Consider the following fixed point problem on a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$: \begin{align*} \text{Find } x \in \mathrm{Fix}\left(T\right) := \left\{ x\in H \colon T \left( x \right) = x \right\}, \end{align*} where $T \colon H \to H$ is nonexpansive (i.e., $\|T(x) - T(y) \| \leq \| x-y \|$ $(x,y\in H)$). A number of fixed point theorems have been studied by renowned mathematicians, such as Banach, Brouwer, Caristi, Fan, Kakutani, Kirk, Schauder, Takahashi, and so on. We give the following two examples of the fixed point problem.
The following three algorithms are good ways to solve the fixed point problem.
We numerically and theoretically compared our algorithm with the Krasnosel’skii-Mann algorithm and showed that it reduces the running time and iterations needed to find a fixed point compared with that algorithm. It is summarized as the following papers (You can get our papers from Publications page).
We presented an algorithm to accelerate the Halpern algorithm and proved that, under certain assumptions, our algorithm strongly converges to a fixed point of $T$. We numerically compared our algorithm with the Halpern algorithm and showed that it reduces the running time and iterations needed to find a fixed point compared with that algorithm. It is summarized as the following paper (You can get our papers from Publications page).
We have presented the following acceleration methods for convex optimization over the fixed point sets of nonexpansive mappings. If you are interested, please see the following papers (You can get our papers from Publications page).