental subgradient method with
the diminishing step size. This implies that, if it is difficult to share the diminishing step
size with all users, Algorithm 3.1 can be used as an effective approximation algorithm of the
incremental subgradient method.

5. Conclusion and Future Work

This paper discussed the problem of minimizing the sum of nondifferentiable, convex func-
tions over a simple convex closed constraint set of a real Hilbert space. It presented a parallel
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Figure 2. Behavior of f(x) with diminishing step size

algorithm for solving the problem. We studied its convergence properties for a constant step
size and a diminishing step size. We showed that the algorithm with a constant step size
approximates a solution to the problem, while the algorithm with a diminishing step size
weakly converges to a solution to the problem. Finally, we numerically compared the al-
gorithm with the existing algorithm and showed that, when the step size is constant, the
algorithm performs better than the existing algorithm.
The numerical comparisons also indicated that, when the step size is diminishing, the

existing algorithm converges to a solution faster than our algorithm. Therefore, in the future,
we should consider developing parallel optimization algorithms which perform better than
the existing algorithm even when the step sizes are diminishing.
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